
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XIV), 14-17 July, 2014, Samos, Greece.

Citation for the original published paper:

Clauss, P., Fassi, I., Jimborean, A. (2014)

Software-controlled processor stalls for time and energy efficient data locality optimization.

In: Embedded Computer Systems: Architectures, Modeling, and Simulation (pp. 199-206).

http://dx.doi.org/10.1109/SAMOS.2014.6893212

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-235802

Software-controlled Processor Stalls for Time and
Energy Efficient Data Locality Optimization

Philippe Clauss
INRIA CAMUS, ICube Lab, CNRS

University of Strasbourg, France
Email: philippe.clauss@inria.fr

Imen Fassi
INRIA CAMUS, ICube Lab, CNRS

University of Strasbourg, France
University El Manar, Tunisia

Email: imen.fassi@inria.fr

Alexandra Jimborean
Department of Information Technology

Uppsala University, Sweden
Email: alexandra.jimborean@it.uu.se

Abstract—Data locality optimization is a well-known goal
when handling programs that must run as fast as possible or use a
minimum amount of energy. However, usual techniques never ad-
dress the significant impact of numerous stalled processor cycles
that may occur when consecutive load and store instructions are
accessing the same memory location. We show that two versions
of the same program may exhibit similar memory performance,
while performing very differently regarding their execution times
because of the stalled processor cycles generated by many pipeline
hazards. We propose a new programming structure called “xfor”,
enabling the explicit control of the way data locality is optimized
in a program and thus, to control the amount of stalled processor
cycles. We show the benefits of xfor regarding execution time and
energy saving.

I. INTRODUCTION

Designing optimizations for reducing the execution time
or the energy consumption of compute-intensive codes relies
predominantly on an analysis of the performed memory ac-
cesses. Indeed, it is well-known that memory accesses play
a crucial role in the execution time of a program due to
memory latencies that make the processor stall while waiting
for requested data. Standard optimization objectives are to
reduce the number of cache misses to reduce these latencies.
Regarding energy consumption, the optimization goals are very
similar since requests to memory units are responsible for a
significant part of the total energy expenditure of a program,
and stalls due to memory latencies cause the processor to waste
energy. When programming, a common approach to reduce
cache misses and memory latencies is to improve the temporal
and spatial locality of the data accessed by the program.

However, even if a program exhibits “good” data locality
with few generated cache misses, it may happen that it still
provides weak time performance. A main reason can be
numerous pipeline stalls due to WAW (Write-After-Write),
RAW (Read-After-Write) or WAR (Write-After-Read) hazards,
or to functional unit contentions. Thus, two different versions
of a program may generate similar numbers of cache misses
and memory accesses, while still performing very differently
regarding execution time.

On the other hand, codes exhibiting good memory perfor-
mance while generating a huge amount of pipeline stalls have a
particular interest regarding energy saving. Indeed, since they
are not generating more memory accesses than faster code
versions, their energy consumption rate, i.e., the consumed
power, is significantly lower. Thus, it is possible to reduce

the power consumed by a running code at a given threshold,
at the price of an execution-time increase.

In this paper, we exhibit that handling the amount of
pipeline stalls by software is as important as handling data
locality. We propose a new programming structure, xfor, which
enables explicit control of the data reuse distances between
statements of a loop nest, thanks to two parameters: offset
and grain. We show that the adjustment of these parameters
results in code versions exhibiting good data locality and
similar memory performance, but generating varying numbers
of pipeline stalls. This new programming structure is supported
by a source-to-source compiler named IBB for Iterate-But-
Better, which automatically translates any C code containing
xfor-loops into an equivalent code where xfor-loops have been
translated into for-loops.

We conducted our experiments on an Intel Ivybridge pro-
cessor and measured, in addition to the number of cache
misses and stalled cycles, the energy dissipated by the tar-
get loop nests by accessing the dedicated processor counter
MSR PKG ENERGY STATUS.

The paper is organized as follows. In the next Section,
we first introduce the xfor programming structure with a code
example and then present its syntax and semantics. In Section
III, we explain how to control the data reuse distances with
xfor structures and highlight the general problem of stalled
processor cycles significantly impacting the execution time.
Section IV describes several strategies for saving energy thanks
to the use of xfor programs. Section V proposes an iterative
search to find the best combination of xfor offset values
reaching improved data locality and controlled number of
stalled processor cycles. Related work is addressed in Section
VII. In Section VI, we show the benefits of xfor programming
regarding execution time and energy consumption on a set of
benchmark programs extracted from the polybench benchmark
suite [12]. Conclusions are given in Section VIII.

II. THE XFOR PROGRAMMING STRUCTURE

A. Illustrative example

Consider the loop nest in Figure 1 which was extracted
from the seidel program of the polybench benchmark suite
[12]. This code is a classic stencil computation where the eight
neighbors of each grid point are accessed to update the point
with their average. Thus, each array element is reused eight

f o r (t = 0 ; t <= t s t e p s − 1 ; t ++)
f o r (i =1 ; i<= n−2 ; i ++)

f o r (j =1 ; j<=n−2 ; j ++)
A[i] [j] = (A[i −1][j −1]+A[i −1][j]+A[i −1][j +1]

+A[i] [j −1]+A[i] [j]+A[i] [j +1]
+A[i + 1] [j −1]+A[i + 1] [j]+A[i + 1] [j + 1]) / 9 . 0 ;

Fig. 1. Main for-loop nest of the seidel code

times to compute eight different averages. One important issue
is that following the canonical lexicographic order of the 2-
level loop nest, each point is updated using four neighbors that
are already updated, while the four others are still assigned
their initial values.

To minimize the data reuse distances, we split the statement
into five elementary statements: four statements consisting
of adding neighbors that were not yet updated, and one
last statement consisting of adding all the remaining updated
neighbors and of computing the average. The resulting loop
body is shown in Fig. 2 as the body of an xfor loop structure
nest. In this version of the loop body, accesses to a given
element of array A made by statements 0 to 3 are all made
once and for all at each iteration, while successively taking
part of the computation of four stencil computations in which
it appears. The code required to implement such a schedule
by using standard for-loops would be tedious and complex to
program.

The new xfor loop structure proposed in this paper enables
programmers to schedule statements separately by defining
their own loop iterators and two additional parameters, the
offset and the grain, devoted to synchronize the statements
among each other. Let us focus on the offset parameters of the
example, appearing at the very end of the xfor headers. For
instance, the first 0 in the outer loop list and the first 2 of the
inner loop list – noted (0,2) in the following – tell that the
first statement is shifted by 0 in the outer loop direction and
by 2 in the inner loop direction, thus resulting in an execution
behavior similar to the one of the corresponding statement in
comments. Note that array elements that are actually accessed
inside an xfor-loop iteration are given by subtracting the offset
values to the indices inside the array reference functions, so
resulting in the code in comments.

Dependent statements must be conveniently scheduled
thanks to their respective offset values. The final computation
of the average (statement 4), using array elements that were
already updated, has to be performed after the last element
update (statement 3). Thus statement 4 has been assigned
the greatest couple of offset values (1,2), which is the same
as for statement 3. Since statement 3 is appearing before
statement 4 in the loop body, they are executed in this order
and dependences are respected.

Both the other lists of integer numbers are defining the
grain parameter values. Their role is described in the next
subsection.

B. XFOR syntax and semantics

The xfor syntax is defined by:
x for (i n d e x = expr , [i n d e x = expr , . . .] ;

i n d e x r e l o p expr , [i n d e x r e l o p expr , . . .] ;

f o r (t = 0 ; t <= t s t e p s −1 ; t ++)
x for (i 0 =1 , i 1 =1 , i 2 =1 , i 3 =1 , i 4 =1 ;

i0<=n−2, i1<=n−2, i2<=n−2, i3<=n−2, i4<=n−2 ;
i 0 ++ , i 1 ++ , i 2 ++ , i 3 ++ , i 4 ++ ;
1 , 1 , 1 , 1 , 1 ; /∗ g r a i n s ∗ /
0 , 1 , 1 , 1 , 1) /∗ o f f s e t s ∗ / {

x for (j 0 =1 , j 1 =1 , j 2 =1 , j 3 =1 , j 4 =1 ;
j0<=n−2, j1<=n−2, j2<=n−2, j3<=n−2, j4<=n−2 ;
j 0 ++ , j 1 ++ , j 2 ++ , j 3 ++ , j 4 ++ ;
1 , 1 , 1 , 1 , 1 ; /∗ g r a i n s ∗ /
2 , 0 , 1 , 2 , 2) /∗ o f f s e t s ∗ / {

0 : A[i 0] [j 0] += A[i 0] [j 0 +1] ;
1 : A[i 1] [j 1] += A[i 1 + 1] [j1−1] ;
2 : A[i 2] [j 2] += A[i 2 + 1] [j 2] ;
3 : A[i 3] [j 3] += A[i 3 + 1] [j 3 +1] ;
4 : A[i 4] [j 4] = (A[i 4] [j 4]+A[i4 −1][j4−1]

+A[i4 −1][j 4]+A[i4 −1][j 4 +1]
+A[i 4] [j4 −1]) / 9 . 0 ;

/∗ 0: A[i] [j−2] += A[i] [j−1] ;
1 : A[i −1][j] += A[i] [j−1] ;
2 : A[i −1][j−1] += A[i] [j−1] ;
3 : A[i −1][j−2] += A[i] [j−1] ;
4 : A[i −1][j−2] = (A[i −1][j−2]+A[i −2][j−3]

+A[i −2][j−2]+A[i −2][j−1]
+A[i −1][j −3]) / 9 . 0 ; ∗ / }}

Fig. 2. Main xfor-loop nest of the seidel code

i n d e x += i n c r , [i n d e x += i n c r , . . .] ;
g r a i n , [g r a i n , . . .] ;
o f f s e t , [o f f s e t , . . .]) {
l a b e l : { s t a t e m e n t s }

[l a b e l : { s t a t e m e n t s } , . . .] }

The first three elements in the xfor header are similar to
the initialization, test, and increment parts of a traditional C
for-loop, except that all these elements describe two or more
loop indices. The last two components provide the grain and
offset for each index: these values are constants, and the grain
must be positive. All domains must be affine: “expr” denotes
affine combinations of enclosing loop indices, “relop” is one
of ==, !=, <, <=, > or >=, and “incr” must be an integer.
Every index in the set must be present in all components of
the header, and (sequences of) statements are labelled with the
rank of the corresponding index (0 for the first index, 1 for
the second, and so on).

The list of indices defines several for-loops whose respec-
tive iteration domains are all mapped onto a same global
“virtual referential” domain. The way iteration domains of the
for-loops are overlapped is defined solely by their respective
offsets and grains, and not by the values of their respective
indices, which have their own ranges of values. The grain
defines the frequency in which the associated loop has to run,
relatively to the referential domain. For instance, if the grain
equals 2, then one iteration of the associated loop will run
for every second iteration of the referential. The offset defines
the gap between the first iteration of the referential and the
first iteration of the associated loop. For instance, if the offset
equals 3, then the first iteration of the associated loop will run
at the fourth iteration of the referential loop.

The size and shape of the referential domain can be
deduced from the for-loop domains composing the xfor-loop.
Geometrically, the referential domain is defined as the union

of the for-loop domains, where each domain has been shifted
according to its offset and dilated according to its grain.

The relative positions of the iterations of the individual
for-loops composing the xfor-loop depend on how individual
domains overlap. Iterations are executed in the lexicographic
order of the referential domain. On portions of the referential
domain where at least two domains overlap, the corresponding
statements are run in the order implied by their label (which is
also the order with which indices are listed in the xfor header).

On a sub-domain where one or more loops actually execute
their statements, it can happen that some iterations have
no statement to execute, when the individual loops involved
all have grains larger than 1. In such cases, that particular
sub-domain is compressed, by a factor equal to the greatest
common divisor of all grains.

The bodies of the for-loops composing the xfor-loop can be
any C-based code. However, their statements can only access
their respective loop indices, and not any other loop index
whose value may be incoherent in their scope. Moreover,
indices can only be modified in the loop header by incre-
mentation, and never in the loop body. Let us illustrate this
definition with a few examples.

Example 1. Consider the following xfor-loop:

x for (i 0 =0 , i 1 =10 ; i0 <10, i1 <15 ;
i 0 ++ , i 1 ++ ; 1 , 1 ; 0 , 2) {
0 : loop body0
1 : loop body1 }

In this example, the offset of index i0 is zero, and the one of
index i1 is 2. Thus, the first iteration of the i0-loop will run
immediately, while the first iteration of the i1-loop will run at
the third iteration of the xfor, but with index value i1=10. On
the sub-domain where both for-loop domains overlap, the loop
bodies are run in interleaved fashion starting with loop body0.
This behavior is illustrated by the figure below:

i0

i1

i

10 11 12 13 14

0 1 2 3 4 5 6 7 8 9

Notice that the index values have no effect on the relative posi-
tions of the iteration domains, which are uniquely determined
by their respective grains and offsets.

Example 2. Another example is:

x for (i 0 =0 , i 1 =10 ; i0 <10, i1 <15 ;
i 0 ++ , i 1 ++ ; 1 , 4 ; 0 , 0) {
0 : loop body0
1 : loop body1 }

Now, the i0-grain is 1 and the i1-grain is 4. In this case, for
one iteration of the i1-loop, four iterations of the i0-loop will
be run on the sub-domain on which they overlap. The last two
iterations on i1 occur after the end of the i0-loop: their domain
can be compressed by a factor of 4, as it is illustrated below:

i0

i1

i
0 1 2 3 4 5 6 7 8 9

10 11 12 13 14

Nested xfor-loops are behaving like several nested for-
loops which are synchronized according to the common ref-
erential domain. Nested for-loops are defined according to
the order in which their respective indices appear in the xfor
headers. For instance, in a 2-level xfor nest, the first index
variable of the outermost loop is linked to the first index
variable of the inner loop, the second to the second, and so
on. Hence the same number of indices have to be defined at
each level of any xfor nest. This is not a strong restriction.
The syntax enables shorter specifications of indices which are
not used inside statements. Let us illustrate this notion with
some examples of nested xfor headers.

Example 3. Consider the following xfor-loop nest:

x for (i 1 =0 , i 2 =0 ; i1 <10, i2<5 ;
i 1 ++ , i 2 ++ ; 1 , 1 ; 0 , 2)

x for (j 1 =0 , j 2 =0 ; j1 <10, j2<5 ;
j 1 ++ , j 2 ++ ; 1 , 1 ; 0 , 2)

The second for-loop nest has an offset of two at each loop
depth. Hence it is delayed in each dimension of the referential
domain as it is represented below:

i
j

:iterations (i1,j1)

:iterations (i1,j1) and (i2,j2)

Example 4. Another example is:

x for (i 1 =0 , i 2 =0 ; i1 <10, i2<3 ;
i 1 ++ , i 2 ++ ; 1 , 4 ; 0 , 0)

x for (j 1 =0 , j 2 =0 ; j1 <10, j2<3 ;
j 1 ++ , j 2 ++ ; 1 , 4 ; 0 , 0)

In this example, the second for-loop nest has a grain of four at
each loop depth. Hence its iterations are spaced by four points
in each dimension of the referential domain as shown below:

i
j

:iterations (i1,j1)

:iterations (i1,j1) and (i2,j2)

C. XFOR code generation: the IBB compiler

Source code containing xfor loop-structures is translated
by the IBB source-to-source compiler into a semantically
equivalent C code made of “regular” for-loop structures. This
is done in two steps. First, index domains are turned into

polytopes over a common referential domain, and second,
scanning code is generated for the union of these polytopes.

Each iteration domain of each for-loop nest composing a
xfor nest defines a Z-polytope, i.e., a lattice of integer points
delimited by a finite polyhedron. Respective grains and offsets
must also be considered in order to define the union of Z-
polytopes corresponding to the overlapping of the domains
that are defined by the xfor structure. The referential domain
is implicitly created by expressing the original indices of
the xfor structure into a common basis of referential indices,
ref index , according to the relation:

incr × ref index = grain × original index + offset × incr

Increments greater than one yield additional constraints of the
form:

original index = incr × k,

for every integer k. Finally, lower and upper bounds of the
referential domain indices are defined by shifting the original
bounds to 0.

The second step is performed using the CLooG library
[1] devoted to generate code for scanning unions of Z-
polytopes. In this model, loop bounds are either constants or
affine functions of the enclosing loop indices, and memory
instructions are referencing scalars or array elements, also
through affine functions of the enclosing loop indices. CLooG
generates for-loops that reaches each integral point of one or
more parameterized polyhedra. CLooG is designed to avoid
control overhead and to produce very effective code. It is used
by the GNU GCC compiler for loop optimizations. CLooG
accepts input in the OpenScop format [2], which is an open
specification defining a file format and a set of data structures
to represent loop nests fitting the polyhedral model [3]. This
format makes it easy to replace the original indices with their
referential domain equivalent.

As an example, the code generated by IBB from the xfor
seidel code of Figure 2 is shown in Figure 3. Note the length of
this code compared to the xfor version, as well as the number
of loops, the duplicated instructions and the various array
references. Even this simple example shows the improvement
in term of productivity that the xfor structure and the IBB
compiler may provide for writing efficient code.

III. DATA LOCALITY VS. STALLED PROCESSOR CYCLES

A. Setting data reuse distances with xfor-loops

We consider reuse distance as being the number of iter-
ations between two successive accesses to a same memory
location. Statements that share common data can be explicitly
brought closer thanks to the grain and offset parameters of the
xfor structure.

When handling several loop statements, the first step is
to identify data dependences that occur between them, i.e.,
relations between iteration points of different domains of
types Read-After-Write, Write-After-Read, Write-After-Write,
but also Read-After-Read, since it also implies data reuse.
Convenient offset and grain values regarding two dependent
statements can be determined with the support of distance
vectors.

f o r (t =0 ; t<=t s t e p s −1 ; t ++) {
f o r (j =2 ; j <=n−1; j ++)
A[1] [j −1]+=A[1] [j] ;

f o r (i =1 ; i<=n−3 ; i ++) {
A[i] [1] + =A[i + 1] [0] ;
A[i] [1] + =A[i + 1] [1] ;
A[i] [1+1]+=A[i + 1] [1] ;
f o r (j =2 ; j<=n−3 ; j ++) {
A[i] [j −1]+=A[i + 1] [j] ;
A[i] [j −1]=(A[i] [j −1]+A[i −1][j]+A[i −1][j −1]

+A[i −1][j]+A[i] [j]) / 9 . 0 ;
A[i] [j]+=A[i + 1] [j] ;
A[i] [j +1]+=A[i + 1] [j] ;
A[i + 1] [j −1]+=A[i + 1] [j] ; }

A[i] [n−3]+=A[i + 1] [n−2];
A[i] [n−3]=(A[i] [n−3]+A[i −1][n−4]+A[i −1][n−3]

+A[i −1][n−2]+A[i] [n− 4]) / 9 . 0 ;
A[i] [n−2]+=A[i + 1] [n−2];
A[i + 1] [n−3]+=A[i + 1] [n−2];
A[i] [n−2]+=A[i + 1] [n−1];
A[i] [n−2]=(A[i] [n−2]+A[i −1][n−3]+A[i −1][n−2]

+A[i −1][n−1]+A[i] [n− 3]) / 9 . 0 ;
A[i + 1] [n−2]+=A[i + 1] [n−1]; }

A[n−2][1]+=A[n−1] [0] ;
A[n−2][1]+=A[n−1] [1] ;
A[n−2][2]+=A[n−1] [1] ;
f o r (j =2 ; j<=n−3 ; j ++) {
A[n−2][j −1]+=A[n−1][j] ;
A[n−2][j −1]=(A[n−2][j −1]+A[n−3][j]+A[n−3][j −1]

+A[n−3][j]+A[n−2][j]) / 9 . 0 ;
A[n−2][j]+=A[n−1][j] ;
A[n−2][j +1]+=A[n−1][j] ; }

A[n−2][n−3]+=A[n−1][n−2];
A[n−2][n−3]=(A[n−2][n−3]+A[n−3][n−4]+A[n−3][n−3]

+A[n−3][n−2]+A[n−2][n− 4]) / 9 . 0 ;
A[n−2][n−2]+=A[n−1][n−2];
A[n−2][n−2]+=A[n−1][n−1];
A[n−2][n−2]=(A[n−2][n−2]+A[n−3][n−3]+A[n−3][n−2]

+A[n−3][n−1]+A[n−2][n− 3]) / 9 . 0 ; }

Fig. 3. Code automatically generated by IBB from the xfor seidel code

Let a[f(I0)] and a[g(I1)] be two array references appearing
in two dependent statements S0 and S1 inside an xfor loop
nest, where Ik denotes the vector of the loop indices enclosing
Sk, f and g denote affine functions. Let O0 and O1 be their
respective vectors of offset values, G0 and G1 their respective
vectors of grain values. The distance vector d from S0 to S1

is defined by:

d =
g(I1) +O1

G1
− f(I0) +O0

G0

The offsets and grains have to be set in order to get a lexi-
cographically positive vector to ensure semantic correctness
of the schedule. Null vectors are allowed if the dependent
statements are written in a correct dependence-aware order
inside the loop body. Data reuse distance minimization is per-
formed by minimizing the components of d, and by minimizing
primarily the outermost indices, since it defines the longest
reuse distances carried by the outermost loops.

The minimization of data reuse distances can yield op-
posite effects regarding execution-time performance. Groups
of successive read and write instructions that are referencing
the same data may generate numerous stalls due to pipeline
hazards, and thus significantly degrading execution time per-
formance. This is illustrated by a code example in the next
subsection.

f o r (t = 0 ; t <= t s t e p s −1 ; t ++)
x for (i 0 =1 , i 1 =1 , i 2 =1 , i 3 =1 , i 4 =1 ;

i0<=n−2, i1<=n−2, i2<=n−2, i3<=n−2, i4<=n−2 ;
i 0 +=2 , i 1 +=2 , i 2 +=2 , i 3 +=2 , i 4 +=2 ;
1 , 1 , 1 , 1 , 1 ; /∗ g r a i n s ∗ /
0 , 0 , 0 , 0 , 0) /∗ o f f s e t s ∗ / {

x for (j 0 =1 , j 1 =1 , j 2 =1 , j 3 =1 , j 4 =1 ;
j0<=n−2, j1<=n−2, j2<=n−2, j3<=n−2, j4<=n−2 ;
j 0 ++ , j 1 ++ , j 2 ++ , j 3 ++ , j 4 ++ ;
1 , 1 , 1 , 1 , 1 ; /∗ g r a i n s ∗ /
1 , 0 , 2 , 0 , 1) /∗ o f f s e t s ∗ / {

0 : { A[i 0] [j 0] += A[i 0] [j 0 +1] ;
A[i 0 + 1] [j 0] += A[i 0 + 1] [j 0 +1] ; }

1 : { A[i 1] [j 1] += A[i 1 + 1] [j1−1] ;
A[i 1 + 1] [j 1] += A[i 1 + 2] [j1−1] ; }

2 : { A[i 2] [j 2] += A[i 2 + 1] [j 2] ;
A[i 2 + 1] [j 2] += A[i 2 + 2] [j 2] ; }

3 : { A[i 3] [j 3] += A[i 3 + 1] [j 3 +1] ;
A[i 3 + 1] [j 3] += A[i 3 + 2] [j 3 +1] ; }

4 : { A[i 4] [j 4] = (A[i 4] [j 4]+A[i4 −1][j4−1]
+A[i4 −1][j 4]+A[i4 −1][j 4 +1]
+A[i 4] [j4 −1]) / 9 . 0 ;

A[i 4 + 1] [j 4] = (A[i 4 + 1] [j 4]+A[i 4] [j4−1]
+A[i 4] [j 4]+A[i 4] [j 4 +1]
+A[i 4 + 1] [j4 −1]) / 9 . 0 ; } }}

Fig. 4. Unrolled and jammed xfor-loop nest of the seidel code

B. Generating or avoiding pipeline hazards

Consider the seidel code of Fig. 4, which is the result
of the initial version in Fig. 2 after unrolling and jam-
ming the outer xfor loop one time, in order to increase
the number of computations and memory accesses per it-
eration. Let us consider two versions defined by different
offset values: a first version called V1 with outer loop off-
sets (0,0,0,0,1) and inner loop offsets (0,0,0,0,0), and a sec-
ond version V2 with offsets (0,0,0,0,0) and (1,0,2,0,1). Both
versions are run on an Intel Core i5-3470 Ivybridge CPU
at 3.2GHz running Linux 3.11.0, and compiled using GCC
4.8.1 with flags -O3 -march=native -fno-tree-vectorize –param
max-completely-peeled-insns=0. The two latter flags are used
to avoid automatic vectorization and loop unrolling in order
to measure the actual impact of data locality on execution
times. In addition to the execution time, the energy consump-
tion (MSR PKG ENERGY STATUS), the number of stalled
cycles, and the number of L1 and L2 cache misses have also
been measured:

V1 V2

exec. time (sec.) 1.294815 3.204376
cons. energy (joules) 21.170624 47.409576
L1 misses 120,190,581 80,150,636
L2 misses 40,090,106 40,086,200
stalled cycles 3,732,635,854 10,285,801,229

Surprisingly, both code versions exhibit similar numbers of
cache misses, while performing very differently regarding their
execution times, their numbers of stalled cycles, and obviously
their energy consumptions. Thanks to Intel Vtune profiling
tool, a precise view of the CPU time spent by each assembly
instructions composing the main loop body of V2 was obtained.
It is shown in Figure 5. It clearly highlights excessive times
used by instructions and groups of instructions of version V2,
while version V1 is not showing such similar times. Groups

vaddsd %xmm2, %xmm3, %xmm1
lea (%r8,%rdx,1), %r11
add $0x1, %ecx 47
vaddsd %xmm12, %xmm3, %xmm3
add $0x8, %rdx
vaddsd %xmm4, %xmm5, %xmm5
vmovsdq %xmm1, -0x10(%rax) 41
vmovsdq %xmm3, -0x18(%rdx)
vmovsdq (%rax), %xmm0
vaddsd %xmm10, %xmm0, %xmm2
vmovsdq %xmm2, -0x8(%rax) 57
vaddsd %xmm13, %xmm2, %xmm2
vmovsdq %xmm5, -0x10(%rdx) 43
vmovsdq (%r11,%rsi,1), %xmm8
lea (%rdi,%rax,1), %r11
add $0x8, %rax
vaddsd %xmm7, %xmm2, %xmm2 35
vaddsd %xmm8, %xmm2, %xmm2 91
vaddsd %xmm2, %xmm1, %xmm2 142
vaddsd %xmm5, %xmm1, %xmm1 126
vdivsd %xmm9, %xmm2, %xmm2
vaddsd %xmm1, %xmm2, %xmm1 889
vmovsdq %xmm2, -0x10(%rax) 120
vaddsd %xmm1, %xmm0, %xmm1
vaddsd %xmm1, %xmm3, %xmm3 121
vaddsd %xmm6, %xmm4, %xmm1 148
vdivsd %xmm9, %xmm3, %xmm3
vaddsd %xmm3, %xmm0, %xmm0 913
vmovsdq %xmm3, -0x10(%rdx) 155
vmovsdq %xmm0, -0x8(%rax)
vmovsdq (%rdx), %xmm4 49
vmovsdq %xmm1, -0x8(%rdx) 5
vaddsd %xmm4, %xmm0, %xmm0
vmovsdq %xmm0, -0x8(%rax) 76
vmovsdq 0x8(%r11,%r9,1), %xmm10 43
vaddsd %xmm10, %xmm1, %xmm5 4
vmovsdq %xmm5, -0x8(%rdx)

Fig. 5. Total aggregated CPU time per instructions for version V2 (ms)

of instructions spending up to hundreds of milliseconds are
exhibiting dependences due to accesses to common registers
and pressure on the floating-point unit simultaneously.

In order to relate these observations to the xfor source
codes of versions V1 and V2, the loop bodies are rewritten
to use only one unique index domain by subtracting the
statements respective offsets. They are shown in Fig. 6 and 7. It
can be observed that version V2 successively accesses elements
belonging to two different rows of array A, while version
V1 accesses elements belonging to three different rows. Thus,
version V2 generates more dependent reuses between neigh-
boring instructions, occurring either at the current iteration or
at the preceding or the following iterations. More precisely,
array elements of row i are updated two times and read two
times inside each of three successive j-iterations, as referenced
elements A[i][j], A[i][j-1] and A[i][j-2]. Thus
they are globally updated five times and read six times by
closely executed instructions. Similarly, during four successive
j-iterations, elements of row i+1 are successively read as
A[i+1][j+1], updated two times and read as A[i+1][j],
updated two times and read two times as A[i+1][j-1], and
finally updated and read two times as A[i+1][j-2]. They
are also globally updated five times and read six times by
closely executed instructions. A similar analysis of version V1

shows that successive accesses to array elements are slightly
reduced while being distributed among elements of three
different rows. Write and read counts are summarized in the
following table:

0 : { A[i] [j] += A[i] [j +1] ;
A[i + 1] [j] += A[i + 1] [j +1] ; }

1 : { A[i] [j] += A[i + 1] [j −1] ;
A[i + 1] [j] += A[i + 2] [j −1] ; }

2 : { A[i] [j] += A[i + 1] [j] ;
A[i + 1] [j] += A[i + 2] [j] ; }

3 : { A[i] [j] += A[i + 1] [j +1] ;
A[i + 1] [j] += A[i + 2] [j +1] ; }

4 : { A[i −1][j] = (A[i −1][j]+A[i −2][j −1]
+A[i −2][j]+A[i −2][j +1]
+A[i −1][j −1]) / 9 . 0 ;

A[i] [j] = (A[i] [j]+A[i −1][j −1]
+A[i −1][j]+A[i −1][j +1]
+A[i] [j −1]) / 9 . 0 ; }

Fig. 6. Loop Body of version V1 into a unique index domain

0 : { A[i] [j −1] += A[i] [j] ;
A[i + 1] [j −1] += A[i + 1] [j] ; }

1 : { A[i] [j] += A[i + 1] [j −1] ;
A[i + 1] [j] += A[i + 2] [j −1] ; }

2 : { A[i] [j −2] += A[i + 1] [j −2] ;
A[i + 1] [j −2] += A[i + 2] [j −2] ; }

3 : { A[i] [j] += A[i + 1] [j +1] ;
A[i + 1] [j] += A[i + 2] [j +1] ; }

4 : { A[i] [j −1] = (A[i] [j −1]+A[i −1][j −2]
+A[i −1][j −1]+A[i −1][j]
+A[i] [j −2]) / 9 . 0 ;

A[i + 1] [j −1] = (A[i + 1] [j −1]+A[i] [j −2]
+A[i] [j −1]+A[i] [j]
+A[i + 1] [j −2]) / 9 . 0 ; }

Fig. 7. Loop Body of version V2 into a unique index domain

accessed rows succ. writes & reads
V1 i-1 5 reads + 1 write

i 3 reads + 5 writes
i+1 4 reads + 4 writes

V2 i 6 reads + 5 writes
i+1 6 reads + 5 writes

Although version V2 exhibits better data locality than version
V1, the numerous dependences between consecutive instruc-
tions induces a huge amount of stalls significantly impacting
the execution time. Version V1, which performs approximately
2.5x better, shows that to reach the best performance, a subtle
balance between data locality and number of dependencies
between instructions has to be found. The proposed xfor
construct facilitates the finding of this balance thanks to its
explicit control of the data reuse distances.

However, version V2 may have a special interest regarding
energy consumption: since V2 is performing similarly to V1

regarding its memory accesses, its power consumption, i.e.,
E2 = (energy)/(execution time) = 14.8 watts, is significantly
lower than E1 = 16.35 watts. It means that one second spent
in the execution of V2 is about 9.5% cheaper than one second
spent in the execution of V1 in terms of energy consumption.

IV. ENERGY SAVINGS PROVIDED BY THE XFOR
CONSTRUCT

Benefits provided by xfor constructs for energy savings
are twofold: either xfor enables the programmer to write very
fast codes performing a reduced number of memory accesses,
thanks to good data locality, and a reduced number of stalled
cycles, and thus globally using a limited amount of energy;

or xfor enables one to program codes performing a reduced
number of memory accesses and a higher number of stalled
cycles, and thus globally using less power.

Dynamic Voltage and Frequency Scaling (DVFS) is a
common technique for saving energy, by scaling down voltage
and frequency. Thus, since xfor codes are performing generally
better than standard equivalent codes, xfor codes may be run at
lower voltage and frequency, while still providing similar time
performance than standard codes run at maximum frequency,
but with a significantly lower energy consumption.

V. XFOR ITERATIVE COMPILATION FOR DATA LOCALITY
AND CONTROLLED STALLED CYCLES

While offset and grain parameters enable programmers to
optimize locality of accessed data on the source code, it may
be difficult to directly find out the best combination of their
values inducing minimum (or maximum) stalled cycles, since it
is strongly dependent on the compiler and the target processor.
A convenient approach is to iteratively search this combination
by successive experiments. The strategy is to initialize the
process using the combination promoting the best data locality,
and then to make each offset value vary in the small interval
[−2, 2], so as not to alter data locality too much. In order
to reduce the search space, it is sufficient to proceed from
the outermost to the innermost loop level. As soon as a good
offset combination has been found for a given loop depth, the
iterative process is reapplied for the inner loop depth, and so
on. Note also that to accelerate the process, the code may
be run using a small problem size, sufficient to highlight the
processor behavior regarding stalls. Note also that any offset
combination used must be valid regarding data dependences.
Application of this iterative search on our target Ivybridge
processor for the seidel code resulted in the offsets of versions
V1 and V2 presented in Section III.

VI. EXPERIMENTS

Experiments have been conducted on an Intel Core i5-
3470 CPU at 3.20GHz (Ivybridge) processor running Linux
3.11.0. Our set of benchmarks has been built from the
Polyhedral Benchmark suite [12], from which representa-
tive codes exhibiting data reuse have been selected. Ev-
ery code has been rewritten using the xfor structure. Orig-
inal and xfor versions have been compiled using GCC
4.8.1 with flags -O3 -march=native -fno-tree-vectorize –param
max-completely-peeled-insns=0, and their outputs have been
compared to ensure correctness of the xfor codes. In the
following tables, execution times of the main loop kernels,
original and rewritten as xfor loops, are given in seconds,
energy consumptions are given in joules and have been ob-
tained thanks to the MSR PKG ENERGY STATUS processor
counter.

VII. RELATED WORK

Improving energy efficiency is attracting increasing re-
search interest, thus a wide palette of approaches have been
proposed. Many of these rely either on adapting the hardware
to match the code’s behaviour [15] or vice-versa, compile-time

Orig. XFOR Speed
time time -up

Code Pb Offset + + +
size Energy Energy Energy

cons. cons. saving
2mm 1024 0,0 14.592 3.498 4.17

0,nj
0,0 237.204 57.379 75.81%

3mm 1024 0,ni,2*ni 21.875 4.692 4.66
0,0,0
0,0,0 354.900 76.382 78.48%

jacobi-2d 16K 0,1 72.990 22.937 3.18
0,1 503.272 167.256 66.77%

jacobi-1d 200M 0,2 0.902 0.558 1.71
14.535 9.594 33.99%

fdtd-2d 10K 0,0,0,0 0.921 0.503 1.83
0,0,0,0 15.535 8.679 44.13%

fdtd-apml 256 0,0,0,0 0.439 0.242 1.81
0,0,1,1

0,Cxm,0,Cxm 6.614 3.877 41.38%
reg-detect 256 0,0,0,0,0,0,0,5 0.197 0.173 1.14

× 0,0,0,0,0,0,0,0
700 0..0,lgth-1,lgth,lgth 3.254 2.901 10.85%

correlation 700 0,1,m+1,n+m+2 1.442 0.195 7.39
0,0,0,0
0,0,0,0 22.846 3.294 85.58%

covariance 700 0,m,n+m 1.440 0.198 7.27
0,0,0
0,0,0 22.892 3.395 85.17%

mvt 10K 0,0 1.570 0.222 7.07
0,0 24.743 3.625 85.35%

gemver 10K 0,N,N,2N 1.857 0.490 3.79
0,0,N,0 28.849 8.070 72.03%

seidel 4K 0,0,0,0,1 3.425 1.297 2.64
0,0,0,0,0 50.164 21.320 57.50%

syrk 1024 0,0 1.757 1.699 1.03
0,0 27.760 26.854 3.26%

syr2k 1024 0,0 2.671 2.429 1.10
0,0 43.727 38.515 11.92%

TABLE I. CODE MEASUREMENTS AND COMPARISONS

transformations were dedicated to transforming the software
to meet the hardware capabilities [10], [9]. In contrast, our
proposal transfers the control to the programmer, who has now
explicit ways to control data locality, pipeline stalls, and, thus,
energy consumption, thanks to the offset and grain parameters
of xfors. Since until now the only software approaches to
enable energy saving optimizations relied on compilers, in
what follows, we review works of this type.

In some cases, the most energy efficient solution is to com-
plete the task as fast as possible, which causes higher power,
but decreases the execution time, thus reducing the energy.
In other situations, transforming the code to execute within
a power budget and save energy, may harm performance.
Significant efforts have been made to achieve a better balance
between the two [15], [11], [7], [14], [8], [6], [5], [9].

Dynamic Voltage and Frequency Scaling (DVFS) is a com-
mon technique for saving energy, by scaling down voltage and
frequency. To avoid considerable performance penalties, DVFS
is traditionally applied on applications exhibiting memory
bound phases [15], [11], [7], [8], given that the granularity
of these phases is coarse enough to overcome the inherent
overhead of frequency scaling. Jimborean et al. [9] propose
compile-time code transformations that decouple memory
accesses and computation in order to adapt the code for
more efficient DVFS. Yet, as proved by Yuki et al. [17],
frequency scaling is mostly suitable for memory bound codes,
whereas compute-bound codes exhibit significant performance
degradations when run at lower frequencies. Compute-bound
applications are generally optimized for performance, which

is commonly known as “race to sleep” [17], yielding energy
savings as positive side-effects. In contrast, Saputra et al. [14]
apply traditional compiler optimizations (loop fusion, tiling,
etc) and scale down frequency to a lower value, which reduces
the energy, while maintaining the performance of the original
(unoptimized) code under maximum frequency.

Apart from DVFS techniques, other proposals target
compiler-architecture collaborations, which enable a wiser use
of the micro-architecture based on static information [6], [5],
[16]. In particular, Finlayson et al. [6], [5] focus on improv-
ing the processor pipeline and propose an entirely statically
pipelined processor, relying on an optimizing compiler to
insert control information for each instruction. Thus, redundant
operations performed by traditional processor pipelines are
eliminated (e.g., unnecessary register reads and writes, when
their consumers retrieve such information from forwarding).
Whereas this approach requires a modified architecture, we
rely on commodity hardware and exploit pipeline hazards for
recording energy savings. The xfor programming structure is
a knob that enables the programmer to easily create multiple
code versions and control the amount of energy, while meeting
the performance demands.

Previous works targeting data locality have as consequence
improvements in the energy consumption [4], [13]. However,
xfor can go beyond improving data locality, and not only it
enables the programmer to accurately control the trade-off
between execution time and energy, but it also proves that
with appropriate language extensions an expert can create high-
performing code, which cannot be generated by automatic
tools.

VIII. CONCLUSION

We have described the new xfor programming construct
that gives the programmer explicit control of the data reuse
distance through the use of xfor’s offset and grain parameters.
It has been shown that it eases execution-time and energy
optimizations. It also highlights the impact of stalled processor
cycles on codes that still exhibit good data locality, and enables
the programmer to control the amount of stalled cycles either
for execution time or for power optimizations.

REFERENCES

[1] C. Bastoul, “Code generation in the polyhedral model is easier than
you think,” in Proc. of the 13th Int. Conf. on Parallel Architectures and
Compilation Techniques, ser. PACT ’04. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 7–16.

[2] ——, “Openscop: A specification and a library for data exchange in
polyhedral compilation tools,” Paris-Sud University, France, Tech. Rep.,
September 2011.

[3] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
PLDI ’08. ACM, 2008, pp. 101–113.

[4] ——, “A practical automatic polyhedral parallelizer and locality op-
timizer,” in 2008 ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI), Jun. 2008, pp. 101–113.

[5] I. Finlayson, B. Davis, P. Gavin, G.-R. Uh, D. Whalley, M. Själander,
and G. Tyson, “Improving processor efficiency by statically pipelining
instructions,” in Proceedings of the 14th ACM SIGPLAN/SIGBED
Conference on Languages, Compilers and Tools for Embedded Systems,
ser. LCTES ’13. New York, NY, USA: ACM, 2013, pp. 33–44.
[Online]. Available: http://doi.acm.org/10.1145/2465554.2465559

[6] I. Finlayson, G.-R. Uh, D. Whalley, and G. Tyson, “Improving low
power processor efficiency with static pipelining,” in Proceedings
of the 2011 15th Workshop on Interaction Between Compilers and
Computer Architectures, ser. INTERACT ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 17–24. [Online]. Available:
http://dx.doi.org/10.1109/INTERACT.2011.7

[7] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini, “Ap-
plication transformations for energy and performance-aware device
management,” in Parallel Architectures and Compilation Techniques,
2002, pp. 121–130.

[8] C.-H. Hsu and U. Kremer, “The design, implementation, and evaluation
of a compiler algorithm for cpu energy reduction,” SIGPLAN Not., pp.
38–48, 2003.

[9] A. Jimborean, K. Koukos, V. Spiliopoulos, D. Black-Schaffer,
and S. Kaxiras, “Fix the code. don’t tweak the hardware:
A new compiler approach to voltage-frequency scaling,” in
Proceedings of Annual IEEE/ACM International Symposium on
Code Generation and Optimization, ser. CGO ’14. New York,
NY, USA: ACM, 2014, pp. 262:262–262:272. [Online]. Available:
http://doi.acm.org/10.1145/2544137.2544161

[10] K. Koukos, D. Black-Schaffer, V. Spiliopoulos, and S. Kaxiras, “To-
wards More Efficient Execution : A Decoupled Access-Execute Ap-
proach Categories and Subject Descriptors,” in ICS’13, 2013.

[11] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scaling
algorithms with pace,” SIGMETRICS Perform. Eval. Rev., 2001.

[12] “The Polyhedral Benchmark suite.” [Online]. Available:
http://www.cse.ohio-state.edu/ pouchet/software/polybench

[13] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam,
P. Sadayappan, and N. Vasilache, “Loop transformations: convexity,
pruning and optimization,” in 38thACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages, 2011, pp. 549–562.

[14] H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. S. Hu, C.-H.
Hsu, and U. Kremer, “Energy-conscious compilation based on voltage
scaling,” in Joint Conf. on Languages, compilers and tools for embedded
systems: software and compilers for embedded systems, 2002, pp. 2–11.

[15] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. De Micheli, “Dy-
namic voltage scaling and power management for portable systems,” in
Design Automation Conf., 2001, pp. 524–529.

[16] S. Tavarageri and P. Sadayappan, “A compiler analysis to determine
useful cache size for energy efficiency,” in Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE
27th International, May 2013, pp. 923–930.

[17] T. Yuki and S. Rajopadhye, “Folklore confirmed: Compiling for speed
= compiling for energy,” in 26th Int’l Workshop on Languages and
Compilers for Parallel Computing, 2013.

