
Alexander Edström

Theoretical Magnet Design

From the electronic structure of solid matter to new

permanent magnets.



Abstract

A good permanent magnet should possess a large saturation magnetisation (Ms), large mag-

netocrystalline anisotropy energy (MAE) and a high Curie temperature (TC). A difficult but

important challenge to overcome for a sustainable permanent magnet industry is to find novel

magnetic materials, exhibiting a large MAE, without the use of scarcely available elements

such as rare-earth metals. The purpose of this thesis is to apply computational methods, includ-

ing density functional theory and Monte Carlo simulations, to assess the three above mentioned

permanent magnet properties and in particular to discover new replacement materials with large

MAE without the use of critical materials such as rare-earths.

One of the key results is the theoretical prediction of a tetragonal phase of Fe1−xCox-C with

large Ms and significantly increased MAE which is later also experimentally confirmed. Fur-

thermore, other potential materials are surveyed and in particular the properties of a number of

binary alloys in the L10 structure, FeNi, CoNi, MnAl and MnGa, are thoroughly investigated

and shown to posses the desired properties under certain conditions.
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1. Introduction

Albeit being a phenomena known since ancient times, to this day magnetism
remains under vast research activity due to its theoretical complexity and far-
reaching technological importance. One important field for magnetic materials
is found in the area of permanent magnets [1, 2, 3, 4, 5] with applications in
large scale industries including those for motors, generators and actuators.
With a growing demand from emerging industries, such as that of wind power
generation, the need of sustainable high performance permanent magnets is
greater than ever.

In the last decades of the 20th century came the development of perma-
nent magnets consisting of compounds of rare-earths and transition metals,
such as SmCo5 and Nd2Fe14B which to this day possess properties supe-
rior to all alternatives. However, in recent years due to economic reasons,
a need for alternative materials which do not contain rare-earth elements has
arisen [6, 1, 4]. The figures of merit of a permanent magnet are the coercivity
Hc and the energy product (BH)max, and in addition to this a high Curie tem-
perature is needed in order for the magnets to operate with good performance
at reasonable temperatures. The extrinsic property requirement of high coer-
civity and large energy product translates, in terms of intrinsic properties, into
a large saturation magnetisation Ms and magnetocrystalline anisotropy energy
(MAE). Table 1.1 contains a summary of relevant properties of some of the
most common rare-earth permanent magnets, one of the common alternative
materials, namely ferrite magnet BaFe12O19 and for comparison also transi-
tion metals bcc Fe and hcp Co. It is apparent that the remarkable properties
of the rare-earth based magnets stem from their large MAE. As a matter, of
fact the cheap and highly abundant bcc Fe has higher Ms and TC than the rare-
earth magnets, but the MAE is orders of magnitude smaller making bcc Fe
useless as a permanent magnet. As will become clear in chapter 2 there are
two reasons for the MAE being so low in Fe while it is so high in for ex-
ample Nd2Fe14B; first of all the cubic bcc crystal of Fe does not allow for
the large MAE mainly found in uniaxial crystals and secondly the MAE is
closely related to the spin-orbit coupling which tends to be strong in heavy
elements in the lower part of the periodic table. These elements are often also
less abundant which is the main challenge in finding new materials suitable as
permanent magnets and the main purpose of this thesis is to provide potential
solutions to this problem.

One useful path to finding new materials with the desired properties is
through computational methods, such as electronic structure calculations, which
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Table 1.1. A summary of the properties of some high performing rare-earth magnets,

a ferrite alternative and the transition metals bcc Fe and hcp Co. The relevant perma-

nent magnet properties provided are Curie temperature (TC), coercivity (Hc), energy

product ((BH)max), saturation magnetisation (Ms), and magnetocrystalline anisotropy

energy (MAE). Data was taken from Ref. [1, 7, 8]. The extrinsic properties depend

on the microstructure of the material and should be considered an estimate of what is

practically realisable.

Nd2Fe14B SmCo5 BaFe12O19 bcc Fe hcp Co
TC (K) 588 1020 740 1043 1388
μ0Hc (T) 1.21 0.90 0.15 7 ·10−5 5 ·10−3

(BH)max (kJ/m3) 512 231 45 - -
μ0Ms (T) 1.61 1.22 0.48 2.21 1.81
MAE (MJ/m3) 4.9 17.2 0.33 0.048 0.53

allow for exploring the properties of various materials with relative ease com-
pared to experimental work and it is this path which is to be taken in this
thesis. Density functional theory (DFT) provides a powerful tool for study-
ing the electronic structure and ground state properties of materials, including
the Ms and MAE which are essential for permanent magnets. In combination
with other computational methods, such as Monte Carlo (MC) simulations,
also the Curie temperature can be determined and hence all of the three main
properties of interest are obtainable.

This thesis will begin with an overview of those parts of the theory of mag-
netism especially important for this work in Chapter 2. In particular the rel-
ativistic spin-orbit coupling and its relation to MAE will be brought up in
Sec. 2.1 and exchange interactions and the Heisenberg Hamiltonian which re-
sult in spontaneous magnetic ordering will be briefly discussed in Sec. 2.2.
The relevant computational methods will then be introduced in Chapter 3 with
DFT being discussed in Sec. 3.1 and MC in 3.2. In Chapter 4 the main re-
sults, based on the work presented in papers I-III, are summarized. These
results mainly regard two groups of materials. Firstly C-doping is suggested
as a method of causing a tetragonal distortion in FeCo alloys in paper I, which
is then experimentally realized in paper II. The properties of various binary
alloys in the L10 structure are then explored in paper III and found to show
promising qualities under certain conditions. In addition to this a brief survey
is given over other materials which might be of interest in a permanent magnet
context.
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2. Elements of the Theory of Magnetism

This chapter gives an introduction and overview of those areas of the theory
of magnetism which are most important to understand the theoretical aspects
of permanent magnets most relevant to the work behind this thesis. It begins,
in Sec. 2.1, by discussing the relativistic nature of magnetism and in particular
in Sec. 2.1.2, the spin-orbit coupling and its relation to the magnetocrystalline
anisotropy. It continues in Sec. 2.2 by discussing the exchange interactions
which lead to magnetic ordering and how it can be described in terms of ex-
change coupling parameters and the Heisenberg Hamiltonian.

2.1 Relativistic Electrons
Magnetism arises due to the quantum mechanical spin or orbital angular mo-
mentum of electrons. The spin angular momentum was initially rather arti-
ficially introduced into the theory of quantum mechanics to explain the fine
structure of the hydrogen atom [9]. It was not until Dirac introduced a rela-
tivistic wave equation [10, 11] for the electron that the spin became well un-
derstood as an intrinsic angular momentum necessary for a Lorentz symmet-
ric version of quantum mechanics. Moreover, relativistic effects neglected in
the Schrödinger equation are of importance in describing electrons in atomic
core states and the relativistic spin-orbit coupling, which will be discussed
further later on, brings in a rich new array of physical phenomena including
the magnetocrystalline anisotropy which is essential for the field of permanent
magnets.

The Dirac equation may, including electromagnetic interactions, be written
in the following way [12][

γμ
(
i∂μ − eAμ

)−m
]

ψ = 0, (2.1)

where e is the electron charge, γμ are the Dirac matrices, Aμ is the electro-
magnetic potential and m is the electron mass. Alternatively it might, after
separating out the time dependence, be written[

α · (−i∇− eA)+ eV +βm
]

ψ = Eψ, (2.2)

where A is the magnetic vector potential, V is the scalar potential,

β = γ0 =

(
I2×2 0

0 −I2×2

)
and α =

(
0 σ
σ 0

)
, (2.3)
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where σ = (σx,σy,σz) contains the Pauli matrices. In principle, Eq. 2.2 will
provide all of the information required to understand the magnetic phenomena
discussed here and it is the equation which is solved for all electrons in the
SPR-KKR method and for the core electrons only in the FP-LAPW method,
as will be further discussed in Sections 3.1.1-3.1.2. Often however, solving
Eq. 2.2 is more complicated than what is necessary to describe the phenomena
of interest with good accuracy, so that simplifications and approximations can
beneficially be applied. One such simplification is to expand the equation in
the non-relativistic limit v/c � 1 as discussed in Sec. 2.1.2. This naturally
introduces a term describing the spin-orbit coupling, which is essential for
magnetocrystalline anisotropy, and allows for applying the so called scalar
relativistic approximation.

For spherically symmetric potentials, such as the Coulomb potential for
hydrogen-like atoms, certain exact analytical results can be obtained for the
Dirac equation [12, 13]. The solution may in general be written [12]

ψk
j,m(r,θ ,φ) =

(
f k(r)Y k

j,m(θ ,φ)

igk(r)Y −k
j,m (θ ,φ)

)
, (2.4)

where f and g are two-component radial dependent functions, Y k
j,m(θ ,φ)

are generalised spherical harmonics, j,m denote the total angular momentum
quantum numbers and

k =

{
l if l = j+ 1

2

−(l +1) if l = j− 1
2

(2.5)

is a quantum number related to the parity of the solution. The generalised
spherical harmonics are related to regular spherical harmonics, Yl,m, according
to

Y
k
j,m(θ ,φ) =−sgnk

√
k+ 1

2 −m

2k+1
αY

l,m− 1
2
+

√
k+ 1

2 +m

2k+1
βY

l,m+ 1
2
, (2.6)

where

α =

(
1
0

)
β =

(
0
1

)
. (2.7)

Here can be noted that the orbital or spin angular momentum operators in-
dividually do not commute with the Dirac Hamiltonian while total angular
momentum and parity do. Typically in solid matter, those electrons for which
relativistic effects tend to be important are tightly bound core states. These
are also, to a very good approximation, in a spherical potential so that it is
appropriate to describe them with solutions of the form given in Eq. 2.4.
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2.1.1 Non-Relativistic Limit and the Scalar Relativistic
Approximation

If one does not wish to work with the full four-component Dirac formalism
introduced in the previous section but still wishes to retain certain relativistic
effects, it is appropriate to make an expansion in the non-relativistic limit,
v
c
� 1, and only keep terms up to a certain order. The first step in doing so is

to assume a solution of the form [12]

ψ(r) =

(
χ(r)
η(r)

)
, (2.8)

where χ and η each has two components. A useful next step is to perform
a Foldy-Wouthuysen transformation, where one introduces a hermitian and
unitary operator

U =U−1 =U† = Aβ +
α ·p
2m

A =

√
1− p2

4m2 . (2.9)

Transforming the Dirac equation according to H ′ = UHU−1 and ψ ′ = Uψ ,

performing some algebra and eventually only keeping terms to order
(

v
c

)2

leads to a decoupling of χ and η and a Hamiltonian

H =
(p− eA)2

2m
+ eV − e

2m
σ ·B− p4

8c2m3 +
e∇2V

8c2m2 +
eh̄

4c2m2 σ · (∇V ×p) .

(2.10)
The first three terms in this equation make up the non-relativistic Schrödinger
Hamiltonian, including the Zeeman term

HZeeman =− e

2m
σ ·B, (2.11)

where B = ∇×A is the magnetic flux density. After that comes a so called

mass correction term − p4

8c2m3 , the Darwin term e∇2V
8c2m2 and finally the spin-orbit

coupling (SOC) e
4c2m2 σ · (∇V ×p) which, if one assumes the scalar potential

to be spherically symmetric, takes on the more common form

HSOC =
e

4c2m2r

dV (r)

dr
σ ·L = ξ L ·S, (2.12)

where L = r×p is the orbital angular momentum operator, S = h̄
2 σ is the spin

operator and

ξ =
e

2h̄c2m2r

dV (r)

dr
(2.13)

is the spin-orbit coupling constant. Furthermore, for the spherical potential of
a hydrogen-like atom, the SOC constant is [7]

ξ =
mZ4α4c2

2n3l(l + 1
2)(l +1)

, (2.14)
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where Z is the atomic number, α = e2

h̄c
is the fine structure constant and n

and l denote principal and angular momentum quantum numbers, respectively.
From this expression it is clear that the SOC becomes particularly important
for states with low angular momentum in heavy atoms with large Z. This is
the source to one of the main challenges in obtaining magnetic materials with
large MAE without the use of scarcely available and expensive elements. A
large MAE requires a large Z but materials with Z significantly larger than the
value of Z = 26 for Fe tend to be much less abundant than those elements with
smaller Z. Furthermore, such elements are typically not magnetic.

The above Hamiltonian in Eq. 2.10 acts on a two-component spinor

ψ(r) =

(
ψ+

ψ−

)
, (2.15)

where ψ+ and ψ− represent spin up and spin down electrons, respectively.
The SOC term is the only term in Eq. 2.10 containing off-diagonal terms and
hence coupling the spin up and spin down electrons to each other. Ignoring
the SOC and using only the diagonal terms in the Hamiltonian is known as the
scalar relativistic approximation.

2.1.2 Spin-Orbit Coupling and the Magnetocrystalline
Anisotropy

Magnetocrystalline anisotropy is the internal energy dependence on magneti-
sation direction, i.e. E = E(M̂), where M̂ = (sinθ cosφ ,sinθ sinφ ,cosθ) is
the direction of the magnetisation relative to the crystal lattice. This effect
was first experimentally observed and described phenomenologically, based
on anisotropy constants and crystal symmetries. For example, in a uniaxial
crystal the energy may be written [8]

E = Eiso +K1 sin2 θ +K2 sin4 θ +K3 sin6 θ +K4 sin6 θ cos6φ + ..., (2.16)

where Eiso contains all isotropic energy contributions, Ki are the anisotropy
constants and θ and φ are the angles describing the magnetisation direction as
given above. For a cubic structure on the other hand, the energy is

E = Eiso +K1(α
2
1 α2

2 +α2
1 α2

3 +α2
2 α2

3 )+K2α2
1 α2

2 α2
3 + ..., (2.17)

where αi are the directional cosines of the magnetisation direction.
That the microscopic origin of this anisotropy is related to the SOC, intro-

duced in the previous section, was suggested by Van Vleck [14], as this is the
link coupling the spin to the real space crystal symmetry via the orbital angular
momentum. If we are mainly interested in the transition metal d-electron mag-
netism, then the SOC can be considered as a perturbation. The SOC energy
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shift to second order is

ESOC = ξ ∑
n

〈n|L ·S |n〉+ξ 2 ∑
n �=k

∣∣〈n|L ·S |k〉∣∣2
En−Ek

, (2.18)

where |n〉 and |k〉 denote eigenstates of the unperturbed Hamiltonian and En

and Ek are the associated energy eigenvalues. When considering d-electrons
in a solid with a crystal field lifting the degeneracy of the d-orbitals, there is
a quenching of orbital angular momentum [15, 16] because 〈L〉= 〈i|L |i〉= 0
for any non-degenerate states |i〉, so that the diagonal matrix elements of the
SOC Hamiltonian appearing in the first order term of the perturbation expan-
sion are all zero. Furthermore, if both |n〉 and |k〉 are occupied or if both are
unoccupied, there is a cancellation of terms in the sum so that the only terms
which need to be included are those which couple occupied and unoccupied
states. Hence, we can express the SOC, based on second order perturbation
theory, as

ESOC = ξ 2 ∑
occ. n

unocc. k

∣∣〈n|L ·S |k〉∣∣2
En−Ek

, (2.19)

where the summation is over all occupied states |n〉 and unoccupied states |k〉.
For uniaxial crystals, the expression in Eq. 2.19 is non-zero and the MAE is of
order ξ 2. For a cubic crystal on the other hand, the second order perturbation
term is also zero and one would have to go to fourth order perturbation theory
to find non-zero contributions to the MAE [17]. Hence, cubic materials tend
to have orders of magnitude smaller MAE than uniaxial ones and this explains
why the MAE of bcc Fe is so much smaller than that of hcp Co, as was seen in
table 1.1. Therefore, in searching for good permanent magnet materials with
large MAE, one should focus on materials with non-cubic crystal structures.
Eq. 2.19 also provides another key insight for the search of transition metal
based magnets with large MAE. When there is a weak SOC and hence a small
ξ , the only way to obtain a large value for MAE is to have a large number of
occupied states |n〉 and unoccupied states |k〉 with a small energy difference
En−Ek. The optimal 3d based permanent magnet material should therefore be
one with a uniaxial crystal structure and flat energy bands close to each other
just above and below the Fermi energy. This insight was used by Burkert et

al. [18] to explain the unusually large MAE of certain compositions of tetrag-
onally strained Fe1−xCox, which provides an important background for the
work in papers I-II, and it is discussed further in Sec. 4.1.1. Similar arguments
have also been used, for example, by Costa et al. [19] to analyze the large
MAE of Fe2P and insightful illustrations of how the MAE depends sensitively
on the band structure around the Fermi energy are provided in Ref. [20].

Based on a perturbation expression such as that in Eq. 2.19, assuming that
the exchange splitting is significantly larger than the SOC and ignoring spin-
flip terms and deformations of the Fermi surface, Bruno [21] found a simple
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relation between the MAE and the orbital moment anisotropy which states that

EMAE = ΔESOC =
ξ

4
G

H
ΔL =

ξ̄

4
ΔL, (2.20)

if ξ̄ = ξ G
H

and G and H are density of states integrals which should often be of
similar size so that ξ̄ ∼ ξ . Eq. 2.20 tends to give a qualitatively correct descrip-
tion in that there is a proportionality between the change in the orbital moment
and the SOC and that the easy axis coincides with the direction where the or-
bital moment has its maximum. It happens, however, that the relation breaks
down, for example due to hybridisation effects in complex materials [22]. On
occasion Eq. 2.20 has also been incorrectly applied in explaining the origin of
large MAE in transition metal alloys, such as FeNi [23, 24], as being due to
anisotropy in the orbital moment. This way of looking at it is incorrect in the
sense that Eq. 2.20 does not provide causality in the relation between EMAE
and ΔL but the relation between the two quantities is rather due to the origin of
both being the SOC. The key to understanding the MAE of a crystalline solid
lies instead in the SOC and the details of the band structure near the Fermi
energy, as revealed by Eq. 2.19.

Fig. 2.1 shows how the energy and orbital, as well as spin moments vary
with the angle between the magnetisation direction and the z-direction as the
magnetisation direction varies from [001] to [100]-direction, based on calcula-
tions done with WIEN2k. From Fig. 2.1b, which shows the change in energy
plotted against the change in orbital moment, it is clear that there is a propor-
tionality between these two quantities as predicted by Eq. 2.20 and that the
easy axis of magnetisation coincides with direction where the orbital moment
has its maximum. In Fig. 2.1c one can also observe that, as pointed out in
references [23, 24], the largest change in orbital moment is on the Fe atom
while that on the Ni atom is smaller and of opposite sign.

2.2 Exchange Interactions and the Heisenberg
Hamiltonian

The quantised spin and orbital angular momentum and the associated magnetic
moments allow us to understand the appearance of para- and diamagnetism.
To understand spontaneous magnetic ordering, such as ferro-, ferri- or anti-
ferromagnetism, we need to include also an interaction between the atomic
magnetic moments. Interactions, such as dipole-dipole, between atomic mo-
ments are typically negligibly small and would not allow magnetic ordering
at the significant temperatures where it is observed. The relevant interac-
tion is instead the exchange interaction due to the Coulomb repulsion and the
fermionic character of electrons. This can be seen, for example, in moving
from Hartree to Hartree-Fock theory where the inclusion of antisymmetry of
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Figure 2.1. Variations in energy and moments of FeNi as functions of the angle θ
between the direction of magnetisation and the z-axis.

the wavefunction leads to an exchange term, which results in a lowering of
energy for parallel spin ordering [15]. From, for example, the Heitler-London
model one can see that localised spins tend to interact in a way so that the
energy is proportional to the scalar product of the spin operators [16]. Even
though the Heitler-London model only describes a simple system consisting
of two atoms with one localised electron each, the result regarding the form of
the spin-spin interaction turns out to be rather general and in many cases well
describes also magnetism in a solid [15, 16]. This result is represented by the
Heisenberg Hamiltonian

HHeisenberg =−1
2 ∑

i�= j

Ji jSi ·S j, (2.21)

where Si and S j are the atomic spins on sites i and j respectively and Ji j is
the exchange coupling parameter between these spins. For a magnetic system
described by Eq. 2.21 the magnetic ordering and its TC is now determined by
the exchange coupling parameters Ji j. For a given material, these parameters
can be obtained from the electronic structure as discussed in Sec. 3.1.5. Once
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one has the Ji j, one can then study the magnetic ordering and transition tem-
peratures via, for example, Monte Carlo simulations which will be discussed
in Sec. 3.2. One can also estimate magnetic transition temperatures via mean
field theory, according to which [15, 25]

TC =
J0S(S+1)

3kB
, (2.22)

where S is the atomic spin, J0 = ∑i J0i is the sum of the exchange interactions
and kB is the Boltzmann constant, from which it is clear that the Curie tem-
perature is proportional to the strength of the exchange interactions. Eq. 2.22
overestimates the transition temperature by around twenty percent or more de-
pending on dimensionality and coordination number [15], but can be useful in
effortlessly establishing an upper limit for TC and it is applied to some extent
and compared with MC results in Paper III.

In ferromagnetic metals, which are the materials of main interest in this
thesis, the exchange coupling tends to be mediated by conduction electrons
and the coupling is said to be of RKKY-type. The typical form of the ex-
change coupling parameters in such a system is, asymptotically in the long
range limit [25],

JRKKY
i j ∼ n4/3 sin(2kFRi j)−2kFRi j cos(2kFRi j)

(kFRi j)4 , (2.23)

where n is the density of conduction electrons, kF is the Fermi wave vector and
Ri j is the distance between sites i and j. Eq. 2.23 shows how RKKY-type inter-
actions exhibit an oscillatory behaviour with a long range decay proportional
to R−3

i j . Strictly speaking, Eq. 2.23 is derived assuming localised moments in
a metal and only in this type of system one can formally expect the Heisen-
berg Hamiltonian with exchange coupling parameters given by Eq. 2.23 to be
a good model. Hence, one would not expect the model to work for magnetic
3d metals as these tend to exhibit itinerant ferromagnetism with an exchange
splitting of the conduction bands. However, it turns out that the same type of
behaviour is often found also in itinerant ferromagnets [26, 27].

Fig. 2.2 illustrates the exchange coupling parameters for Fe and random al-
loy Fe0.4Co0.6 in the bcc structure, calculated by the SPR-KKR method which
is described in the next chapter. Fig. 2.2b illustrates that the exchange cou-
pling parameters decay approximately as R−3

i j , as expected from Eq. 2.23. In
Fig. 2.2c it is seen that the strength of the Fe-Fe interactions increase as Co
is alloyed into the material while also Fe-Co and Co-Co interactions are very
strong. This explains the observed effect that TC increases as one alloys Co
into bcc Fe [28] and application of mean field theory on the exchange cou-
pling parameters in Fig. 2.2 results in TC = 1298 K and TC = 1554 K for Fe
and Fe0.4Co0.6 respectively. Looking at Eq. 2.23 it can be speculated that the
increase in the strength of the Ji j is due to an increase in the density of con-
duction electrons as Co is added into the material.
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The Hamiltonian in Eq. 2.21 is rotationally invariant and hence does not
include any form of magnetic anisotropy. The Heisenberg Hamiltonian can be
expanded with a term to take into account magnetocrystalline anisotropy and
in the case of a uniaxial crystal, based on Eq. 2.16 if one keeps only the two
first anisotropy constants, such a Hamiltonian is

HMAE = ∑
i

[
K1(m̂i · êz)

2 +K2(m̂i · êz)
4
]
, (2.24)

where m̂i is the direction of the moment at site i and êz is the direction of the
crystal axis.
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3. Computational Methods

This chapter provides a brief description of the computational methods utilised
in the work behind this thesis. Density functional theory (DFT) [29, 30, 31]
is used to calculate ground state properties of materials and it is described in
Sec. 3.1. In particular the full potential linearised augmented plane waves and
the spin polarised relativistic KKR methods are used to solve the DFT equa-
tions and an introduction to these methods is given in Sec 3.1.1 and Sec. 3.1.2.
As we are interested in disordered alloys, models to describe these are dis-
cussed in Sec. 3.1.3 while Sec. 3.1.4 provides a discussion on specifics re-
garding the computation of MAE. In order to calculate Curie temperatures,
Monte Carlo simulations [32] are employed as discussed in Sec. 3.2.

3.1 Density Functional Theory
Density functional theory (DFT) is our method of choice for finding the ground
state solution to an N-electron Schrödinger equation of the form⎛

⎝− h̄2

2m

N

∑
i=1

∇2
i +

N

∑
i

Vext(ri)+
1
2

N

∑
i�= j

w(
∣∣ri− r j

∣∣)
⎞
⎠Ψ = EΨ, (3.1)

where Vext(r) is an external potential, w(
∣∣ri− r j

∣∣) is a Coulomb interaction
between an electron at ri and one at r j and Ψ is an N-electron wavefunction.
The first key ingredients of DFT are the Hohenberg-Kohn theorems [33] which
allow us to focus on electron densities, rather than wavefunctions, and finding
the ground state properties of the system by minimising the total energy as a
functional with respect to the density. The practical method of doing this is
provided by the Kohn-Sham approach[34] where the many-body problem in
Eq. 3.1 is simplified to a number of single particle problems(

− h̄2

2m
∇2 +Veff(r)

)
ψi(r) = εiψi(r), (3.2)

where εi and ψi are the Kohn-Sham eigenvalues and orbitals which, in gen-
eral, individually lack clear physical interpretation, although the ground state
density is

n(r) =
N

∑
i

∣∣ψi(r)
∣∣2 , (3.3)
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with summation over the N eigenstates with lowest energy. In making this
simplification, we have introduced the effective single particle potential

Veff(r) =Vext(r)+
∫

dr′
n(r)

|r− r′| +
δExc[n(r)]

δn(r)
, (3.4)

including the exchange-correlation potential Vxc =
δExc[n(r)]

δn(r) , which contains
the many-body effects. This unknown quantity, Vxc, is the cost of our simpli-
fication from a many-electron wavefunction into single particle problems and
finding good approximations for Vxc is the grand challenge in making DFT ac-
curate and useful. For some very simple model systems it might be possible to
find an exact exchange-correlation functional [35] but realistic systems must
be treated by approximations. The most commonly used approximations for
the exchange-correlation potential are the local density approximation [36, 37]
(LDA), which locally approximates the Vxc(r) with that of a homogeneous
electron gas with the same density n(r), and the generalised gradient approxi-
mation [38] (GGA), which also takes into account gradients in the density. For
many systems, these approximations are sufficient to reproduce ground state
properties with satisfying accuracy although for so called strongly correlated
systems other corrections, such as LDA+U [29, 30] or dynamical mean field
theory (DMFT) [39, 30], are required.

In this thesis, we are mainly interested in the magnetic properties of 3d
metals and their alloys and compounds. For these systems GGA tends to ac-
curately describe the desired properties[40, 41, 42], whereby this is the main
exchange-correlation potential employed in the calculations behind this work.

In the discussion above no spin dependence was included. In order to
describe magnetism, spin polarised DFT must be used. The density should
then be split up into spin up and spin down parts so n(r) = n↑(r) + n↓(r)
and spin dependence should be included into the effective potential. Fur-
thermore, as discussed in Sec. 2.1, relativistic effects are often important and
can be taken into account, for example by solving the Dirac equation rather
than the Schrödinger equation or by using the scalar relativistic approxima-
tion discussed in Sec. 2.1.1. In particular, spin-orbit coupling is essential for
calculating magnetocrystalline anisotropy and specifics regarding this will be
discussed in Sec. 3.1.4.

The next step in DFT is to solve the equations in Eq. 3.2. Many methods
have been developed for doing this and, as usual in numerical problem solv-
ing, one typically needs to weigh computational speed against accuracy and
generality. Those methods of solving the Kohn-Sham equations which are
used in the work behind this thesis will be briefly described in the coming two
sections. Since the density, which is calculated from the solutions ψi, is also
needed to calculate the potential Veff which appears in the equations, the prob-
lem is solved self-consistently by iteration until a solution is converged with
required accuracy.
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3.1.1 FP-LAPW
One of the computational methods used here is the full potential linearised
augmented plane waves [43] (FP-LAPW) method as implemented in the WIEN2k
code [44]. Full potential implies that no shape approximation is applied for
the potential, in contrast to the commonly used atomic sphere approxima-
tion (ASA), where the potentials are assumed to be spherically symmetric
around atoms. LAPW is the linearised[45] version of Slater’s augmented
plane wave [46] (APW) method, in the sense that energy dependence is re-
moved from the basis functions. Space is partitioned into muffin-tin (MT)
regions of atomic spheres Sα and an interstitial region I, whereupon the Kohn-
Sham orbitals in Eq. 3.2 are expanded in basis functions consisting of radial
solutions uα

l (r
′,Eα

l ) to the Schrödinger equation of a free atom with energy
Eα

l and its energy derivative u̇α
l (r

′,Eα
l ) within Sα , while in I, plane waves are

used according to

ϕk,K(r) =

⎧⎨
⎩

1√
V

ei(k+K)·r r ∈ I

∑l,m

(
A

α ,k+K
l,m uα

l (r
′,Eα

l )+B
α ,k+K
l,m u̇α

l (r
′,Eα

l )
)

Y l
m(r̂

′) r ∈ Sα

.

(3.5)
Here k is a point in the Brillouin zone, K is a reciprocal lattice vector, V is
the volume of the unit cell, Y l

m(r̂
′) are spherical harmonics and r′ is the posi-

tion relative to the position coordinate of atomic sphere Sα . On the boundary
of the atomic spheres a matching is done so that ϕk,K(r) is continuous and
differentiable in all space. The number of basis functions used are usually
determined so that one basis vector is included for each vector K such that
|K|< Kmax with RMTKmax = convergence parameter, where RMT is the radius
of the smallest atomic sphere. The Kohn-Sham equations can then be solved
as an eigenvalue problem for a dense enough grid of k-vectors to obtain an
accurate solution to the problem. RMTKmax is a good parameter to describe the
accuracy of the number of basis functions used since smaller radii of atomic
sphere will require more basis functions to be included to describe the more
rapid real space variations closer to the nuclei.

In the WIEN2k code, core state electrons are treated fully relativistically
by solving the spherically symmetric Dirac equation, while valence states in
atomic spheres are treated within the scalar relativistic approximation dis-
cussed in Sec. 2.1.1. In order to calculate MAE, one needs to include the
SOC also for valence states which can be done in a second variational ap-
proach [47, 48].

3.1.2 SPR-KKR
As in the previously discussed scheme, the spin-polarised relativistic Korringa-
Kohn-Rohstocker method [49, 50] relies on simplifying the many-body Schrödinger
equation to a number of single particle Kohn-Sham equations. This method
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goes back to the work of Korringa [51] and Kohn and Rohstocker [51] (KKR)
and allows for exact solutions to an MT potential which is spherically symmet-
ric around atoms and constant in the interstitial region. The SPR-KKR method
evaluates the Green’s function [52] (GF), G(r,r′,E), defined according to

(E−H )G(r,r′,E) = δ (r− r′), (3.6)

where H is the Hamiltonian of the system. With a free electron GF G0(r,r′,E),
the single-site GF can be introduced via a Dyson equation

Gn(r,r′,E) = G0(r,r′,E)+G0(r,r′,E)tnG0(r,r′,E), (3.7)

where tn is the single site t-matrix. In SPR-KKR, the full GF is then evaluated
through a multiple-scattering formalism [50, 53] so that

G(r,r′,E) = G0(r,r′,E)+G0(r,r′,E)T G0(r,r′,E), (3.8)

where
T = ∑

n,n′
τnn′ (3.9)

and τnn′ is the scattering path operator which brings an incoming electron at
site n to an outgoing at site n′. For a crystal these may be evaluated via Lloyd’s
formula [50, 53].

The method outlined above allows for evaluation of the energy dispersion
relation E(k). For a disordered crystal, which will be further discussed in the
coming section, the ordinary dispersion relation is, however, not well defined.
Instead one can evaluate the more general Bloch spectral functions [54, 50],
A(E,k), an example of which will be provided in Fig. 3.3. For an ordered
crystal these reduce to the ordinary dispersion relations.

3.1.3 Models to Treat Disorder
We will be interested in studying randomly disordered alloys where, for exam-
ple, one might be interested in the magnetic properties of Fe1−xCox as a func-
tion of the concentration x. Hence, we need models to describe this type of dis-
order and there are various methods available[55]. In super cell calculations,
one creates a large system with many atoms and by means of some appropriate
stochastic method, such as special quasirandom structures (SQS) [56], places
the desired concentration of atoms in an appropriate configuration and evalu-
ates the electronic structure. This should often be the most accurate model, in
particular as it keeps the specific atomic character of each atom and correctly
allows for local relaxation, but it quickly becomes computationally demanding
and does not allow one to easily vary the concentration in small increments.
Two other models, namely virtual crystal approximation (VCA) and the coher-
ent potential approximation (CPA) are therefore utilised to great extent in this
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thesis and will be discussed in more detail. Some comparison to SQS super
cell calculations can be found in Paper I.

VCA is a single site approach and perhaps one of the simplest methods
which can be used. Here one introduces a virtual atom C to describe the bi-
nary alloy A1−xBx and this virtual atom should have a possibly non-integer
atomic number ZC = (1−x)ZA +xZB. This simple model has been confirmed
to yield a correct behaviour for various properties when alloying elements
such as Fe and Co, which are neighbours in the periodic table, while it breaks
down for elements further away from each other, such as Fe and Ni [57, 58].
Alternatively formulated, the potential

VC = (1− x)VA + xVB (3.10)

yields a correct description of the random alloy consisting of atoms A and B
with potentials VA and VB respectively in the limit where VA =VB [55]. How-
ever, the MAE which is one of the key properties studied in this thesis, tends
to be quantitatively severely overestimated by VCA, even when the qualitative
behaviour is correct [59, 60]. This is highly relevant for Papers I and II where
it is also discussed.

A more sophisticated single site model of disorder is provided by the CPA [61].
Here, an impurity of each atom type, A or B, is placed in an effective CPA
medium. One then considers the alloy to be described by the weighted av-
erage of the two different impurity solutions, as illustrated in Fig. 3.1. This
method is suitable for use with the GF approach where one solves the CPA
equations

(1− x)τA
nn + xτB

nn = τCPA
nn (3.11)

and
τα

nn = [(tα)−1− (tCPA)−1− (τCPA)−1]−1, α = A, B, (3.12)

self consistently, whereupon an average GF,

G(r,r′,E) = (1− x)GA(r,r′,E)+ xGB(r,r′,E), (3.13)

is obtained.

Figure 3.1. In the CPA, each atomic type is embedded in an effective CPA medium
and the average solution is used.

Fig. 3.2 shows a comparison between a VCA calculation in WIEN2k and
a CPA calculation using SPR-KKR. The MAE and magnetic moments have
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been calculated as functions of the tetragonal strain c/a for an alloy of Fe0.4Co0.6,
similarly as has been done in Ref. [59]. The MAE has been evaluated by total
energy difference and magnetic force theorem in WIEN2k and with total energy
difference and the torque method in SPR-KKR. These methods of computing
the MAE will be described in the coming section 3.1.4. Fig. 3.2a illustrates
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Figure 3.2. MAE and magnetic moments of Fe0.4Co0.6 as functions of c/a, calculated
by various methods. All calculations were done with the exchange-correlation treated
with the GGA, except the MAE calculation marked LDA, which was performed with
SPR-KKR, CPA and total energy difference calculation.

how the VCA qualitatively describes the correct behaviour of the MAE, al-
though it overestimates the maximum values significantly compared to the
CPA. From Fig. 3.2b it is clear that the moment provided by the VCA coin-
cides very well with the average moment provided by CPA, but CPA yields
more information as it also provides the atom specific moments, not only the
average.

Fig. 3.3 illustrates the Bloch spectral functions around the Fermi energy
for the disordered tetragonal alloy Fe0.4Co0.6 with three different tetragonal
strains around that of c/a= 1.2, with maximum MAE as was found in Fig. 3.2.
It can be observed how there are regions with occupied and unoccupied energy
bands getting particularly close to the EF for c/a = 1.2 and based on the dis-
cussion in Sec. 2.1.2 one can hypothesise that this is the reason for the large
MAE.

3.1.4 Computing the MAE
When defining the MAE as the largest possible energy difference between two
different magnetisation directions (the easy and the hard axes), it is clear that
this can be calculated by performing total energy calculations, including SOC,
for a magnetisation in each of the two directions n̂1 and n̂2 and taking the
difference according to

EMAE = E(n̂1)−E(n̂2). (3.14)
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Figure 3.3. Bloch spectral functions around the Fermi energy for bct Fe0.4Co0.6 with
various tetragonal strains.
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The first problem here is determining which axis is easy and which is hard
when there is infinitely many directions to probe. This however, does not
tend to be a problem since the directions of interest are typically some of the
high symmetry directions which can be seen in the phenomenological expres-
sions in Sec. 2.1.2. Furthermore, in a uniaxial crystal, it is typically enough
to probe the energy in the uniaxial direction and in one arbitrary direction
in the orthogonal plane as energy variations within the plane tend to be or-
ders of magnitude smaller. For example, in the tetragonal Fe0.4Co0.6 alloy
with c/a = 1.2, the energy difference between magnetisation directions along
z-axis or in the xy-plane is MAE = 1.2 ·10−4 eV/atom, while the energy vari-
ations within the plane are too small to be resolved with a numerical accuracy
of 10−8 Ry/atom = 1.36 · 10−7 eV/atom. What is on the other hand a prob-
lem is that the MAE tends to be a very small energy difference, compared to
for example exchange interactions, which are still only in the order of a few
meV/atom. Hence, one is required to compute a small difference between
two large energy values and this makes the MAE difficult to evaluate with
high numerical accuracy and thus also computationally costly. Fig. 3.4 shows
the convergence of the MAE as a function of the number of k-points used in
integration over the Brillouin zone. This is evaluated as the difference of total
energies for FeNi, one of the materials studied in Paper III. The calculation
is done using WIEN2k where the Brillouin zone integration is performed with
the modified tetrahedron method[62]. It is clear that, at least, more than 104

k-points should sampled over the full Brillouin zone in order to obtain a value
of the MAE with numerical accuracy within a few percent.
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Figure 3.4. MAE as a function of the number of k-points used for numerical integra-
tion of the Brillouin zone for L10 structured alloy FeNi.

Approximative methods have been developed to evaluate the MAE from
DFT with greater ease and less computational cost. Two such methods, which
have been utilised in this work and will be described here, are the force the-
orem used in Papers I and II and the torque method which is used to a large
extent in Paper III.

Force Theorem

When calculating the MAE as a difference of total energies as described above,
one needs to perform highly accurate, full self consistent calculations, includ-
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ing SOC, in each of the two magnetisation directions. By considering the
change in energy within first order perturbation theory, the magnetic force
theorem[63] tells us that it is enough to consider the change in the single par-
ticle Kohn-Sham eigenvalues, rather than the total energy. The MAE can then
be evaluated as [64]

EMAE ≈ Es.p.(n̂1)−Es.p.(n̂2), (3.15)

where

Es.p. = ∑
occ. i

εi (3.16)

is the sum over occupied single particle Kohn-Sham energy eigenvalues. This
allows running only one full self consistent calculation and evaluating the εi,
including SOC, for each magnetisation direction, saving about half of the com-
putational effort. Fig. 3.2 contains a comparison of the MAE calculated by
total energy difference or using the force theorem and illustrates that, within
the VCA, the force theorem provides a good approximation of the MAE for
the given system.

Torque Method

Another method for calculating the MAE, implemented in SPR-KKR and em-
ployed to considerable extent in Paper III, is the torque method[65]. For a
uniaxial magnet, considering the first two θ -dependent terms in Eq. 2.16, one
finds that the torque on a magnetic moment in direction (sinθ cosφ ,sinθ sinφ ,cosθ)
is

T (θ) =
dE

dθ
= K1 sin2θ +2K2 sin2 θ sin2θ . (3.17)

From Eq. 3.17 it is easy to evaluate the MAE as

EMAE = T (
π

4
) = K1 +K2 = E(0)−E(

π

2
), (3.18)

if a method to evaluate torque is available. In the multiple scattering formalism
adopted in SPR-KKR, the torque can be obtained through the formula [66]

T (θ) =− 1
π

Im
∫ εF

dε ∑
n

Tr

(
∂ t−1

n

∂θ
τnn(ε)

)
. (3.19)

Fig. 3.2 contains a comparison between torque method calculations and total
energy difference calculations for the MAE of Fe0.4Co0.6 as a function of c/a

and the agreement is excellent. In the work behind Paper I on the other hand,
the torque method was found to not describe the MAE of C-doped FeCo alloys
well, most likely due to the local disorder introduced by the C-atom.
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3.1.5 Exchange Coupling Parameters
The exchange coupling parameters Ji j of the Heisenberg Hamiltonian dis-
cussed in Sec. 2.2 can, within KKR multiple scattering formalism, be eval-
uated via the formula of Liechtenstein et al. [67, 68] as

Ji j =− 1
4π

Im
∫ εF

dεTr
[
(t−1

i↑ − t−1
i↓ )τ i j

↑ (t
−1
j↑ − t−1

j↓ )τ
ji

↓
]
. (3.20)

Calculation of exchange coupling parameters via Eq. 3.20 is implemented in
SPR-KKR and the result of such a calculation was shown in Fig. 2.2. With
these Ji j as input, one can model finite temperature effects in various ways
including mean field theory, Monte Carlo simulations or spin dynamics based
on the Landau-Lifshitz-Gilbert equation [69]. The main method used in this
work and in Paper III in particular is Monte Carlo simulations which will be
discussed further in the coming section.

3.2 Monte Carlo Simulations
In statistical mechanics [70] one wishes to evaluate partition functions

Z = Tre−H/kbT (3.21)

and expectation values such as

〈A〉= 1
Z

TrAe−H/kBT . (3.22)

Calculating these traces for complicated systems, containing many particles,
amounts to evaluating sums or integrals over a phase space with a large number
of dimensions. This soon becomes insurmountable with deterministic meth-
ods but it turns out that stochastic methods such as Monte Carlo (MC) [71, 32]
simulations, which calculate averages from large sets of random numbers, are
well suited to solve these problems. In general MC allows for efficient eval-
uation of multidimensional integrals, as an integral may be considered an ex-
pectation value of a probability distribution, and is often more efficient than
deterministic methods in more than three dimensions [71]. When it comes
to solving the problems of classical statistical mechanics, the algorithm of
Metropolis et al.[72] provides a powerful method of solution.

Here, we are mainly interested in the Heisenberg Hamiltonian in Eq. 2.21.
The state of such a system is described by the directions of all the N spins in
the system, i.e. the set {m̂i}. The average moment of a particular configuration
is m = 1

N ∑i mi and the energy E({m̂i}) is easily calculated from Eq. 2.21. By
generating many different states based on random numbers one can evaluate
thermodynamic averages such as average energy per spin e = 〈H〉/N, specific
heat capacity

c =
∂e

∂T
=
〈H2〉−〈H〉2

NT 2 (3.23)
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or magnetic susceptibility

χ =
∂m

∂h
=
〈m2〉−〈m〉2

NT
, (3.24)

where h is an applied field.
The Metropolis algorithm applied on this type of system can be summarised

as follows:
1. Generate an appropriate initial configuration, e.g., random or all spins

aligned.
2. For each i, randomly generate a new trial state where m̂i is changed to m̂′

i

and calculate the change in energy ΔE. Generate a uniformly distributed
random number r ∈ [0,1] and accept the new trial state if r < e−ΔE/kBT ,
otherwise keep the old state as the new state. To do this for each of the
N spins is known as one MC sweep.

3. Repeat the second step and after every other sweep measure wanted
quantities and evaluate thermodynamic averages. Repeat the procedure
for a large enough number of sweeps so that the averages are well con-
verged.

Before taking measurements one should run a number of sweeps to make the
system unbiased from the initial state and often it is also good to do a simu-
lated annealing where the temperature is slowly lowered to the measurement
temperature from a higher temperature in order to stop the system from being
trapped in a local energy minimum [32].

In practice when performing simulations one is limited to particle num-
bers which are very small compared to the sizes of real systems with ∼ 1023

particles. Recurrently, one might wish to analyse system properties in the
thermodynamic limit, i.e., where the size of the system goes to infinity under
constant density, which can be done using the methods of finite size scaling.
Critical points can be analysed using critical exponents and the Binder cumu-
lant method [71, 32]. One is then interested in the Binder cumulant,

U = 1− 〈m4〉
〈m2〉2

, (3.25)

which is independent of system size at the critical point where a second or-
der phase transition occurs. Hence, plotting this quantity as a function of a
thermodynamic variable, such as temperature, for various system sizes and
finding the point of intersection allows one to identify the critical point in the
thermodynamic limit.

Figure 3.5 shows the average moment and the magnetic susceptibility as
functions of temperature for L10 alloy FeNi with various system sizes de-
scribed by L so that there is a total L3 unit cells included in the simulation.
The particular MC implementation used here and in the work behind Paper III
is that of the UppASD code [69]. In Fig. 3.5a one can observe how the aver-
age moment decreases with temperature and how it decreases particularly fast
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close to the transition temperature of TC = 916 K. One can also see that for
larger L, the drop in the moment is steeper and the value above TC goes closer
to the value of zero which is expected in the thermodynamic limit. In Fig. 3.5b
it is shown how the susceptibility diverges at the critical point and the peak be-
comes sharper for larger L. A fast and easy way to identify the point of the
phase transition is to look for peaks in the susceptibility. Fig. 3.6 shows the
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Figure 3.5. Average moment and magnetic susceptibility as functions of temperature
for L10 alloy FeNi with system sizes L.

Binder cumulant as function of temperature for the FeNi systems of size L.
The inset shows a close-up of the region around the critical point where one
can see how the curves for different L intersect at TC.
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4. Results

This chapter presents a brief overview of the key results of this thesis, while
readers interested in more details are referred to the papers. First, a general
discussion on FeCo alloys is provided in Sec. 4.1 and results regarding FeCo
alloys with C impurities, related to the work in papers I and II, are presented in
Sec. 4.1.1. The possibility of using B instead of C is discussed in Sec. 4.1.2. In
Sec. 4.2 results regarding binary alloys in the L10 structure, based on the work
in paper III, are presented. Finally a number of other interesting materials are
briefly discussed.

4.1 Fe1−xCox Alloys
As Fe1−xCox alloys provide large saturation magnetisation, being on top of the
Slater-Pauling curve [73, 8], as well as high Curie temperature, they would be
ideal candidates for permanent magnet applications if a large MAE can be ob-
tained as well. Burkert et al. [18] showed that an enormous MAE could be ob-
tained in tetragonally strained Fe1−xCox given specific conditions of c/a≈ 1.2
and x ≈ 0.65. The work of Burkert et al. was based on the VCA and as seen
in Sec. 3.1.3 it overestimates the MAE, but more realistic CPA or supercell
treatment of disorder showed that indeed large MAE can be obtained even
if maximum values are smaller than those originally proposed by Burkert et

al. [59, 60]. These theoretically predicted results were also experimentally
verified in thin film multilayers [74, 75, 76]. Unfortunately, most of the Fe-Co
phase diagram below 1100 K is bcc [77] and exhibits a minute MAE so in or-
der to produce bulk magnets based on Fe1−xCox for permanent magnets new
routes must be explored. Papers I and II provide such a new route by intro-
ducing doping with C atoms which cause a tetragonal strain of the Fe1−xCox

crystal as will be discussed in the coming Section 4.1.1. If this route is possi-
ble with C atoms, one can also imagine using other similar atoms, such as B
or N, out of which B will be discussed in Sec. 4.1.2.

Pure Co is found in the uniaxial hcp structure at normal conditions, which
allows it to have a significantly higher MAE compared to bcc Fe. Another
possible system to explore could hence be Fe1−xCox in the hcp structure. The
first apparent problem with this system is that hcp is only the stable phase for
a very narrow range of x ∼ 1 [77]. However, FP-LAPW simulations were
still performed to explore the magnetic properties of the hypothetical hcp
Fe1−xCox system for a complete range of x ∈ [0,1], also varying the lattice
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parameters around their equilibrium values. It is found that very large values
of EMAE > 400 μeV/atom are obtained for x ∼ 0.3 or smaller, but the sys-
tem also appears to be antiferromagnetic for x ≥ 0.5 so that no magnetisation
would be left, making the system unsuitable as a permanent magnet even if
one would manage to alloy large amounts of Fe into the hcp crystal.

4.1.1 (Fe1−xCox)-C
The metastable Fe-C martensite phase is an old and well known system where
C atoms go into octahedral interstitial positions of the bcc Fe crystal, where
they cause a tetragonal distortion [78, 79, 80]. This metastable phase is prac-
tically obtained by rapid quenching of the high temperature fcc phase. Due
to similarities in the phase diagrams of Fe-C and Fe-Co-C systems [77, 81],
it is reasonable to imagine the same type of structure occurring in an alloy of
Fe1−xCox-C. This would allow one to produce a tetragonal Fe1−xCox based
system potentially possessing the desired permanent magnet properties, in-
cluding a large MAE, if the desired conditions of c/a ≈ 1.2 and x ≈ 0.65
pointed out in Ref. [18] can be achieved.

In Paper I, stable energy minima with c/a > 1 are presented for a number
of internally relaxed (Fe1−xCox)yC systems with y = 8, 16 and 24 and C in
octahedral interstitial positions as illustrated in Fig. 4.1a-4.1c and a few dif-
ferent values of x around 0.65 as suggested by Ref. [18]. This indicates that
it could indeed be possible to find the desired type of martensite structures
described above. For systems with y = 16, relatively large tetragonal strains
up to c/a ≈ 1.17 are found so that potentially large values of the MAE can
be obtained. For systems with a lower C content, i.e. y = 24, the strain is
significantly lower and c/a≈ 1.035.

For each of these systems the MAE, is calculated by both WIEN2k with VCA
and the force theorem and by SPR-KKR with CPA and total energy differ-
ences. As expected, the VCA calculations overestimate the MAE significantly,
but even with the CPA significant MAE’s of up to EMAE = 41.6 μeV/atom =
0.59 MJ/m3 are found. Supercell calculations, utilising special quasirandom
structures (SQS), provide an even slightly larger value of EMAE = 0.75 MJ/m3.
These systems also exhibit large saturation magnetisations of μ0MS ≈ 2 T and
if one might guess that a small amount of non-magnetic C does not drastically
affect the strong exchange interactions of Fe and Co atoms, it is reasonable
to suspect also a significant Curie temperature, which in summary makes the
system highly promising as a permanent magnet if possible to synthesise.

These results provide a potential route to a new permanent magnet but thus
far all results are theoretical suggestions and the next step should be an ex-
perimental confirmation. Such a confirmation is provided in Paper II, where
pulsed laser deposition is used for epitaxial growth of the (Fe1−xCox)yC sys-
tem described above. It is found that when the ternary (Fe1−xCox)yC system is
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(a) (Fe1−xCox)8C (b) (Fe1−xCox)16C (c) (Fe1−xCox)24C (d) (Fe1−xCox)32C

Figure 4.1. Illustrations of the various (Fe1−xCox)yC structures with interstitial C
atoms studied in Papers I and II.

grown on a CuAu buffer the tetragonal strain saturates towards c/a≈ 1.03 as
the film is grown thicker, in contrast to the binary Fe1−xCox system which
rapidly saturates towards c/a = 1, clearly indicating that the C atoms in-
deed induce a tetragonal strain. A magnetocrystalline anisotropy as large as
EMAE = 0.44 MJ/m3 was measured for x = 0.6. However, only a small C
content of around 2 at.% appears to enter the system which makes direct com-
parison to data in Paper I difficult. Hence, calculations were performed for
a (Fe0.4Co0.6)32C system as that illustrated in Fig. 4.1d with the experimen-
tally measured lattice parameters a = 2.81 and c/a = 1.03. Calculations us-
ing WIEN2k with VCA and force theorem indicate EMAE = 0.51 MJ/m3 while
SPR-KKR with CPA and total energy differences yields EMAE = 0.22 MJ/m3.
The experimental value is in between the two theoretical ones and theory and
experiment can be considered to be in good agreement. One would, however,
expect the CPA to provide a more reliable result than the VCA but in this case
the VCA result is slightly closer to the experimental value.

4.1.2 (Fe1−xCox)-B
If it is possible for C to go into interstitial positions, as discussed above, it is
easy to imagine also other atoms with similar size and properties, such as B
or N, to do the same. Consequently, the procedure performed in Paper I was
repeated with B substituting C and the results, shown in Table 4.1, are overall
similar. What can be noted is, however, that the tetragonal strain and thus also
the MAE, is now larger for systems with y= 24 than what was the case with C.
Hence, it appears that compared to C impurities, low amounts of B can cause
larger tetragonal strains and thus lead to higher MAE per impurity content.
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Table 4.1. c/a and MAE of various (Fe1−xCox)yB systems.

Composition c/a MAEtorque ( μeV
atom ) MAE ( μeV

atom ) MAE ( MJ
m3 )

(Fe0.5Co0.5)8B 1.247 76.2 104.6 1.51
(Fe0.35Co0.65)16B 1.116 15.5 40.3 0.58
(Fe0.4Co0.6)16B 1.103 31.1 48.7 0.69
(Fe0.45Co0.55)16B 1.091 43.8 48.3 0.69
(Fe0.50Co0.50)16B 1.086 41.3 43.5 0.62
(Fe0.35Co0.65)24B 1.083 21.0 37.1 0.53
(Fe0.4Co0.6)24B 1.079 31.2 41.8 0.59
(Fe0.45Co0.55)24B 1.076 36.1 41.3 0.58
(Fe0.50Co0.50)24B 1.074 39.7 44.4 0.63

The results in Table 4.1 were calculated with SPR-KKR and the CPA and
the MAE was evaluated both using the torque method and as difference of
total energies. Although the MAE is of the same order of magnitude when
calculated with the two methods, the agreement is far from excellent and for
some cases, such as that of (Fe0.35Co0.65)16B, there is a discrepancy by more
than a factor two. Similar problems occurred when studying the (Fe1−xCox)-
C systems in the previous section so it appears that the torque method, or at
least the implementation utilised here, is not reliable for these systems. This
is in contrast to the case of Fe1−xCox as was seen in Fig. 3.2 which implies
that the local distortion introduced by the C or B makes the torque method
inappropriate.

4.2 L10 Binary Compounds
Fig. 4.2 illustrates two different unit cells of the L10 crystal structure, one
fct-like cell with volume V1 = a2c and one bct-like rotated by π

4 with vol-
ume V2 = a′2c = V1

2 . The structure is often described in terms of the fct-like
structure but for computations it is beneficial to use the smaller bct-like struc-
ture to reduce the system size and hence also computational effort. Certain
binary alloys, such as FePt [82, 83, 84, 85], can exhibit enormous MAE in
this ordered structure. Interestingly, it is sometimes possible to obtain large
MAE also without heavy elements such as Pt, providing large SOC, and ma-
terials of this kind have received attention for permanent magnet applications.
In Paper III a thorough investigation into the electronic structure and mag-
netic properties of the binary alloys FeNi [23, 82, 86, 87, 88, 24], CoNi [89],
MnAl [90, 91, 92, 93] and MnGa [94, 95, 96] is presented. In addition to the
evaluation of MS and MAE via DFT, TC is also calculated using MC simu-
lations to obtain a complete picture of the three important permanent magnet
properties. It is found that under certain circumstances all of the investigated
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compounds exhibit interesting properties from a permanent magnet perspec-
tive.

Figure 4.2. Illustration of two different perspectives on the L10 structure.

MAE and MS are significant in all of the compounds, although MS is smaller
in the Mn-based materials which also contain a non-magnetic element. In
FeNi and CoNi, also the TC is found to be high but by studying substitutional
disorder, where there is intermixing of the atoms in the two different sublat-
tices, it is found that both TC and, in particular, MAE decrease notably, even
for rather small amounts of disorder.
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Figure 4.3. Average moments and susceptibility as functions of temperature for
MnGa, Mn1.12Ga0.88 and Mn1.2Ga0.8.

In the case of Mn-based materials, there often occur strongly antiferromag-
netic exchange interactions for Mn atoms which are at a short distance from
one another, which destabilises the ferromagnetic state. As a consequence,
MnAl exhibits a antiferromagnetic ground state while MnGa is only very
weakly ferromagnetic with TC = 70 K. It turns out, however, that a ferrimag-
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netic state with significant Curie temperature up to TC ≈ 700 K is attainable
in both compounds by going off-stoichiometry and adding excess Mn into the
second sublattice. Fig. 4.3 shows the effect of increasing the Mn-content in
MnGa on the average moment and susceptibility as function of temperature,
as found from MC simulations in UppASD. It is clear that the phase transition
occurs for higher temperatures with higher Mn-content, which appears to be
consistent with experimental observations [96]. Fig. 4.4 illustrates the result-
ing ferrimagnetic ordering.

Figure 4.4. Ferrimagnetic Mn1+xGa1−x

4.3 Other Potential Materials
Various other materials have been discussed as potential candidates for re-
placement permanent magnets without rare earths or Pt. One candidate which
has received interest is Fe2P, due to its huge MAE [19], but unfortunately it
has rather low TC which might however be possible to raise by alloying with
small amounts of other elements [97, 98, 99, 100, 101]. Another candidate
which has shown potential as a permanent magnet is MnBi [102, 103, 104]
with the anomalous behaviour of an MAE which increases strongly with tem-
perature [105]. Two other materials which could posses interesting properties
are (Fe1−xCox)2B and Heusler alloys which will be described further in the
coming two Sections 4.3.1-4.3.2.

4.3.1 (Fe1−xCox)2B
The tetragonal (Fe1−xCox)2B system, in the space group 140 structure shown
in Fig. 4.5, with four equivalent Fe/Co atoms and two equivalent B atoms,
was studied by Iga [106] and for certain values of x it exhibits a relatively
large uniaxial MAE. Consequently, by tuning the composition of Fe and Co it
might be possible to obtain a material with the desired properties for a useful
hard magnet.
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Figure 4.5. One unit cell of (Fe1−xCox)2B. Large, red balls represent Fe/Co atoms,
while the small green balls represent B atoms.

Fig. 4.6 contains results of SPR-KKR calculations with alloying treated
within the CPA and MAE evaluated by the torque method. Fig. 4.6a and
Fig. 4.6b show the saturation magnetisation and MAE as functions of x and it is
revealed that the MAE is uniaxial in the region 0.1≤ x≤ 0.6 with a maximum
value of EMAE = 0.77 MJ/m3 around x = 0.3. The saturation magnetisation is
a monotonously decreasing function of x since Co has a smaller moment than
that of Fe but even at the cobalt rich side it remains reasonably high around
μ0MS = 1.0 T.
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Figure 4.6. Magnetisation and MAE as functions of x in (Fe1−xCox)2B as well as
MAE for various atomic numbers Z in (Fe0.675Co275Z0.05)2B.

Hybridisation effects can induce increased MAE even by adding non-magnetic
elements which contribute with strong SOC [107]. One possible route to fur-
ther increasing the MAE of the material could therefore be to add heavier
elements from a few rows down in the periodic table. Fig. 4.6c shows the
effect on MAE of exchanging 5 at.% of Fe and Co for various elements of
atomic number Z from the 5d row of elements (Hf is missing because a well
converged calculation was not obtained) with a dotted line indicating the value
obtained for the ternary system. It appears from these results that only the first
elements in the row are useful for this purpose and W and Re seem particularly
useful as they allow for a two-fold increase of the MAE.
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4.3.2 Heusler Alloys
The Heusler alloys consist of a wide range of materials with tunable proper-
ties making them interesting for a variety of applications [108]. Most of the
Heusler alloys are cubic but some can exist in a tetragonal phase [108, 109]
allowing for the possibility of finding materials with large MAE. It appears
that most magnetic tetragonal Heuslers are Mn-based of the form Mn2YZ and
can exhibit large MAE but tend to be ferrimagnetic with rather low magnetic
moments. The case of Y=Mn, Z=Ga, shown in Fig. 4.7, exhibits an enor-
mous MAE as the results of FP-LAPW calculations in WIEN2k presented in
Table 4.2 show.

Figure 4.7. The DO22 tetragonal Heusler structure of Mn3Ga with arrows indicating
magnetic moments on the Mn atoms.

As seen in Fig. 4.8, the ferrimagnetic state with the magnetic ordering
shown in Fig. 4.7 is favoured over a ferromagnetic state by around 0.4 eV.
The ferrimagnetic ordering also appears to favour a slightly larger distance
between atoms, with larger volume and c/a than would be the case for a fer-
romagnetic structure and it allows for an even larger value of the MAE than
what would have been the case for ferromagnetic ordering.

With the large MAE of EMAE = 1.3 MJ/m3 observed in ferrimagnetic Mn3Ga
it could have significant potential as a permanent magnet. Unfortunately, the
total moment in the unit cell is only m = 1.76μB, corresponding to a satura-
tion magnetisation of μ0MS = 0.20 T making it less suitable. Similar systems
could be of interest if elements which tend to prefer ferromagnetic alignment,
such as Fe, could be used as a substitute for Mn. However, it appears that
such materials tend to prefer the cubic phase [110] resulting in tiny MAE and
making them less suitable in the context of interest.
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Table 4.2. Table summarising the properties of ferro- and ferrimagnetic Mn3Ga.

Quantity Ferro Mn3Ga Ferri Mn3Ga
a (a.u.) 7.11 7.13
c (a.u.) 13.07 13.44
a (Å) 3.76 3.77
c (Å) 6.92 7.11
mMn-1 (µB) 0.68 -2.79
mMn-2 = mMn-3 (µB) 2.17 2.28
mGa (µB) -0.05 -0.03
EMAE (µeV/f.u.) 532.8 830.1
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5. Conclusions

After giving a brief background to the theory of magnetism most relevant to
understanding permanent magnets and an introduction to computational meth-
ods suitable to study permanent magnet material properties, a number of rare-
earth free materials with promising properties for the given purpose have been
presented. In particular, a novel material consisting of an FeCo alloy with
C atoms causing a tetragonal distortion with a resulting increased MAE has
been presented based on theoretical work and then also in an experimental
realisation. In addition to this, the properties of various binary alloys in the
L10 structure have been thoroughly assessed and turn out to exhibit highly
interesting properties if a high degree of ordering in the right alloy concentra-
tions is achieved. An overview has also been given over other materials with
potentially useful properties.

Obtaining good permanent magnets without the use of heavy elements such
as rare-earths or Pt is indeed a challenging task but it is clear that solutions
exist. More specifically it has been seen that with the correct band struc-
ture around the Fermi energy, a large MAE can be obtained with only 3d
elements and this can be improved further through hybridisation effects via
non-magnetic elements with stronger spin-orbit coupling. As illustrated in
Fig. 5.1, a number of promising materials have already been found with prop-
erties which are at least superior to the ferrite magnets and the search contin-
ues for more alternatives. The last step on the path towards novel permanent
magnets will then be for the experimental side of the research community to
provide efficient methods of synthesis and characterisation.
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