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Despite of enormous progress in experimental nanophysics theoretical studies of low-
dimensional electron systems still remains a challenging task. Indeed, most of the structures
are strongly correlated, so that an effective perturbative treatment is impossible due to the
lack of a small parameter. The problem can be partly solved within the dynamical mean-
field theory (DMFT) paradigm, nevertheless the correlations in physically relevant high-
temperature superconductors are of purely non-local nature. The recently developed dual
fermion approximation, combining field-theoretical diagram technique and numerical methods,
allows for explicit account of spatial correlations. The approximation was shown to be of
fastest convergence compared with standard DMFT extensions, and along with renormalization
group is used here to study Fermi condensation on a triangular lattice near van Hove
singularities. The still debated phenomenon of Fermi condensation is believed to be a precursor
to strongly correlated low-temperature instability and is found in this thesis to be robust
even at high temperature, making its experimental verification feasible. Unlike homogeneous
ferromagnetic ordering a variety of non-collinear ground state configurations emerge as a
result of competition among exchange, anisotropy, and dipole-dipole interaction. These particle-
like states, e.g. magnetic soliton, skyrmion, domain wall, form a spatially localized clot
of magnetic energy. Consistent study of spin, which essentially is a quantum mechanical
entity, led to the emergence of spintronics (spin-based electronics) and magnonics (photonics
with spin waves), in the meanwhile topologically protected magnetic solitons and skyrmions
might potentially be applied for data processing and information storage in next generation
of electronic technology (rapidly advancing solitonics and skyrmionics). An ability to easily
create, address, and manipulate such structures is among the prerequisite forming a basis of "-
onics" technology. It is shown here that spins on a kagome lattice, interacting via Heisenberg
exchange and Dzyaloshinskii-Moriya coupling, allow the formation of topologically protected
edge states through which a skyrmion can propagate. Not only can chemical methods be
used to design novel functionality, but also geometric structuring. It is demonstrated that for
graphene sandwiched between two insulating media external circularly-polarized light serves as
an effective magnetic field. The direct practical implication permits to control light polarization
and induce spin-waves propagating on the surface of e.g. a topological insulator. The newly
discovered Dirac materials, graphene and three-dimensional topological insulators, are not easy
to handle. In fact, the quasiparticle band function is gapless preventing them from being used
in integrated circuits, nevertheless the problem is shown here to be partially relaxed by placing
a vacancy on top of it.
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My dear, here we must run as fast as we can, just to stay in place.
And if you wish to go anywhere you must run twice as fast as that.
Lewis Carroll, Alice in Wonderland
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Part I:
Introduction

The triumphant progress of theoretical physics in the last century has been
mainly associated with understanding mechanisms underlying the microcosm.
General relativity followed by quantum mechanics and quantum field theory
revolutionized our views on the world around us. It turned out that a mi-
croscopic particle when moving does not have to follow a definite trajectory
ascribed to it by Newtonian deterministic mechanics, whereas a quite intuitive
and naive band theory due to Bloch appeared indispensable and can be viewed
as the dawn of condensed matter era. Today studying of low-dimensional
electronic structure remains one of the most exciting and fascinating fields.
However, in most of the cases the electrons constituting a solid are what you
might call strongly correlated. In general, the correlations are thought as inter-
action among different components of a solid with each other. However, the
paradox today consists in the fact that modern physics can in principle write
down equations capable to portray almost any realistic system, but not always
is able to solve these equations. Indeed, a solution is possible only when the
system under consideration is constituted by a set of particles which do not
interact and can be handled separately or interact weakly. In the latter case
we say that we can develop a theory that has a small parameter which can be
chosen one way or another.

The first successful attempt to address a strongly correlated system was
made by Lev Landau (Section 1.1). In accord with Landau Fermi-liquid the-
ory an ensemble of interacting particles needs to be replaced by a set of quasi-
particles which are coupled by some effective amplitudes and can be adia-
batically connected to a weakly interacting Fermi gas [131, 21, 167, 134, 2].
A proper many-body description can not be addressed within a linear the-



ory, though small anharmonic perturbations do not change qualitatively the
quasiparticle picture and can be treated as scattering processes between them,
leading thus to multiple harmonic generation, quasiparticle dressing, etc. The
study of low-dimensional lattice models can potentially unveil the nature of
exotic materials like unconventional superconductors and quantum spin lig-
uids. After their almost simultaneous discovery, high-temperature supercon-
ductivity in cuprates and the fractional quantum Hall effect posed some awk-
ward questions to Landau Fermi liquid theory. For both systems, the Coulomb
interaction is sufficiently strong to cause the breakdown of perturbative ex-
pansions. In such cases, the concept of quasiparticles providing a basis for
understanding most of the condensed-matter phenomena is questionable, and
new physics can arise. At sufficiently large coupling one can rely on numeri-
cal implementation only, unless a problem can be solved exactly, e.g. at quite
large on-site Coulomb repulsion (the interaction strength is of the order of
band-width) a metal-insulator transition takes place. This effect is essentially
of non-perturbative nature and can be captured within the dynamical mean-
field theory approach, in which an interacting lattice model is mapped onto
a local impurity problem [79]. However, being of purely local nature DMFT
is not capable to probe the effects due to spatial correlations. To get over the
difficulty a fast converging dual fermion method have been recently devel-
oped (Section 1.2). In this method non-local effects are treated perturbatively
around DMFT. Making use of a set of exact transformations to dual variables
allows to consider vertices of a local impurity problem as small parameters
and correctly reproduce the weak- and strong-coupling limit. The antiferro-
magnetic pseudogap, Fermi-arc formations, and non-Fermi-liquid effects due
to the van Hove singularity have been captured by the lowest-order diagrams.

Soon after high-temperature superconductivity was detected in cuprates, it
was pointed out that for the optimal doping the Fermi level lies in the vicin-
ity of van Hove singularities (VHSs) with divergent density of states (DOS),
and that in this case the Fermi liquid picture can be violated even for a weak
interaction, due to singularities of the electron-electron vertex [61]. The con-
cept of the so-called van Hove scenario has been pushed forward to explain
a variety of phases associated with the presence of VHSs, e.g., superconduc-
tivity, itinerant ferromagnetism, and density waves. If the VHS is near the
Fermi level, both antiferromagnetism and d-wave superconductivity can be
produced even at small on-site Coulomb repulsion, as can be shown from a
renormalization group analysis or the parquet approximation [232, 84, 89, 95].
The nature of exotic ground states is determined by the delicate interplay of
these fluctuations, which therefore remain controversial. However, a precur-
sor of a strongly correlated low-temperature instability, exists at sufficiently
high temperatures and can be probed in the paramagnetic phase of fermionic
cold atoms on a triangular lattice. The effect can be understood in terms of
Fermi condensation. As long as the group velocity is positive, all variations
OF of Landau functional are positive and the Fermi distribution corresponds
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to the minimum. If the group velocity of the quasiparticles becomes nega-
tive, there exist variations for which 6 F < 0. This leads to a restructuring of
the distribution function in a certain interval of momenta kg < k < k;, where
the resulting occupation fraction differs from the Fermi distribution, but still
minimizes the functional (section 1.3). In the limit 7 — 0, the dispersion be-
comes entirely flat in this interval. In analogy to the Bose-Einstein condensate,
this highly degenerate state has been termed Fermi condensation. If it exists,
a Fermi condensate is a new state of matter which is topologically different
from both the Fermi liquid and the Luttinger liquid. Because of the formation
of flat bands, there is a pinning of the Fermi energy to the VHS point for a
whole range of electron concentrations. Otherwise, below a critical tempera-
ture, the highly degenerate state may give way to another fermionic instabil-
ity associated with a non-Fermi liquid ground state. We address this effect
for the Hubbard model for a triangular lattice from both weak-coupling and
strong-coupling limits, by means of field-theoretical renormalization group
and dual-fermion approaches, respectively. Our analysis clearly indicates that
the phenomenon is robust and can be observed in experiments with ultracold
Fermi gases at sufficiently high temperatures.

In addition, the ground state configuration of magnetic structures can be un-
derstood by studying corresponding magnetization dynamics, which is based
on the solution of phenomenologically derived Landau-Lifshitz equation ex-
pressing magnetization precession about effective field (Section 2.1). This
equation does not take account of dissipation which is physically meaning-
ful and needs to be supplied with the Gilbert term responsible for relaxation
[36]. When passing through a magnetic system spin-polarized current pro-
duces an extra torque on system’s magnetization, this term known as spin-
transfer torque due to Slonczewski has to be handled. Both Gilbert damping
and spin-transfer torque have to be treated on equal footing and can be mi-
croscopically derived [57]. The spin waves are known to be quantized thus
leading to the notion of magnons, that can be excited in magnetic materials. In
most of spin-wave phenomena a number of magnons is a macroscopic quantity
and can be well described by the Landau-Lifshitz equation. As a result, the
concept of coherent magnon states analogous to that of quantum optics can be
pushed forward; we review the concept of coherent magnon states and show
that they are the quantum states generated in a linear microwave pumping pro-
cess. We also overview the recently observed Bose-Einstein condensation of
magnons in magnetic films under strong microwave pumping (Section 2.2).

In low-dimensional magnetic structures depending on the distance between
neighboring spins, crystalline symmetry, and hybridization with substrate, a
wide range of magnetic configurations ranging from collinear ferromagnetic,
antiferromagnetic, and non-collinear helimagnetic configurations to more com-
plicated textures can be observed. If in addition, inversion symmetry is broken
the spins alignment gains a certain chirality due to spin-orbit driven antisym-
metric Dzyaloshinskii-Moriya interaction (DM) [60]. A certain class of non-

11



linear equations allow particle-like solution, solitary waves or solitons, which
preserve their shape in the duration of their motion and collision processes.
There also exists a class of topological solitons whose ground state can not
be connected to their excited states and is characterized by some topological
number. Magnetic skyrmions are chiral spin structures with a whirling con-
figurations so that the plane on which the spins are specified is topologically
equivalent to a sphere. Because of that, a certain topological invariant, namely
degree of mapping can be ascribed to the structure. It can be thought of as
skyrmion number. A kagome ferromagnet characterized by a structure with
lack of inversion symmetry in the presence of considerably large DM interac-
tion mimics the band structure of a topological insulator, as is shown in this
thesis. In such a system the magnon dispersion is gapped in the bulk allow-
ing the traveling gapless edge states, making thus this structure perfect for
creating and manipulating magnetic skyrmions (Section 2.3). The nucleation
and manipulation of individual skyrmions in magnetic nanostructures will be
essential in any future skyrmionic device.

Progress in storage technology demands new mechanisms allowing high-
speed data manipulations. Typically, performance of up-to-date devices is
determined by the duration of electric or magnetic field pulse resulting in de-
magnetization of magnetic domains. The laser might be used instead as its
characteristic time is up to a few femtoseconds. The only limitation one can
encounter on a way to all-optical technologies is related to the transforma-
tion of optical energy into electrical. Recently, it has been demonstrated that
in magneto-crystalline structures a strong magnetic field up to a few Tesla of
magnitude might be set up through instantaneous pulses due to the Inverse
Faraday effect, the generation of magnetic field by non-resonant circularly
polarized light. Dysprosium orthoferrite (DyFeQO3), irradiated by 200 fs circu-
larly polarized laser pulse, set up an induce magnetic field of the same order.
In case of elliptically polarized electromagnetic wave, orientations of spin po-
larization in forward and backward directions are not equally probable. As a
consequence, in addition to energy and momentum light transfers angular mo-
mentum. The implication of photonic structures consisting a magnetic layer
allows to enhance magnetooptical effects dramatically, leading to magneto-
plasmonics (Section 3.1).

Graphene, a two-dimensional sheet of graphite, has recently attracted a lot
of attention owing to potential application in novel devices [108, 47, 146, 78,
160, 42, 1, 128]. Quite remarkable progress has been achieved on a way to
study its behavior in intense external fields. In a circularly polarized electric
field quite a few novel phenomena such as photovoltaic Hall effect, metal-
insulator transition in graphene, valley-polarized currents in both monolayer
and bilayer graphene, and photo-induced Hall effect in the absence of mag-
netic fields have been predicted (Section 3.2). One of the most intriguing
features of a system irradiated by circularly polarized light is the redistribu-
tion of electrons in the band structure. Thus, presence of external field results
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in some of the electrons from the valence band being moved to the conduction
band (photon-assisted doping). As it was already discussed if one of the bands
is completely filled topological properties might appear, these properties are
extremely robust for the system driven out of equilibrium by light.

Strong nonmagnetic impurities on the surface of three-dimensional topo-
logical insulators (TIs) generate localized resonance peaks close to the Dirac
point. We show that this results in a strongly reduced critical Coulomb in-
teraction strength to reach a magnetic surface state, following a Stoner-like
criterion. Thus even weakly interacting TIs host a finite (local) magnetization
around strong nonmagnetic impurities. The local magnetization gives rise to a
global energy gap, linearly dependent on the maximum value of the magneti-
zation but decreasing with reduced impurity concentration (Section 3.3).

The title of this thesis “Trends in Magnetism: From Strong Correlations
to -onics Technology” should not be confusing: In fact, subsequent progress
towards the new techno-economic paradigm seems illusory without proper
understanding of mechanisms ruling the world of nano. Nanotechnology,
along with IT, biotech, and harmonious exploitation, have been accepted as
the mainstream which is believed to change the social landscape. Typically,
nanotechnology is thought of as the manipulation of matter on a characteris-
tic length-scale (approximately 100 nm). In contrast to that, we assume any
system governed by the laws of quantum mechanics has to be treated as nano.
An example is low-dimensional electron system where the correlations effects
among constituents become prominent. In this thesis we make a theoretical
attempt to describe underlying physics and possible engineering applications
on equal footing from both analytical and numerical perspective without op-
posing them to each other: Indeed, the dual fermion method at strong cou-
pling complemented with field-theoretical renormalization group at weak- and
intermediate-coupling enables us to inspect the Hubbard model on a triangu-
lar lattice and discover effects, like Fermi-condensation, which can be probed
with ultracold quantum gases. In the meanwhile, a numerical solution of the
Landau-Lifshitz equation within atomistic spin dynamics confirms theoretical
findings and suggests a technique how to create and manipulate a skyrmion
on a kagome lattice, making thus the concept of skyrmionics viable. Further-
more, magnetic engineering with the recently discovered Dirac materials in
the presence of certain non-lineariaty also deserves attention. Thus, the thesis
is devoted to systematic studies of spatial correlations and non-linear effects
in electron models. We believe that our results will contribute to the solution
of puzzles of Nature.
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1. On the nature of magnetism

1.1 Fermi-liquid Theory: A gentle reminder

It is known that in most of the cases the solution to strongly correlated elec-
tronic problem can not be found in closed analytical form. Instead of solving
a complicated many-body problem it is easy to operate in the spirit of Landau
Fermi-liquid theory [131, 134, 2, 167, 21, 150]: One can develop a low-energy
theory where high-energy degrees of freedom are eliminated by defining a
number of amplitudes, characterizing interaction among a set of quasiparticles
at low temperatures. Stability of the ground state configuration is determined
in full agreement with Pomeranchuk’s criterion [170]: The system under con-
sideration is stable as long as the amplitudes in question are positive and finite.
Within Landau formalism the quasiparticles can be adiabatically connected to
weakly excited states of a normal Fermi gas. The ground state, the corre-
sponding free energy and entropy are supposed to be the functionals of the
quasiparticle distribution ny(7') which can be determined by minimizing the
grand canonical potential Q[nk(T')] = F[nk(T)] — uN, while the quasiparticle
energy in the vicinity of the Fermi surface can be calculated according to

3
enk(T)=pu+vp (k—kp)+/(;l7l_l))3fk7p5np(T), (1.1)

and the entropy of an ideal gas obeying the Fermi-statistics:

d’k
S (T)] = _z/ 2y [nkm logni(T) + (1 — mi(T)) Tog (1 — nk(r))} ,
(1.2)
here a factor of 2 stands for spin projections. Linearization of quasiparticle
dispersion relation in the vicinity of the Fermi level (1.1) allows one to identify
the parameter of a theory, an effective mass,

1 ldg

=_—— 1.3
m*  k dk ’ (13)

k=kp, T=0

provided m* is finite and positive at the Fermi-surface. The effective mass of
a quasiparticle can be linked to that of bare fermion m by requiring Galilean
invariance. At T — 0, keeping the notion m* for the Landau effective mass
(1.3), the quasiparticle dispersion in close vicinity to the Fermi level can be
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represented by &g — 1 = kr (k — kr) /m*. In general, the relation between the
physical mass m and the Landau effective mass m* can be seen from invari-
ance to Galilean boost: The momentum per unit volume transported by the
quasiparticles must be equal to the mass density of the real particles, namely
is

d’k a’k
k= | —— mngVy. . 1.4
/(27:)3 kil /(Zﬂ)3 e ¥ kil 14

By varying the identity (1.4) with respect to distribution function ng and re-
stricting to Fermi momentum we finally derive

1_1+/ Pk (kp-k) . In(T)
m ] 2} K TN ok

m*

To proceed we obtain the distribution ng (7') by minimizing the grand canon-
ical potential Q[ng(T)], provided the free energy F [nk(T)] = E [nk(T)] —
TS[nk(T)]; as a result, the quasiparticle energy

OF [nk(T)] 1-— nk(T)
&(T)=———-—"=u(T)+TI1 — . 1.6
) =5y PO FTloe (= (1)

In general, the chemical potential pt(7') depends on temperature, and the vari-
ation of quasiparticle energy according to (1.1) has to be of the form

(1.5)

3
Sew(T) :/(;l;;fk,p Sy (T). (1.7)

Therefore, as it was pointed out in the beginning, the interaction among the

quasiparticles is replaced by a set of Landau amplitudes fi p, so that for a
non-interacting Fermi-gas fi , = 0. Basically,

2
Jep = (W. (1.8)
ni(T)ny(T)
The amplitude defined in such a way is symmetric with respect to permutation
of indices (for clarity, we omit the spin indices). Low-lying excitations are
well fit by the quasiparticles in the vicinity of the Fermi-level with the band
function (1.1). Typically, 8np(T') is non-zero in the tiny region around the
Fermi-surface, so that k = p =~ kr. Rewriting the expression (1.6) in a more
convenient form we arrive at the celebrated Fermi-Dirac distribution function

nk(T) = (1 +exp [W})l (1.9

Close inspection of the formula (1.5) at T = 0 suggests m/m* = 1 —No f' (x) /3,
where the density of states at the Fermi level is Ny, while the p — wave
component of Landau amplitude is written as f!(x) (the latter is possible
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since the quasiparticle density x = k3./(37%) in Landau Fermi-liquid picture
is uniquely determined by Fermi-momentum , therefore f'(kp,kr) = f(x)).
Interestingly, in the vicinity of some xg¢ the expression (1 —Nof!(x)/3) ~

(x—xpc)+a(x—xpc)* +... — 0, as a result

~ (1.10)

here A and B are some constants, while r = (x — xp¢) /xpc is in common use
in the literature. In agreement with the general criterion [170] the expression
(1.10) makes sense as long as x > xpc (i.e., r > 0), e.g. in narrow band heavy-
fermion metals [113, 9]. Thus, on approaching xp¢ the formation of a new
state of matter that does not satisfy Pomeranchuk criterion can be observed:
AtT =0and r = (x — xp¢) /xpc — O the effective mass diverges and becomes
negative at x < xgc, therefore a phase transition at x = xg¢ occurs. It is worthy
to note that the ground state energy of such a state is mainly determined by the
potential forces since the kinetic contribution approaches zero in the vicinity
of the Fermi-surface. The quasiparticles with momenta ky < k < k; possess at
T = 0 the same single particle energy & = U [as it seen from (1.6)], this state
in analogy to the Bose condensate is referred to as Fermi condensate. The
density of states in this region is peaked and highly degenerate as a result.

To summarize, Fermi-liquid theory developed by Landau [131] to explain
the rich physics of normal metal and Fermi-liquid like *He basically implies
that low energy excitations are nothing but quasiparticles with some effec-
tive mass m* which is independent of external field, pressure, and tempera-
ture. However, for the recently discovered class of high-temperature supercon-
ductors, heavy-fermion compounds, and quasi-two-dimensional Fermi-liquids
[202, 222, 142,22, 217] the direct application of Landau theory is questionable
[184, 182, 186, 185, 46, 45]. In fact, for strongly correlated heavy-fermion
compounds the effective mass can not be considered like a parameter in the
theory and functional dependence on external field and temperature is assumed
to take place. Thermodynamic properties and correlation functions are typi-
cally characterized by power-law dependence on temperature. The latter could
be interpreted to destroy the quasiparticle picture in strongly correlated sys-
tems, while the possible explanation of anomalous behavior in a variety of
observed phenomena in high-temperature superconductors and heavy-fermion
metals is relevant to quantum phase transitions happening at 7 = 0. In this case
the behavior of a system is governed by macroscopic parameters, e.g. electron
density, pressure, external magnetic field [142].

Keen interest to studying low-dimensional electronic structures is mainly
motivated today by experimental progress in fabrication and characterization
of thin ferromagnet films and multilayers, copper- and iron-based supercon-
ductors, and organic compounds. Main efforts to gain theoretical insight are
made by the use of advanced numerical algorithms , e.g. various combinations
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of renormalization group or quantum Monte Carlo simulations. However the
detailed analytical considerations which go beyond well established perturba-
tion schemes are of great interest as well. For instance, the standard perturba-
tion theory breaks down on an attempt to explain weak itinerant magnetism in
the vicinity of VHSs. VHSs mostly present in two-dimensional systems are
still to be found in three-dimensional models [96] depending on the geome-
try of underlying lattice. In the presence of VHSs the perturbation series are
logarithmically divergent enforcing thus to sum up an infinite number of dia-
grams. Interestingly, the divergence in question does not show up in a certain
channel exclusively and is ubiquitous for both particle-particle and particle-
hole channels. In this case, to clear up ambiguity one has either to accomplish
well-known parquet summation or proceed with renormalization group (RG)
analysis similar to the technique developed for quasi-one-dimensional systems
[201] (despite of being square-log divergent in two-dimensional systems).

Capability to sustain a superconducting state is among the peculiarities of
itinerant electronic systems. Contrary to conventional superconductors where
the formation of a gapped state is attributed to the electron-phonon coupling
and only a limited fraction of electrons around the Fermi surface are paired
in an s — wave state, forming a rather uniform superconducting gap around
the Fermi-level, magnetic fluctuations present in the model in question can
potentially lead to unconventional type of pairing (e.g., p — or d — wave state),
in which low-lying excitations result in gapless points or lines on the Fermi
surface. In addition, it was recently discovered that antiferromagnetism is
closely connected to d — wave superconductivity, in particular the formation
of high-temperature superconductors in copper-based compounds is believed
to be closely associated with antiferromagnetic correlations, while most of
the properties inherent to these systems can be explained by the competition
between antiferromagnetic and superconducting correlations [234]. Triplet,
or p — wave, pairing (e.g., in layered ruthenates SrRuO4 [149]) is driven by
ferromagnet fluctuations [151, 158], which however are indistinguishable in
the experiments with inelastic neutron scattering [195], but were to be found
by measuring susceptibility in electron doped Sr;_,La,RuO4 [115]. Thus,
the detailed investigation of a competition between instabilities of both types
(either magnetic or superconducting) has to be based on careful account of
Fermi surface topology and quasiparticle band dispersion.

One of the most interesting models which is rather simple from one side but
permits to keep track of all relevant effects from the other is the # — ¢ Hubbard
model on a square lattice. Quite intuitive mean-field and quantum Monte Carlo
analysis show that different types of instabilities, depending on ¢’/ ratio and
filling fraction, exist [138]. At small #/¢ around half-filling the Fermi surface
is nested giving rise to the formation of an antiferromagnetic state. For non-
nested Fermi-surface (when ¢’ is large enough) the effect of frustration relevant
to hopping appears and leads to superconducting instability [56]. However,
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the system becomes ferromagnetic at '/ ~ 1/2 as a result of band flattening
[207, 70, 88, 87].

In the vicinity of VHSs the tendency towards magnetism or superconduc-
tivity can be also observed. In fact, near van Hove filling both particle-particle
and particle-hole contributions are divergent, making mean field or 7 — ma-
trix methods, which keep track of particle-hole or particle-particle instability
respectively, inapplicable. Formally the problem can be resolved by apply-
ing parquet summation [41, 62, 61, 63], allowing to sum up leading log-
arithmic singularities stemming from different channels, or functional RG
[232, 84, 89, 90] (in this case the standard field-theoretical RG is a special
case as shown below). In principle, the use of functional RG is more prefer-
able since the full momentum dependence of electron-electron vertices as well
as both regular and singular contributions to their renormalization are treated
in a more delicate way.

Furthermore, the formation of non-Fermi liquid state is another option for
two-dimensional itinerant systems. Typically non-Fermi liquid behavior re-
sults from the failure of Landau approach for certain energies in the vicinity
of Fermi surface. The formation of pseudogap phase is likely to be considered
as the most paradigmatic example that might be used to illustrate a violation
of Landau theory, e.g., the appearance of hole pockets in this regime in weakly
doped high-temperature superconductors near the nodal points on the Brillouin
zone diagonals can be detected [103] (formally, it corresponds to the case
m* < 0). Meanwhile, pseudogap phase takes place on Fermi surface sheets
connected by antiferromagnetic ordering wave vector, therefore these are an-
tiferromagnetic fluctuations which are responsible for its formation. However,
different numerical methods, e.g., FLEX [49, 7] or two-particle self-consistent
approximation [221, 155], turn out to be not satisfactory enough to pursue a
systematic study of two-dimensional Hubbard model as they are limited by
a certain class of skeleton diagrams. Nevertheless, FLEX demonstrate the
formation of non-Fermi liquid state at half-filling at low temperatures, while
the behavior of a spectral function at strong coupling can be addressed within
quantum Monte Carlo implemented for finite-sized clusters [219], remaining
however regimes of weak and intermediate interaction unsolved.

1.2 Dual Fermion Method: A step beyond DMFT

When interaction in a many-body system is strong enough, so that collective
effects come into play, the standard paradigm of elementary excitations can
not be directly applied. In particular, at low temperatures physical properties
are purely determined by the trade-off between quantum-mechanical extended
state of electrons on a lattice and Coulomb repulsion of local nature. The lat-
ter could happen in transition metals or rare-earth compounds with partially
filled 3d — and 4 f — shells which are the systems with strong electron correla-
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tions. A radial wave-function in these systems is non zero everywhere, mak-
ing electronic density higher in the proximity to nuclei. The matrix element of
Coulomb repulsion U is comparable to that of exchange interaction ¢ requir-
ing the use of atomic and itinerant approaches simultaneously. The simplest
theoretical model which treats both on equal footing is the Hubbard model,
while the relevant dimensionless parameter is the ratio U/t or U /W, where W
is band width. The Hubbard model is believed to be well suited for studying
strongly correlated electronic systems and is capable to keep track of a number
of relevant phenomena from metal-insulator transition and magnetic ordering
to non-Fermi liquid behavior. However, the absence of a small parameter in
the most interesting regime U /W ~ 1 does not permit to develop a reliable
perturbative treatment, stimulating thus practical implementation of different
numerical algorithms smoothly interpolating between analytically accessible
regimes. With the discovery of high-temperature superconductivity the inter-
est to the Hubbard model has been revived since it captures the basic features
characteristic of copper-based materials.
In general one can suggest the classification of numerical routines used for
model Hamiltonians by belonging to one of the following groups:
1. Quantum Monte Carlo algorithms: The basic idea behind this method
is to approximate a physical quantity with the sum of a number of terms
(e.g., one can sum up over diagrams, configurations, etc.). However, the
number of summands increases exponentially with the number of de-
grees of freedom though it can be relaxed by means of Markov random
walks on the set of all summands. The probability of transition from
one state to another is basically determined in accord with Metropolis-
Hastings criterion [152] and is relevant to its weight in the sum. Employ-
ing Quantum Monte Carlo algorithms, in principle, allows to compute
the correlation functions with prescribed accuracy, being however lim-
ited by the sign-problem [141]: For fermions averaging is represented
by sign-alternating series that can not satisfy the Metropolis criterion.
The latter results from antisymmetry of corresponding wave-functions
and leads to exponential growth of computational time when lowering
the temperature. Thus, the most interesting low temperature regime is
hardly to be addressed with Quantum Monte Carlo. Inability to work
out thermodynamic quantities on real axis is another disadvantage of the
algorithm in question, making the use of analytical continuation from
Matsubara frequency domain unavoidable. Thus, the direct implication
of this method becomes highly undesirable when dealing with dynamic
quantities (susceptibility and Green’s function on real axis) and requires
to perform poorly-defined analytical continuation, which is very sensi-
tive to numerical noise.
2. There exists a set of methods developed specifically for studying a par-
ticular problem or phenomenon, giving rise to quite informative and in-
tuitively clear data. Among them are Exact Diagonalization, Density
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Matrix Renormalization Group [183], and Numerical Renormalization
Group [37].

3. The methods which suffer from pathological disadvantage (sum rule vi-
olation or casuality), e.g. Non-Crossing Approximation, Large — N ex-
pansion [29].

The Coulomb interaction couples indirectly an infinite number of frequencies
and spatial modes, making reliable application of the methods like exact di-
agonalization or quantum Monte Carlo quite illusive due to their exponential
complexity and sign-problem respectively. To get over this difficulty the for-
malism analogous to mean-field approximation has been developed: A stan-
dard model of correlated electrons on a lattice is substituted for an impurity
interacting with effective medium, which it is embedded into, that needs to be
determined self-consistently. Unlike the rest of mean-filed methods, e.g. the
one elaborated for Ising model, thus defined substitution known as Dynami-
cal Mean-Field Theory (DMFT) takes account of many-body interaction (this
indeed takes pace because the effective field acting on each site of a lattice
depends on energy). However, by construction DMFT totally disregards the
non-local correlations and smoothly interpolates between two exact solutions,
namely atomic limit for extremely strong correlation and Landau Fermi-liquid
in weakly-coupled system, while the self-energy is purely constructed by solv-
ing corresponding Anderson impurity model [11].

Despite of local nature DMFT turns out to be quite successful, e.g., a num-
ber of experimental facts are known to be solvable within LDA-DMFT approx-
imation when the lattice dispersion is replaced by that obtained from Density
Functional Theory: One is able to reproduce Mott transition in V,0O3 doped
by Cr, or the metal-insulator transition in La;_,Sr, TiO5_g5. Nevertheless, the
effects of non-locality must be treated carefully in an attempt to explain the
formation of Luttinger liquid in low-dimensional systems, establish the nature
of insulating phase in V,03, address systems with strong quantum fluctua-
tions and VHSs, elucidate experiments with copper-based high-temperature
superconductors, and basically deal with the systems where self-energy part is
characterized by non-trivial dispersion.

To subdue the limitations inherent to DMFT and expand the scope of its ap-
plicability the Dual Fermion Method has been recently proposed [180, 83]. In
fact, within DMFT decoupling of frequencies and lattice degrees of freedom
is formally achieved by splitting the problem into two independent pieces:
The impurity problem is accomplished on frequency domain, while the lat-
tice part is solved by self-consistency. Dual Fermion Method [180] suggests
to apply Hubbard-Stratonovich transformation to the original lattice model
and define a control parameter to develop perturbative expansion on top of
DMFT. The zero-order approximation in this case would exactly correspond
to DMFT, while the higher-order contributions account for non-local correc-
tions to DMFT.
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We assume a many-body problem is determined by its action on Matsubara-
frequency domain

S[e,c] = Sex [E,¢] + ). Y CawDap(®n)cpe- (1.11)

O aff
The philosophy of dual fermion method is to split the action (1.11) into two
parts: An exactly solvable one Se [¢,c] (e.g., by exactly diagonalizing the cor-
responding Hamiltonian), so that any correlation function can be estimated
with prescribed accuracy, and some quadratic part with the matrix Dgg(®,).

Applying the Hubbard-Stratonovich transformation, which for Fermi-fields
reads [235]

/.@ [f,f]exp {—Z {fa (ADA);blfb +CaA ) f —i—faAa_ble} }

ab

exp Z CaDgpep

ab

. (1.12)

" det(ADA)

where the subscripts label a spin and a frequency a = {@,w}. We defined a
collection of Fermi-fields f, f which are referred to as dual fermions in the
following, while the matrix A is to be specified (we choose it in a way to
preserve normalization of dual Green’s function). With the help of (1.12) the
partition function corresponding to the action (1.11) can be rewritten as the
integral over the original Fermi fields ¢, ¢ as well as dual ones f, f

Z =det (ADA)/.@ [e.c;f. flexp (=S¢, e; . f]) (1.13)

here the newly defined action

S [Evc;fmf] = Sex [6_76]
+YY [f'm,, (ADA) 15 fpo + oAy} fpa +fawA;;3cﬁw} L (114

Wy (Xﬁ

The next step is to integrate the original fields, that leads to so called dual
action

Z :det(ADA)/9 [f.f]exp (—Sd [f',f]), (1.15)

€X
in general the integration in (1.15) can not be done exactly as the action
Sex [, ¢] is an arbitrary function of ¢, c. However, we can expand the expo-
nential in powers of mixed term anA&é fﬁw + f,m,A; [13 CBao and move back to
the exponential taking account of correlation function of the exactly solvable
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model. Choosing A to be equal to the exact Green’s function of a reference
problem g, (@,) we eventually derive the dual action which is the function
of dual fields f, f only

S 7.4] = =L X o [ @0 fro

Wn aff

1 o
U Z Z Yg‘gyﬁ (wlawZaw37w4)faa)1fﬁw2fya)3f5w4

@1...04 af v
1 6 o
% L L Yaprour (@1 06) foon FpanFron Foon fuos frag: (1:16)
@)...06 afyduv

the bare dual Green’s function is determined by

G (@n) = —g(@,) [g(@a) + D" (@,)] g(@n). (1.17)

We can see that the dual action S¢ [ 7 f] is more complicated than the orig-
inal one and comprises the non-linear terms to all orders in fields, while the
coefficients }/(4) and %6) in the formula (1.16) are the irreducible vertices of
the reference problem. Developing perturbation theory with respect to the
quadratic part of the dual action basically provides more reliable results com-
pared to the bare perturbation expansion, the reason for that is in the fact that
the correlation functions g, *), y(®) already contain information on the dy-
namics of the system. It is easy to show the direct relation between the dual
Green’s function ¢ (®,) with that of original fermions G(®,)

G(ay,) = Dil(wn) + (G(wn)D(wn))_] gd(wn) (D(wn)G(wn))_l ,  (1.18)

here we defined ggﬁ () = —(faw o) s:- Based on the expression (1.18) we
can argue the equivalence of the dual picture to the original problem.

Numerical computation of higher-order correlation function from QMC or

ED in general is very sophisticated task, therefore typically one restricts one-
self to the lowest vertex y'*). The realization of dual fermion method in prac-
tice can be done by performing the following steps:

1. For arandomly chosen hybridization the corresponding Green’s function
g(®,) and vertex part ¥4 are determined, e.g. by means of quantum
Monte Carlo.

2. The bare dual Green’s function 5461(60") determined by (1.17) needs to
be computed.

3. The dual self-energy (@, ) is constructed from perturbative expansion
(typically one estimates the lowest diagrams).

4. Knowing both the Green’s functions %51((0,,) and the self energy part
¥4 (w,) allows to estimate the dual Green’s function ¥ (@,) from the
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Dyson equation:
9 (@,) =9 (0,) + 9 (0)Z(0,)% (0,). (1.19)

Calculation of skeleton diagrams can be done iteratively by computing
¥4 (w,) and ¥¢(@,) unless convergence.

5. To obtain the new hybridization function and meet the self-consistency
condition.

6. Repeat the steps unless convergence of ¥“(w,) and the hybridization.
The last step is to calculate the Green’s function of an original problem
(1.18).

1.3 Fermi Condensate: A new approach to the old
problems

It was shown recently that Pomeranchuk criterion is not exhaustive and does
not include at least one kind of instability [112]. In fact, under certain condi-
tions the effective mass (1.10) of a quasiparticle can be large enough, reduc-
ing thus kinetic energy dramatically and making the potential part dominant.
The latter results in a new state of matter, namely the fermion condensate
[113, 112, 223], which is separated from a normal Fermi liquid by a quantum
phase transition. At 7 = 0 when (x — xp¢) — 0 the effective mass m™* diverges,
and in this case the ground state is purely determined by potential energy and
the phase transition [10, 189], reducing the total energy, must rebuild the dis-
tribution function (1.6) according to

=&=U (1.20)

for certain momenta kg < k < k;. Consequently, within this interval the oc-
cupation fraction does not coincide with the Fermi-Dirac distribution (1.9).
In fact, at T = 0 the step-like distribution function nx = 6 (kg — k) is not
unique, there exists anomalous solution (1.20) if the logarithm on the right-
hand side of (1.6) is finite, which is possible as long as 0 < ng < 1 for momenta
ko < k < k.

The distribution function obtained by solving the variational problem cor-
responds to a new class of solutions of Landau functional and is character-
ized by high degree of degeneracy, while the entropy (1.2) goes to some fi-
nite value S(7 — 0) — Sp. On approaching the critical density x — xpc,
when the Fermi condensate appears, the momenta kg — k; — kg and devi-
ation dnx = ng — 6 (kp — k) becomes small enough. The energy functional
(1.1) can be expanded in powers of dny, keeping the lowest order we derive

uzek:££0)+/

d3
2;;3 Ffipdip (1.21)

(
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for kg < k < k1, provided the single-particle quasiparticle energy is equal to
8&0) = OF [nk] /dnx as well as Landau amplitude fi p are calculated for step-
like distribution function. The equation (1.21) allows non-trivial solution for
x < xpc if the corresponding Landau amplitude is positive and large enough
to guarantee the kinetic energy is much smaller than the potential one. Con-
sequently, by means of (1.21) the usual Fermi-Dirac distribution transforms
into a continuous function which defines the Fermi condensate quantum phase
transition.

Summarizing, the Fermi condensate can be thought of as strongly correlated
Fermi-liquid at x < xpc, where quasiparticles form a collective state, governed
by a macroscopic number of quasiparticles with momenta kg < k < k;. The
shape of the quasiparticle band-function is universal and independent of Lan-
dau amplitudes, characterizing the system taken in its entirety, and determines
only the width of the interval (k; —kg) occupied by the Fermi condensate,
making the notion of quantum protection viable. In particular, quantum pro-
tection [135, 12] means that thermodynamic and transport properties are de-
termined by the Fermi condensate exclusively.

It is worth studying the topological properties of a Fermi condensate. Well
known normal and marginal Fermi liquids as well as Luttinger liquid belong
to the same topological class: Green’s functions correspondent to the states
in question are characterized by a vortex-like state in the reciprocal space,
whereas in Fermi condensate this vortex is split into two half-quantum vortices
connected by a vortex sheet. The Green’s function of normal Fermi-liquid is
given by

Z
o —Vp (k — kF) + istgn (k — kp) ’
where Z is the quasiparticle residue. To understand the topological nature of
the Fermi condensate we consider a single particle Green’s function Gy (Q)
given on Matsubara frequency domain @ = iQ, which is singular at Q =0 [2].
For a normal Fermi-liquid the singular points are distributed along the Fermi
surface and characterized by the following invariant [223]

Gk(w) = (1.22)

dA
N = 7{ Z—MTr[Gk(ia))a;LGlzl(iw)], (1.23)

where the trace stands for the summation over spin and momentum degrees
of freedom and the integration has to be done over an arbitrary contour en-
closing the singularity of Green’s function. If a singularity allows analytical
treatment, e.g., a pole, N coincides with its multiplicity. In case of a normal
Fermi-liquid the Green’s function (1.22) is characterized by a simple pole,
so that N = 1 per spin. The index N remains integer even for non-analytic
singularities and can not be changed in a continuous way, making it insensi-
tive to smooth variation of the corresponding Green’s function. Physically N
is analogous to topologically stable singularities of the phase of a superfluid
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condensate. The invariant in question preserves its value even for non-pole
systems (marginal Fermi and Luttinger liquids), making them topologically
equivalent to a normal Fermi liquid. However, that does not hold for the Fermi
condensate: In this case a topological defect with N = 1 can not disappear due
to topological stability and transforms into a vortex sheet, where the discon-
tinuity of the phase of the Green’s function happens. For g = u the Green’s
function G(Q) = (iQ)~! picks up 7, meaning that the boundaries form the
half-quanta vortices, i.e. N = 1/2. Thus, contrary to the well-known marginal
Fermi and Luttinger liquids a system with Fermi condensate belongs to this
class of Fermi liquids, while the transition to a new class can be ascribed as
a Lifshitz topological phase transition that happens at 7 = 0 [223, 225, 226].
Interestingly, the Fermi condensation can appear in superconducting states as
well, provided the interaction is strong enough.

It is noticeable to see how robust Fermi condensation is in an external mag-
netic field B. In the presence of two-body interaction, which however is as-
sumed to be very small, the superconducting order parameter K is finite in the
region occupied by the Fermi condensate, but the gap being proportional to the
coupling is small, so that even weak magnetic field destroys both ki and the
Fermi condensate: In fact, on destroying the Fermi condensate the magnetic
field lowers the energy of a system by AEp o B> (so that the Fermi conden-
sate restores when B — 0). Nevertheless, the new distribution function n in
the region (k; — ko), occupied by the Fermi condensate, has to lead to a finite
energy gain compared with a normal Fermi-liquid. Therefore, for weak mag-
netic fields a new state with no Fermi condensate has to be of the same energy
as that with Fermi condensate. The latter can be achieved by assuming mul-
tiply connected Fermi-spheres (see Fig. 1.1), where the smooth distribution
function nk in kg < k < ky is replaced by [17, 169, 48, 236]

V=Y 0 (k—kom—1) 0 (kam — k) (1.24)

m=1

with kg < ki < ky < ... <kyy, < ki, such that

kom+3 3 kom+3 3
LI / 0 4K (1.25)
(2m)? K (2m)3
kom—1 kom—1

and the width of each block of the Fermi sphere 8k = koyi1 — ko < V/B.
Thus, at T = 0 and B — 0 the width 8k — 0, while the behaviour of a Fermi
liquid with Fermi condensate is replaced by that of a normal Fermi liquid with
Fermi momentum k; > kr and constant electron density.

Despite of being quite promising and attractive, the concept of Fermi con-
densation can not be developed purely on theoretical grounds. However, a
number of exactly solvable models and experimental facts, which are hard to
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Figure 1.1. The picture illustrates the expression (1.24). The region occupied by the
Fermi condensate ko < kr < k1, whenever k = ky, = k; the distribution is nothing but
the step-wise function and the system is in a Fermi-liquid state.

be explained without addressing the model in question, mimics Fermi con-
densation behavior. In this section we briefly consider a variety of exactly
solvable models which definitely manifest the formation of Fermi condensa-
tion [113, 114, 64, 136, 95].
1. Detailed investigation of Fermi condensation has been initiated by Khodel
and Shaginyan [113]. We start from a model Landau functional compris-
ing two-body interaction only

arpam T2 ) Gayp el KR (120

3 2 3 3
E[nk]:/dkk 1 rd°k d’p
Basically, on working out the functional (1.26) one is restricted to particle-
hole channel only with no possibility to deal with superconducting cor-
relations. In the simplest model a finite long-range interaction in co-
ordinate space is considered: U (k—p) = U(27)38 (k—p) [113, 161],
which leads to the chemical potential

K U
u—zm—l- X (1.27)
whereas the quasiparticle energy & = k?/(2m) + Uny. This model is
stable as long as U > 0, and there are two critical values U; = 0 (when
Fermi condensation appears) and U, = & (5/ 2)2/ 3 (when ko — 0). For
U > U, all particles are in Fermi condensed phase, and the distribution
function can be written as
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1, k < ko,
k27k2
: ko < k < ki, (1.28)

2_ 12
12 —k3”

0, k> k.

nk =

2. Another model that describes particles subjected to a harmonic poten-

tial V(r) = r?/(2m) and interacting via Coulomb forces corresponds
to U(k—p) = g/|k—p|. In agreement with Pauli exclusion principle
ng < 1/(27)? and the Fermi-Dirac step function coincides with the dis-
tribution function of the problem in question as long as £ =1 —m/m* <
&, = gm/(6m?) (harmonic potential dominates over Coulomb interac-
tion). The chemical potential reads pt = k% (1+2&) /(2m), while

RU0) 4 K8 gy
& = ’

2m 2m

3
%—I—E k> kp.

km

(1.29)

The effective mass m* diverges when & — 1, at & > 1 Coulomb repulsion
exceeds quasi-elastic forces, and the distribution function needs to be
reshaped as follows nx = 6 (k—k;) /&, whereas k| = kp&'/3 and p; =
3k% /(2m), while

o Hi, k <k,
k- I'L1+A(k_k1)2) k>k17
here A is a constant.

(1.30)

. One more interesting toy system can be developed based on an extended

two-dimensional Khatsugai-Komoto model [136] which to some degree
is equivalent to the Hubbard problem, provided the latter allows the hop-
ping to an arbitrary site. The Hamiltonian is written as

1
H=Y e+ 5= Y fipnnp, (1.31)
- 2V =

here we put ng = cxck and fi p is the operator responsible for interaction
among the particles. In thermodynamical limit V — oo, and

fiep = U218 (k) &)
Here ¢ is the angle between k and p, while the functions Uy and g(¢) are
chosen randomly, provided the function g(¢) has even 27 — periodic. In
addition, we assume g(¢) takes the maximum value at ¢ = 7 and mono-
tonically decreases when ¢ — 0. By doing so we are able to estimate
the ground state energy as well as distribution function continuous in k
(non-Fermi liquid behavior typical to Fermi condensate) in closed ana-
lytical form. The distribution function is determined by nx = ¢ /(27),
where ¢ is the solution to

(1.32)
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In the formula we assume that g is independent of ¢. To illustrate our
speculations we try

r*— 2*1/2, 0O<op<m,
g(e) = ( 7) Y (1.34)

(7:2 —@2rn— (p)2>_1/2, T<Q<2T.

We can identify an artificial singularity at ¢ = 7, where the tangential to
ni is horizontal at ng = 1/2. The function is non-analytical at k, and kj

(1.35)

1—%sin(“2f"), kg < k < ki,
KT Lsin (KA ke <k <k
3sin (B5%), . <k <kp.
. One can also work out analytically two-dimensional Fermi systems with
the ground state given by the energy functional [114]

1
E[m] = / Sk”kdszrﬁ / fk prxnpd’kd*p (1.36)

(the notation used in the formula are in full agreement with those of
Landau Fermi-liquid theory). Taking account of the constraint 0 < ng <
1 one can try to reformulate the interaction among the electrons in terms
of magnetic (Ampere) forces which act between currents. If this is the
case the Landau amplitude can be replaced by a screened vertex function

(k-q)(p-q) —¢*(k-p)
kpq? ’
here ¢ = k — p. There exists a critical value g. = 6/, so that for g > g,

fip=-T(k,p;q) = —¢ (1.37)

1, k<ki,
2 2
N = ﬁgkogk, ky <k <k, (1.38)
0, k> ks,
where ko =kr |— 28— ki =ko(2mg/3—1)""2 and ky = ko/\/3.

4+log < 2”273 ) ’

We describe as the fifth example the Hubbard model on a triangular lattice.
The results from this consideration constitute the main parts of Paper I, in the
list of publications of this thesis, and for that reason we describe this model in
more detail than the previous four examples of Fermi condensation. We start
with the Hamiltonian

H= stkdfmde + UZn,»Tni ! (1.39)
(o) 1
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with local Coulomb repulsion U > 0 and dispersion relation

& = —2t {cos(kxa) +2cos(kya/2)cos(kyav/3/2) | — (1.40)

where ¢ > 0 is the hopping amplitude, t the chemical potential, and a is the lat-
tice spacing. We take a = 1 in the following. The reciprocal lattice is spanned
by the vectors G| =27 (ex\ﬁ— ey) /\@ and G, = 47rey/\/§, while the first
Brillouin zone is hexagon shaped. At 3/4 filling, logarithmic VHSs (kinks
in the DOS) appear in three inequivalent saddle points M; = (0,27/+/3),
M3 = (m,£7/+/3), and the hexagon-shaped Fermi surface becomes highly
nested (Fig. 1.2). It is well known that in the weak coupling limit U/t < 1,
the dominant instability for a non-nested Fermi surface away from VHSs is
related to superconductivity. Contrary to this, at saddle points (Vk& = 0) the
Fermi surface has flat sides and is nested as a result. The vector Qg connect-
ing different points My and My is such that 2Qgg = 0 modulo a reciprocal
lattice vector. In what follows we will focus on the model doped exactly to the
VHS (u = 2¢) and perfect nesting.

As it was mentioned the random phase approximation is not sufficient even
at weak coupling, excluding the case when divergence appears in one partic-
ular channel only. We deal with two-dimensional system doped to van Hove
filling, in this case the susceptibilities diverge in both channels it is impor-
tant to account of the mutual dependence. At weak and intermediate cou-
pling the field-theoretical RG approach might be an optimal option (we refer
to that as Wilsonian which operates with successive mass shell integration,
A —dA < g < A) [192]. However, in the vicinity of VHSs the direct appli-
cation of this method becomes problematic: In fact, being doped to van Hove
level the Fermi surface is characterized by a number of saddle points, Vkeg =0
(e.g. these are M, M, and M3 points on triangular lattice). In this case the
states with the same energy become inequivalent: The states with momenta
close to the saddle points result in leading divergence in electron-electron ver-
tices. Thus, besides the standard division into fast (& > A) and slow (g < A)
an extra patching must be done [74]. To provide an analytical estimate for the
Hubbard model in question three-patch scheme is to be realized, i.e., the most
singular contributions from the close neighbourhood (patch) of saddle points
are considered. The momentum-dependence of electron-electron vertices is
assumed to be the same all around the patch.

At van Hove filling the density of states on the Fermi surface as well as
electron-electron interaction contain logarithmic divergencies stemming from
integration near the saddle points. These terms provide the leading contribu-
tion to the RG analysis, while the rest are subleading and do not change the
physics qualitatively. Thus, the integration area can be defined by a set of

area (M) = {k: [k—k;| < A}n{k: |g|/t > e N KKily, (1.41)
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Figure 1.2. Hexagon-shaped Brillouin zone and DOS of the system doped to the
VHS. From momenta and spin conservation the following two-particle processes are
allowed: exchange scattering (g1), forward scattering (g»), umklapp scattering (g3),
and intra-patch scattering (g4).

where A is the cut-off parameter, and i = 1,2, 3. To develop RG we define a set
of quasiparticles operators that act on each patch a;5(k —k;) for k € area(M;).

The number of patches for the triangular lattice agrees with the number
of inequivalent saddle points, in which the DOS diverges logarithmically:
N = Nolog[A/max(2¢,T)] (here A is a high-energy cutoff). The problem in
question can be reduced to a quasi-one-dimensional one if we introduce those
two-particle scattering processes between different patches, which are allowed
by momentum conservation. One-dimensional systems are known to be unsta-
ble to the formation of pair instabilities in both Cooper (particle-particle) and
Peierls (particle-hole) channels, and result in logarithmic singularities for pair
susceptibilities. Extending the quasi-one-dimensional analysis we define four
different interactions associated with two-particle scattering between differ-
ent patches: exchange (or backward) scattering (g1), forward scattering (g»),
umklapp scattering (g3), which conserves momentum modulo a reciprocal lat-
tice vector, and intrapatch scattering (g4). All four interactions are marginal
at tree level, but acquire logarithmic corrections from the integration near the
VHS, thus justifying the use of logarithmic RG. These logarithmic corrections
come from energy scales £ < A = t, the energy scale at which higher order
corrections to the dispersion become important.

The susceptibilities in the particle-particle x,,(q = 0) = Nolog (A/T) /2x
log [A/max(2¢,T)] and particle-hole x,(q = Qqp) = %log2 [A/max(2¢t,T)]
channels, evaluated at momentum transfers zero and Qgp between points
My and Mg, are log-square divergent. One logarithm stems from the DOS,
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Figure 1.3. Main panel: Renormalization group flow of the couplings g;. Inset: Dis-
persion relation in the vicinity of the saddle point corresponding to the bare (red) and
renormalized (blue) action. The flattening of the band is clearly visible. The plotting
region is determined by the cutoff parameter A/t ~ 1.

whereas the second is inherent to the divergence in the Cooper channel for
Xpp and appears in x,,(Q) due to perfect nesting of the Fermi surface. For
the analysis of the low-energy properties we neglect the logarithmically di-
vergent contributions x,;(0) and x,,(Q), which are parametrically smaller.
Restricting the integration region to the patches and placing external momenta
at the critical points, we derive one-loop RG equations using momentum-shell
integration [192] with respect to the flow parameter A = x,,(q = 0,E). It is
noteworthy that to leading order the solution to a set of RG equations is defined
by the relative weight between the Peierls and Cooper channels only. Because
of nesting the flow of the coupling constants is strongly modified and the ef-
fect of interactions is dramatically enhanced. An inspection of RG flow in
Fig. 1.3 reveals that the couplings diverge when approaching instability region
Ac with |g4| > g3 > g2 > g1; i.e., intrapatch scattering prevails. Thus, the local
repulsive coupling can favor the formation of instabilities towards magnetic or
superconducting states at relatively high temperatures A. = x,,(E = T¢.), e.g.,
for the initial values of running couplings go,

T, ~texp (—1/@) (1.42)

even if the interaction strength is weak compared to the fermionic bandwidth
W.
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In order to obtain the renormalized band function we proceed by estimating
the second-order correction to the self-energy X (k) for k near M. We make
a distinction among three contributions stemming from intermediate integra-
tion with quasimomentum corresponding to the same point and the two other
VHSSs: £o (k) = ¥,—1 2325, (k). The band function is determined by the pole
of the cutoff-independent Green’s function that can be obtained by solving the
corresponding Dyson equation, whereas the effects of spectrum renormaliza-
tion, which describe the flattening, can be absorbed into mass renormalization
factors. The remaining divergencies are to be associated with the quasiparticle
residue. The resulting quasiparticle spectrum in the vicinity of the M point
(with initial g = g2 = g3 = g4 = 0.15) is shown in the inset of Fig. 1.3: The
spectrum is almost flat in a rather wide range of k resulting from mass renor-
malization. The quasiparticle weight is also renormalized under the RG flow
(not shown). We find that the pinning of the Fermi level to the VHS remains
robust under the RG flow. Thus, we conclude that the effects of renormaliza-
tion drastically affect the Fermi surface topology, leading to the formation of
an extended VHS (EVHS).

In order to demonstrate the robustness and experimental accessibility of the
phenomenon, it is necessary to show that the effect persists at finite tempera-
tures and strong interaction. This is a challenging task: While DMFT captures
non-perturbative phenomena such as the Mott transition, it neglects spatial
correlations. Because of the important role of susceptibilities, the problem
cannot be treated in DMFT. Cluster extensions of DMFT lack sufficient mo-
mentum resolution. Both criteria are met only in novel approaches combining
DMFT with analytical methods. Here we employ the dual fermion technique
[180] (see [83] for a comprehensive overview). The resulting spectral func-
tion —(1/7)ImG (k) for U/t = 8 is shown in Fig. 1.4. We observe a broad-
ening and flattening of the spectrum at the M point. While flattening of the
spectrum is partly present in DMFT due to band renormalization, including
spatial correlations leads to the formation of an EVHS. Apart from the in-
coherent high-energy excitations we observe a well-defined and only slightly
dispersive band at low energies, which spans a large region of the Brillouin
zone between the M and K points.We have marked the local maxima with a
white line. We find that this band agrees perfectly well with the prediction
& — U = Tlog[(1 —ng)/nk| from Eq. (1.6) (black line) everywhere in the
vicinity of the Fermi level. While the results are described by the Landau
functional, the self-energy clearly exhibits a power law and hence non-Fermi
liquid behavior. For T — 0 this leads to a flat band and Fermi condensation,
or the system becomes unstable due to the degeneracy. We therefore interpret
the effect as a precursor to a correlated magnetic or superconducting ground
state. The formation of this band is correlation driven, as it disappears when
the interaction is lowered.

In order to further elucidate the origin of this effect, we note that because
of the large DOS at the M point due to the proximity of the VHS, the dom-
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Figure 1.4. Spectral function in dual fermion approach at U/t = 8 and T /¢ = 0.05.
Local maxima corresponding to the lower band are indicated by a white line. In the
vicinity of the Fermi level, this lower band perfectly matches the prediction &g — u =
Tlog[(1— nk) /nk] following from the Fermi condensate hypothesis (thick black line).
The bare dispersion is shown for comparison (blue, dashed).

inating contribution to the convolution in the self-energy in the vicinity of
the M point is expected to stem from the vicinity of the I" point. An analy-
sis of the leading eigenvalues of the Bethe-Salpeter equation reveals that the
spin channel dominates in the vicinity of I' in agreement with our RG anal-
ysis, where intrapatch scattering is found to give the dominant contribution.
Hence the effect results from the combination of a large DOS and coupling
to strong ferromagnetic spin fluctuations. Indeed, our calculations unambigu-
ously determine this effect to originate from collective excitations in the spin
channel. The large self-energy in the vicinity of the M point leads to both a
broadening of the spectrum and a strong reduction of spectral weight at the M
point, also in agreement with the RG. The flattening is considerably stronger
in non-selfconsistent calculations, where attenuation of the fluctuations due
to damping of quasiparticles at the M point is not taken into account. The
absence of the low-energy band in second-order approximation to the dual
self-energy underlines the importance of the feedback of collective excitations
onto the electronic degrees of freedom. In the top panel of Fig. 1.5 we plot
the so-called broadened Fermi surface within 0.1 electrons from the value
0.5 corresponding to the interacting Fermi surface for given temperature. This
quantity is directly related to the occupation function for different momenta,
which is experimentally measurable. The comparison with the noninteracting
case shows that the effect of flattening is substantial. Increasing the interac-
tion strength U strongly enhances the flattening while lowering the temper-
ature mitigates it. The correlation-driven effect can, nevertheless, clearly be
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Figure 1.5. Broadened Fermi surface within 0.1 electrons for U /t =8 and T /t =0.1.
The lower left sextant shows the noninteracting result.

separated from this purely thermal effect even at the highest temperatures. We
find that the effect persists up to shifts in chemical potential of at least 0.5z,
showing that it is robust to the presence of a trapping potential

We end this chapter of Fermi condensation with a general analysis of ther-
modynamic and conducting properties that are expected to emerge from such
a state. In the vicinity of Fermi condensate quantum phase transition from the
disordered state (Landau Fermi-liquid) the entropy is known to be determined
by S(T) ~ /T [188], while the entropy in the Fermi condensed state has to be
modified. We know the distribution function ny is to be rearranged in accord
with (1.20), and the entropy contains temperature-independent contribution
So ~ (ky —ko) /kp ~ |r| [here r = (x —xpc) /xrc]. The quasiparticle spec-
trum g o< (k—k;)? ~ (ko — k)* which links dispersionless phase, occupied by
Fermi condensate, and Landau quasiparticles at k < ko and k£ > k; (and can be
easily confirmed by toy-model systems), while the entropy at 7 — 0 [112]

S(T) = So+aVT+bT, (1.43)

here a and b are constants. The first term on the right-hand side is tempera-
ture independent and is responsible for universal thermodynamic and transport
properties of heavy electron liquid, whereas the rest terms are purely defined
by the quasiparticle spectrum.

The direct consequence of (1.43) is: At Fermi condensate quantum phase
transition finite discontinuity of the Hall coefficient Ry (B) as a function of
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external magnetic field at 7 — 0 when the applied field exceeds some critical
value B > B, (observed in YbRh,Sis [163]) shows up. In principle, the applied
field suppresses the antiferromagnetic phase with Fermi momentum kr and
restore a normal Landau Fermi liquid with the Fermi momentum k; > kf.
It is quite clear that at B < B, the ground state of antiferromagnetic phase
is well below that of paramagnetic Landau Fermi liquid, and vice versa at
B > B.. We already established the state correspondent to Fermi condensate
quantum phase transition is highly degenerate, so that in this case the ground
state energies of antiferromagnetic state and Landau Fermi liquid coincide.
Thus, one can show

Ry(B:.—9) 3 So
— = =1+ — (ki —kp) ~ 14+ —, 1.44
Ry(B:+9) kr oy =kr) XFC (149
the entropy per a heavy electron is Sy /xrc. Hence, the discontinuity is directly
associated with anomalous behavior of entropy and the presence of Sp.
The unusual expression (1.43) also results in a non-Fermi liquid thermal
expansion coefficient [8]

here p and V are pressure and volume respectively. It is worthy to note the
compressibility K = d/d(Vx) is non-sensitive to Fermi condensate quantum
phase transition, while

259 m*T
opc(T) ~ =—=ap~ —5—. 1.46
FC( ) ap ao k%«K ( )
Well-known thermodynamic relation for heat capacity reads
aS(T) a
CT)=T——~=VvT 1.47
(M) =T~ VT (1.47)
and apparently demonstrates that the Griineisen ratio
T 2
rry= #0240 (1.48)

C(T) avT

diverges and the Griineisen law does not hold for Fermi condensed phase.
Typically, in experiments with heavy-fermion compounds the thermody-
namic quantities are investigated. However, it would be interesting to ob-
serve the fingerprints of distribution function ng [187, 190] and not only the
density of states or effective mass. The latter is possible in transport mea-
surements, scanning tunneling microscopy, contact spectroscopy [54] (closely
related with Andreev reflection [13] and is sensitive to the tunneling density
of states and the distribution function, as a result). In the following we restrict
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our discussion to the normal metals (calculations for superconducting states
can performed in the same fashion).

The tunneling current through a point contact between two normal metals is
proportional to a gate voltage and the squared transition amplitude |¢|>. Within
WKB approximation the tunneling current is independent of the density of
states, as a consequence at 7' — 0 the differential conductivity o, (V) =dI/dV
of a normal Landau Fermi-liquid is symmetric and even with respect to the
bias V. Formally, the shape of o,(V) is preserved as long as particle-hole
symmetry takes place (that is present in a normal Fermi liquid).

In general, at low temperatures (using atomic unitse=m=h=1) I[(V) =
a1V, provided |¢t|> = 1 differential conductivity 64(V) = a; = const is a sym-
metric function of V. The asymmetric part inherent to Fermi condensate can
be viewed from the general formula

ou(V)= ;/dzn [e(z) =V, T]|(1 —nle(x)—V,T)) 3?, (1.49)

where z = k/kp stands for dimensionless momentum. It is worthy to mention
that in the interval (k; —ko) the integration variable € equals the chemical
potential. After some straightforward algebra Acy (V) = [04(V) — 0,4(—V)] /2
is given by

dz a(l—a?)(1-2n(:,T)) on(z,T)
2 [ne) (1 -0 (1 =neT))+o] %

Acy(V) = (1.50)

where o = exp (—V /T). Asymmetric tunneling conductivity can be verified in
the Fermi-condensed systems, for instance in high-temperature superconduc-
tors or heavy-fermion compounds, e.g. YbRh,(Sig95Geg os5)2, CeColns, or
YbRh;Si;, when they are in either normal metallic or superconducting phase.

Recent experiments on CeColns in point-contact spectroscopy explicitly
demonstrate asymmetric differential conductivity in both superconducting (7, =
2.3 K) and normal states: o, (V) is almost constant when the heavy-fermion
compound is in a superconducting phase, does not change qualitatively around
T, and monotonically decreases with temperature away from 7; [162].

To qualitatively estimate A;0 (V) we make use of the fact that Acy (V) o< V
at low voltage. Being asymmetric with respect to V the differential conduc-
tivity switches sign when V — —V. We expect the asymmetric part to be
proportional to (k; — ko) /kF, in the region occupied by the Fermi condensate:

Aoy(V)m o -0 g 22 20 (1.51)

since (k; —ko) /kr ~ So/xrc, where Sy is the entropy peculiar to Fermi con-
densed phase, whereas c is the constant of the order of one (can be estimated
from exactly solvable toy models).

37



Thus, based on the concept of Fermi condensation a variety of systems from
high-temperature superconductors and heavy-fermion compounds to quasi-
two-dimensional strongly correlated systems can be studied and characterized
by a universal behavior which can be developed within the formalism in ques-
tion.
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2. On the exploration of magnetization
dynamics

2.1 Landau-Lifshitz equation: More than spin dynamics

In recent years the focus in solid-state electronics has shifted towards the use
of ferromagnet materials. In fact, electronic circuits are known to exploit the
charge degree of freedom which can be controlled by applying external elec-
tric or magnetic fields and totally disregard the spin degree of freedom. For
practical applications the use of normal metals with high electron mobility,
which effectively screen an external field, are undesirable due to the lack of
their ability to be manipulated by this field. In ferromagnet materials exchange
interaction among d — electrons leads to spontaneous magnetization, this in-
teraction is known to be of non-relativistic electrostatic nature (contrary to the
standard Lorentz force), therefore being of the order of 0.1 — 1 eV per an elec-
tron, it quantitatively changes the electron dynamics. Interestingly, to achieve
spin splitting commensurate with that due to exchange coupling a normal para-
magnet has to be placed in external field of the magnitude 10° T. However,
even a weak magnetic field (1073 — 1 T) can influence the electron dynamics
in ferromagnet materials profoundly: The exchange interaction is in general
isotropic, so that it does not affect the magnetization direction which is deter-
mined by magneto-crystalline anisotropy present in real magnetic materials,
making thus the use of external field quite effective to tune the magnetization
direction. The exchange interaction is of short range ~ 10 nm or less.
Experimental studies of spin-dependent phenomena have been initiated a
few decades ago by pioneering works of Aronov and Pikus [16] on spin injec-
tion into semiconductors, Dyakonov and Perel [59] on current-induced spin
orientation of electrons in semiconductors, and Julliere on tunneling mag-
netoresistance [102]. Nevertheless, the groundbreaking experiment, demon-
strated that electron current in ferromagnet materials is spin-polarized, is be-
lieved to be the dawn of the era of spintronics [18]. The spin valve made
of two ferromagnetic layers separated by a spacer from non-magnetic metal
or insulator today is a workhorse in the field. Depending on the nature of a
spacer one can basically outline two mechanisms of spin transport in such a
structure: Ballistic regime, when the electron current passes through a normal
metal spacer, and tunneling regime that occurs for an insulating layer. In its
simplest realization a spin valve is constituted by two ferromagnetic layers that
are typically referred to as free layer, characterizing by rather small anisotropy,
so that its magnetization direction can be easily tuned by an applied magnetic
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field or an external current, and a pinned layer with much stronger magneto-
crystalline anisotropy. The phenomenon known as giant magnetoresistance
could happen depending on relative alignment of magnetization in the lay-
ers: Electrical resistance takes the largest value for antiparallel orientation,
being extremely sensitive to an external magnetic field. Not only is magneti-
zation controlled by the current, but also the inverse magnetoresistance exists:
When the magnitude of the electric current passing to a free layer exceeds a
certain critical value its magnetization becomes aligned with that of a pinned
layer. This paradox has been successfully resolved by Berger and Slonczewski
[23, 197]: The electric current is known also to transport spin current transfer-
ring the finite momentum to the second one fitting its magnetization.

Phenomenological theory of ferromagnetism at low temperatures is based
on the assumption that the state of magnetic material can be described in terms
of magnetization. The magnetization direction is supposed to be a smooth
function of the spacial coordinates on the scale of the lattice constant, while
the absolute value of the magnetization vector remains unchanged. In this
picture the energy of a magnetic material is defined as a functional of the
magnetization vector. The minimization of the functional results in the cele-
brated Landau-Lifshitz equation. The dissipation terms, which are typically
present in any physical system, are taken into account phenomenologically
via the Gilbert damping. The damping is characterized by a single parame-
ter, which makes this equation inapplicable for studying phenomena related to
non-equilibrium spin-dynamics. The discovery of domain wall motion as well
as current-driven phenomena in magnetic systems has led to the conclusion
that the Landau-Lifshitz equation must be supplemented with the term respon-
sible for such non-equilibrium processes, the so called spin-transfer torque.
Contributions of that kind have been first introduced by Slonczewski purely on
the grounds of the symmetry consideration and are described by some dissipa-
tive coefficients. Dissipative nature of spin-transfer torque is related to the fact
that being proportional to the current it breaks inversion symmetry, i.e. couple
terms which are odd under time-reversal symmetry with those which are even.
This brings a distinction between adiabatic and non-adiabatic spin-transfers
torques. Non-adiabatic torques contain information about all processes which
violate spin conservation in the systems with no Galilean-invariance.

It has to be said that magnons are collective excitations of localized spins
in the crystal lattice which can be viewed as elementary particles, spin-wave
quanta. Unlike spin currents, which are carried by electrons in a conductor,
the spin-wave currents carry spin but not charge and are immune to dissipa-
tion from Joule heating. The main damping mechanism for the spin-wave
current is the so-called Gilbert damping, which enters the Landau-Lifshitz-
Gilbert-Slonczewski phenomenological equation for magnetization dynamics
(Fig. 2.1). In usual ferromagnets this equation takes the form
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where m is the magnetization direction, ¥ = gug/ is the gyromagnetic ratio
(expressed through the Bohr magneton, tp, and the Lande g — factor), « is the
Gilbert damping constant, and 7 represents the current-induced torques, which
are discussed below. In the following we provide microscopic derivation of the
Landau-Lifshitz equation using non-equilibrium Keldysh technique.

Spin-transfer torque lays in the heart of rapidly advancing field of current-
induced magnetization dynamics [36]. The interaction of a conduction elec-
tron spin with the magnetization of a thin ferromagnetic layer results in a re-
orientation of the electron spin after transmission. At the same time the change
in the direction of an electron spin leads to a torque on the magnetization of
the ferromagnet. Thus, the spin-transfer torque provides the coupling between
magnetization and electric current. Extraction and detection of spin-wave cur-
rents can be realized by the reciprocal effects: Spin pumping from dynamic
magnetic insulator emits spin current in the metal [209], while the inverse
spin-Hall effect converts the spin current into an electrical signal [212]. These
and other experiments demonstrate the possibility to realize spin circuits in
insulators, which have low dissipation loss and provide novel forms of signal
transmission. This development establishes the field of pure spintronics. The
possibility to convert spin-waves, which carry no charge, to electric currents
stays behind novel high-performance and power-saving logic schemes such
as spin-MOS transistors [206], magnetologic gates [53], and spin-wave logic
[126], which have been proposed to meet the challenge of the CMOS scaling
coming to an end using current technology. The main contribution to the spin-
transfer torque, 7, in the Landau-Lifshitz equation is usually described by the
Slonczewski term 7 o< m x (m X I;), where I; is the spin current.

Transport properties of magnetic multilayers and nanostructures made of
ferromagnets have been recently attracted considerable attention. Conducting
ferromagnets are known to be characterized by spin-polarized current carri-
ers: In this case the energy spectrum is split into two sub-bands, in one of
which the electrons align their spins parallel and, in the other, antiparallel to
the sample magnetization. The resulting spin splitting is of the order of the
Curie temperature, while the giant exchange field present in the ferromagnet
can be estimated as H ~ kgT,/up ~ 106 — 107 Oe, where kz and up are the
Boltzmann constant the Bohr magneton respectively. The presence of this field
makes the spin-dependent phenomena to be of great interest for practical ap-
plications. Newly developed methods of nanostructures formation greatly fa-
cilitate control and manipulation of magnetic state in ferromagnets and permit
to tune magnetization distribution. The trade-off among magneto-crystalline
anisotropy, exchange coupling, and magnetostatic interaction basically deter-
mines the magnetization distribution in a specific ferromagnet sample [132].
The resulting magnetic domain structure is not universal and varies from sam-

+7, 2.1
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Figure 2.1. The magnetization (m) precesses about the effective field direction (Heg).
The green arrow illustrates the dissipative (damping) torque that tends to move the
magnetization toward the effective field direction. The red arrow is the spin-transfer
torque and the light-blue arrow is the effective field torque with an electron spin po-
larization collinear with the effective field (the illustration is taken from [36]).

ple to sample and is susceptible to its shape and geometry. On nanometer scale
there exist two characteristic lengthscales: The domain wall thickness and the
exchange length which are of the order of 10 nm for a transition metal ferro-
magnet. In the following we briefly review the unique properties inherent to a
conducting ferromagnet:
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e Diode and topological Hall effects: The presence of exchange interac-

tion in inhomogeneous conducting magnetic media can potentially mod-
ify the transport properties. Indeed, the current density in spatially uni-
form electric field E is well approximated by

Ji = OuEx + YinEvE . . ., (2.2)

where we have restricted the description to the linear and quadratic con-
tributions only. Explicit form of the conductivity tensors G and 7y
strongly depends on the sample magnetization and its spatial derivatives.
If a ferromagnet owns a center of inversion symmetry and the passing
current does not lead to energy dissipation ¥;; is an odd function of
magnetization and its spatial derivatives, while oy is an odd function of
magnetization and even relative to its spatial derivatives. Requiring the
current to be invariant under coherent rotation of a sample magnetization
[132], i.e. both linear and non-linear parts of the conductivity tensors do
not contain convolution of spatial indices with magnetic ones, and be at-



tributed to exchange effects exclusively the expression of electric current
through inhomogeneously magnetized ferromagnet is [72]

. dm Jm dm  9’m
si=e (m- [8)@- x 396]}>Ej+y<m. [c%ci . Bx‘i9Xk]>EjEk7
(

here o and Y are constants (which takes place in isotropic or cubic crys-
talline structure). The linear conductivity tensor is antisymmetric, con-
tributing thus to the exchange-induced Hall effect, while the non-linear
term is responsible for rectification by ferromagnets. We can see the
expression (2.3) makes sense and formally is non-zero for magnet with
non-coplanar magnetization distribution. One of the paradigmatic ex-
amples is a vortex-like configuration with magnetization defined by

m = (sin6(p)cos(n + ¢@p),sin0(p)sin(vo +¢@y),cosO(p)), (2.4)

where the variables ¢ and p are the corresponding cylindrical coordi-
nates, there is a phase shift ¢y, and v is an integer number. Thus, for
(2.4) the expression (2.3) gives rise to j = E x Beg with the effective
magnetic field

B dm _Jdm]|\ vodcosf(p)
tamefofZ25]) T s
implying a vortex (v = 1,¢y = +7/2) or an anti-vortex (v = —1,¢ =

0, ) non-coplanar magnetization distribution contributes to the Hall ef-
fect. Another example is a conical spin-spiral with magnetic moment

m(z) = (mcos(qz),msin(qz),me) (2.6)

provided m? = m? + mg This type of magnetization manifests that a

spin-spiral state permits diode-like properties j, = yg>m, (1 — mg) EZ2 to
be present in the system. We showed the existence of non-trivial ef-
fects from simple phenomenological considerations, however a more
thorough microscopic picture can be developed.

Optical effects: The basic properties of conduction electrons in ferro-
magnets can be established from the solution of Schrodinger equation
with s —d — exchange potential (—J/m(r) - ©), with exchange interac-
tion constant J between localized magnetic texture m(r) and conduc-
tion electrons. In particular, one can show that quasiparticle spectrum
in a conical phase (m; # 0) is not even with respect to quasimomen-
tum, implying the difference in group velocities between the ensem-
bles of electrons traveling in opposite directions. In a macroscopic sys-
tem, this difference does not produce any electric current because it is
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exactly compensated for by the difference in the number of opposite-
moving equilibrium electrons. In mesoscopic systems, however such as
small ferromagnetic rings with a non-coplanar distribution of the mag-
netic moment the removal of Kramers degeneracy and the quantization
of quasimomentum can lead to the appearance of predicted [143, 208]
persistent electric currents.

In a conical magnetic spiral, spectral asymmetry is responsible for the
occurrence of the diode effect, with “easy” current flow direction being
determined by the sign of the spiral wave number (left-right spiral) and
by where the perpendicular magnetic moment component m, is directed.
The important point is that the wave function components, and hence the
expectation value of the electron’s intrinsic magnetic moment, depend
on the quasimomentum component along the spiral axis. This results
in electron scattering by nonmagnetic impurities becoming asymmetric,
thus adding to the diode effect [72]. Similar effects (asymmetry in both
the group velocity and the scattering rate by nonmagnetic impurities) are
responsible for the peculiarities in the spatial dispersion of the permit-
tivity. For a conical magnetic spiral, the expansion of the permittivity
tensor may contain an additional term of the form [105]

om J’m
80606 - Kaa <m |:az X 8Z2:| ) kZ (27)

with k, being the wave-vector component projected onto the spiral axis.
Interestingly, the electric component of the external electromagnetic field
can induce sub-bands transitions with probability determined by [73]

_ 27 (eqJE;
- \2mw?

Wkp )(1m§)6(kp)6(Ahw), (2.8)
where o is the electromagnetic wave frequency, A is the spin splitting.
In non-complanar magnetic systems the dipole transitions determined

by (2.8) lead to a constant electric current, i.e. the photovoltaic effect.
There exists a technical possibility to realize non-collinear helical states in
multilayered structures (Fig. 2.2). Indeed, instead of searching for a specific
class of materials one can form a multilayered ferromagnetic structure due
to the magnetostatic interaction between the layers, the stability of the state
being determined by the shape of the particle [218]. Let us consider three
homogeneous magnetized magnetic discs with dielectric interlayers between
them. The magnetostatic interaction between the layers is antiferromagnetic
in character, resulting, as shown theoretically [71, 157], in the ground state
of the system being spiral (provided that the interaction energy between the
discs is much higher than the energy of anisotropy due to, for example, the
disc shape). The magnetic state of a multilayered structure can be analysed
experimentally by examining the dependence of its electrical resistance on

44



e Sl
e e e T T s P P (3)
e P e e P e e

(2)

(1)

Figure 2.2. Non-collinear helical magnet state in three single-domain discs system
(the illustration is taken from [71]).

the external magnetic field. Alternatively, the magnetic states can be investi-
gated by magnetic-force microscopy, but the fact that the signal to measure is
dominated by the contribution from the upper magnetic layer [71] makes this
approach difficult to apply.

The ballistic regime discussed earlier consists in elastic scattering of spin-
polarized electrons at the interface of two magnetic layers and results from the
transverse spin component being absorbed by one-two atomic layers of a mag-
net in the vicinity of the interface, whereas the spin-torque is directed towards
the localized magnetic moments of a ferromagnet. To establish the simplest
quantitative picture one has to solve the Schrodinger equation [197, 203] pro-
vided the wave functions for spin-up and spin-down electrons are not equiv-
alent. The quantum-mechanical expressions for charge- and spin-currents are
determined by

ieh _ _
2, = om (Vo VVie — (V¥io Vo)) (2.9)
m ko
and
i o o 7)ol
Zi= == Y (VioOeV ¥k — (Viike) O Vi) (2.10)
koo’

here o' stands for a set of Pauli matrices, Ws is the correspondent spin-
dependent wave-function and (...) means the quantum-mechanical averaging.
Detailed studies demonstrate that the longitudinal spin component (i.e., spin
projection onto magnetization direction of a ferromagnet) remains constant,
whereas the transverse component oscillates around an effective field in the
layer. Electrons incoming from a metal side are not well correlated, so that

45



the total coherence is destroyed rather fast on the length scale of the order of
spin-spin relaxation, which more or less corresponds to a lattice period. Thus,
spin-torque is only present in the close proximity to the interface. Being aver-
aged over the size of a magnetic layer (of the width d) the spin-current leads
to a quasi-dissipative term in Landau-Lifshitz equation in full agreement with
continuity equation

as' Q‘

ET =0. (2.11)
The expression 2! in the ballistic regime is constituted by two contributions:

One of them is aligned with magnetization in the layers and is defined by the
celebrated Slonczewski relation [197]

Jdm Yh

where n = m/m; is the direction of magnetization (m; is known to be satu-
ration magnetization) and 7 spin-polarized Slonczewski factor, whereas the
second contribution, or quasi-field, is perpendicular to the layers’ magnetiza-
tion

Jdm Yh
<at>L—Jnlzed’n%an, (213)

analogously, 1, is the second Slonczewski factor. In metallic structures the
contribution due to (2.13) is typically much smaller than (2.12), being compa-
rable however in tunneling systems. Therefore, in the most general form the
Landau-Lifshitz equation in ballistic regime needs to be modified according
to the following prescription [238]:

a—m—— X Hegr + mxa—m+ ynJ
or X Mot ot 2edm?

(nme (nxm)—H]men).

(2.14)
When the typical size of a magnetic heterostructure exceeds a few atomic lay-
ers spin-transport becomes diffusive. In equilibrium both spin sub-bands are
populated in accord with the Fermi-Dirac distribution and the interband tran-
sitions are compensated. However, in the presence of spin-polarized current
the equilibrium is disturbed and the time needed for the system to relax to a
new quasi-equilibrium is determined by spin-lattice relaxation. Due to diffu-
sive nature of electron motion there always exists a region [118, 82] with non-
compensated magnetization. This phenomenon is known as spin accumulation
and has been observed in both metallic and semiconductor structures. Thus,
spin accumulation consists in the appearance of non-equilibrium spin-density
in the vicinity of the interface between two magnetic media and contributes to
magnetoresistance [210, 101, 100, 215, 213, 177].
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Summarizing, the generalized Landau-Lifshitz equation, including both adi-
abatic and non-adiabatic spin-transfer torques which are proportional to the
current and perpendicular to the magnetization direction (Figure 5), can be
rewritten as follows [57]

<8+V~V>m:—ymxHeff—ocm>< <8+§V-V>m, (2.15)

ot ot
here v is a velocity which can be determined from the current. The effective
magnetic field Her = —6W [m] /Om represents variation of the free energy

with respect to magnetization, and the Gilbert damping constant is labeled by
o. It is easy to establish from (2.15) that § = « as long as Galilean invariance
is ensured, while in most of realistic materials 8 # a. The coefficient f3, cor-
responding to non-adiabatic spin-transfer torque, collects all the terms which
are non-invariant with respect to spin rotation.

It turns out that the coefficients can be estimated based on a simple micro-
scopic model: An ensemble of electrons that couple via short-ranged repulsive
interaction are placed in external electromagnetic field. The Hamiltonian reads

H(p.y) = [ dr[o(e0 (e

1.
+8 W (r, )W (r, 1)y (r,) wy(r,1) + Ej(r,t) -A(r,t)] , (2.16)

the coupling strength is g, while the current j(r,#) and for homogeneous ex-
ternal field one can choose A(t) = —icEe ¥ /Q. The single-particle Hamil-
tonian Hy can be identified for a specific problem. We will turn to the Keldysh
contour to study magnetization dynamics and decouple the Hubbard term into
a sum of charge- and spin-densities according to

2 2
1 1
Ty = (22%%> - (2 Y Wo(n-7)4y w) , 17
o oo’

here a unit vector n(r,z) points in the direction of a quantization axis. With
the help of Hubbard-Stratonovich transformation one can define a density field
(p(r,1)) = (Y(r,t)y(r,t)) and a spin-density field (A(r,?)n(r,?)) = g(¥Ty) /2
as dynamical variables into the path integral. The density and spin-density are
known to be gapped, so that they can be approximated by their saddle-point
values.

Performing perturbative expansion around the collinear state, i.e.

(r
n(r,7) = ony(r,t)
1= (8na(r,1))* /2= (8ny(r,1)) /2

: 2.18)
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integrating over fermionic fields and keeping the quadratic contribution only
the effective action on Keldysh contour reads

Seir [6m] = / dn / dr, / dis / dr>8na(r1, 1)Ly (K1, 1112, 12) 81y (12, 12)
& 4

+/dt1/dl‘1/dtz/dl‘25na(1‘1,tl)Kub(l‘l711;1'2,f2)5nb(l‘2,t2)7
([{)0 (é’
(2.19)

the indices a and b run over x,y. Thus, one can see that magnon propagator
I, (r1,t1512,12) (spin-density spin-density correlation function) determines
the Gilbert damping, whereas the photon two-magnon term K,(ry,71;12,%2)
contributes to both adiabatic and non-adiabatic spin-transfer torque. To pro-
ceed the magnetization 8n,(r,t+) = 8my(r,t) £ &(r,1)/2, where the + stands
for the forward and backward branches of the Keldysh contour. The quasi-
classical magnetization is determined by 8m,(r,7), while the field &,(r,?) is
of fluctuating nature. Decomposing the integrals one can immediately identify
the saddle point

d d
[Hab < lV,lat> +11;, (lV, ’a:)
kB (—iv i L) sk (iv,-i2 }mb(r t) = Na(r,1) (2.20)
ab ) ot ba ) ot ) a\ly .

which, in principle, is nothing but generalized Landau-Lifshitz equation, whose
more convenient form can be established by expanding the correlation func-
tions in the brackets. The correlation function of the stochastic magnetic field
satisfy

(Ma(r1,0)Np(r2, 1)) = —ih (Hfb(rl —r2,t1 — 1) + K5 (r — 12,1y —tz))
(2.21)

here the components with superscripts R, A, and K stand for retarded, ad-
vanced, and Keldysh correlations functions respectively. For the sake of sim-
plicity, we provide the expressions which do not take account of vertex correc-
tions (due to scattering off impurities). The casual magnon-magnon response
function

iN? [ d3
EP G+ q.,0)56pnng)],  (2.22)

I (q;th,0) = T (271_)3

48



the photon two-magnon correlation function is determined by a more compli-
cated identity

eA2 a’3p o0
Kab(q;t1,t2)= 4mh/dt3/(27r)3 %) (PE) X
XTr[t.G(p+ q:11,02) TG (ps 12, 13) G(P3 13,11) ] (2.23)

2.2 BEC of magnons: Quantum coherence at room
temperature

The quntum-mechanical exchange interaction is the key concept in the mod-
ern theory of ferromagnetism: Indeed, the interaction of this type is known
to orient the spin of localized atoms parallel to each other, while the fluctua-
tions above the ground state magnons represent the spin-wave quanta and are
known to be the low-energy excitations in magnetically ordered media. In
thermal equilibrium the ground state configuration does not impact on trans-
verse spin component which remains uncorrelated even in a ferromagnet state
at T = 0 making coherence of a magnon gas to be quite illusive. For coherent
magnon states in full analogy with their photon counterparts [80] an adequate
formalism can be developed [178]. One of the most striking quantum phe-
nomena leading to spontaneous quantum coherence on a macroscopic scale is
Bose-Einstein condensation (BEC). BEC is a condensation of particles with
integer spin, i.e. bosons, which must occupy the lowest available energy state
at zero temperature [133]. As the temperature 7" of the boson gas decreases at
a given density n or, vice versa, the number of particles increases at a given
temperature, the chemical potential y describing the gas increases as well. On
the other hand, y cannot be larger than the minimum energy of the bosons,
€min- The condition p(n, T) = &y, defines a critical density N,(T). If the den-
sity of the particles in the system is larger than N, BEC takes place: The gas is
spontaneously divided into two fractions, namely incoherent particles with the
density N, distributed over the entire spectrum of possible boson states, and a
coherent ensemble of particles accumulated in the lowest state with &y;, [133].
Even though the phenomenon was predicted as early as in 1920s it remained
experimentally unaccessible for a long time because its observation usually
requires extremely low temperatures. This obstacle has been overcome with
the invention of laser cooling technique. Currently the BEC of cold atoms in
optical traps is well established and a dynamic field [205].

The notion of BEC can be extended to quasiparticles which yield Bose
statistics such as polaritons and magnons. At temperatures far below the tem-
perature 7, of magnetic ordering, magnons can be considered as weakly inter-
acting bosons: The Bloch law for the temperature dependence of static magne-
tization, which nicely describes a bulk amount of experimental data, has been
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obtained based on this assumption. Since magnons are bosons one can expect
that they undergo the BEC transition. Several groups have reported observa-
tion of the magnetic field-induced BEC of magnetic excitations in the quantum
antiferromagnetics TICuCl; [159, 181], Cs,CuCly [44, 174], and BaCuSi;Og
[99]. In these materials, a phase transition from a non-magnetic singlet state
to an ordered triplet state, accompanied by magnetic mode softening, occurs if
the applied magnetic field is strong enough to overcome the antiferromagnetic
exchange coupling. Such a transition can be treated as BEC in an ensemble
of magnetic excitations. However, these excitations can hardly be considered
as magnons - quanta of spin precession waves propagating in a magnetically
ordered system.

The BEC of magnons predicted more than 20 years ago has been recently
observed by the group of Demokritov [52]. The experiments were carried out
in epitaxially grown films of yttrium iron garnet (YIG) magnetized by an in-
plane field at room temperature. Magnetic interactions in such a system are
usually characterized by the Heisenberg exchange and dipolar interactions be-
tween the spins. The trade-off between these two coupling mechanisms results
in the dispersion relation which has a minimum at a certain non-zero value of
the wave vector. As a result, the BEC of magnons can hardly be detected un-
less their chemical potential approaches the threshold energy. Thus the key
problem in observing the BEC of magnons was to attain the desired thresh-
old value because equilibrium magnons are normally characterized by zero
chemical potential. It was shown that magnons continuously driven by mi-
crowave parametric pumping can enormously overpopulate the lowest energy
level, even at room temperature [52]. This observation has been associated
with the BEC of magnons. At the same time, the possibility of the BEC of
quasiparticles in the thermodynamic sense is not evident [199], since quasi-
particles are characterized by a finite lifetime which is often comparable to
the time a system needs to reach thermal equilibrium. Moreover, an obser-
vation of the spontaneous coherence is an important proof of the existence
of BEC [51]. Therefore, the study of the thermalization processes for a gas
of magnons and the experimental observation of the spontaneous coherence
of the magnons overpopulating the lowest state are of special importance for
a clear understanding of the phase transition observed in the earlier works
[52]. Experiments on the room-temperature BEC of magnons were performed
on monocrystalline films of yttrium iron garnet (YIG) with a thickness of 5
mm. YIG (YzFe;(FeOq4)s3) is one of the most studied magnetic substances.
YIG films are characterized by very small magnetic losses providing a long
magnon lifetime in this substance: It appears to be much longer than the char-
acteristic time of magnon-magnon interaction [50, 51]. This relation is a nec-
essary precondition for Bose-Finstein condensation in a gas of quasiparticles
whose number is not exactly conserved [199]. Samples with lateral sizes of
several millimeters were cut from the films and were placed into a static uni-
form magnetic field of H = 700 — 1000 Oe oriented in the plane of the film.
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The injection of the magnons was performed by means of parallel parametric
pumping with a frequency of 8.0 — 8.1 GHz. The pumping field was created
using a microstrip resonator with a width of 25 mm attached to the surface
of the sample. The peak pumping power was varied from 0.1 to 6 W. Details
on the pumping process can be found in Refs [52, 51, 65]. The redistribu-
tion of magnons over the spectrum was studied with a temporal resolution of
10 ns using time-resolved BLS spectroscopy in the quasi-backward scattering
geometry [200].

Under the laser pumping certain magnonic modes absorb energy, which is
subsequently redistributed over the spectrum via magnon-magnon coupling
and eventually transferred to the lattice by means of magnon-phonon interac-
tion. Due to the intense magnon-magnon interaction, the primary magnons are
rapidly redistributed over the phase space. The main mechanisms responsible
for the energy redistribution within the magnon system are the two-magnon
and the four-magnon scattering processes [50]. Four-magnon scattering dom-
inates in high quality epitaxial YIG films. It can be considered as an in-
elastic scattering mechanism, since it changes the energies of the scattered
magnons. As a consequence, four-magnon scattering leads to the spreading
of the magnons over the spectrum, keeping, however, the number of magnons
in the system constant. Note here that the three-magnon scattering process
which does not conserve the number of magnons does not play an important
role in the described experiments [65]. In parallel, an energy transfer out of
the magnon system due to the spin-lattice (magnon-phonon) interaction takes
place. Moreover, the magnon-magnon scattering mechanisms preserving the
number of magnons are much faster than spin-lattice relaxation. Under these
conditions, a stepwise pumping should create a magnon gas characterized by
a steady, quasi-equilibrium distribution of magnons over the phase space af-
ter a certain transition period characterized by a thermalization time. After
the magnon population at the bottom of the spectrum saturates, the entire
magnon gas reaches a steady state. Comparison of the measured distribu-
tion with the Bose-Einstein one confirms that this steady state corresponds to
a quasi-equilibrium thermodynamic state. After the thermal quasi-equilibrium
is reached, further pumping increases the density of magnons as a function of
time. As a result, the value of the chemical potential u increases as well. For
the values of the pumping powers used in the experiments, this growth in u
happens much more slowly than the thermalization process; therefore, it can
be considered adiabatic.

The magnon-magnon relaxation time in YIG is of the order of few nanosec-
onds, while that of magnon-phonon interaction is longer than 1us. Thus,
the process of thermalization contains two well-separated time scales. As
both mechanisms keep the number of magnons constant, a quasi-equilibrium
state for the magnon gas can be realized with a non-zero chemical potential.
The ultimate confirmation of coherence of the observed collective quantum
state might be interference of two condensates with each other. In the sys-

51



tem studied, such an experiment can be performed in a direct way. Indeed,
the magnon spectrum exhibits two degenerate minima, therefore two conden-
sates with different wave vectors are created simultaneously. The interference
between them should result in a standing wave of the condensate density in
real space. Since each pumping pulse creates a condensate with an arbitrary
phase, the phase difference between the two condensates should vary from
event to event. Therefore, to detect the interference between two condensates,
the pumping was applied continuously. For this purpose, a resonator allowing
continuous pumping without significant overheating was designed [51].

A two-slab magnetic system can be designed to support BEC. The magnons
in the slabs can be weakly coupled through both exchange and dipolar tun-
nelling. In fact, one can demonstrate that such a system forms a prototype of
a Cooper-pair box at room temperature. Magnon qubit is an entirely new con-
cept which has been recently proposed [14]. The concept exploits an analogy
with the Josephson qubit, which is based upon the mechanism of superconduc-
tivity in order to avoid dissipation and ensure the phase coherence. Depending
on the realization of the Josephson qubit one can have phase or charge as
a good quantum number. The charge-based Josephson qubit, which is also
called the Cooper-pair box, was proposed by Biittiker [40] and first realized
by the Saclay group [34]. The phase qubits, which appear to have longer
decoherence times, were subsequently designed and characterized. A qubit is
essentially a two-level quantum system, which is well decoupled from the out-
side world, so that its quantum dynamics is unperturbed for a long time. Still,
the coupling mechanism must exist to prepare the qubit in a given state and to
read out its state when necessary. Many other proposals to implement a quan-
tum computer were based on qubits constructed from microscopic degrees of
freedom: spin of electrons or nuclei, transition dipoles of atoms or ions, etc.
These degrees of freedom are naturally very well decoupled from their envi-
ronment, and hence decohere very slowly. The main challenge for such imple-
mentations is to enhance the inter-qubit coupling to the level required for fast
gate operations without introducing decoherence from parasitic environmental
modes and noise. The Josephson qubit is the only one which seems to allow
such operations but its realization still require liquid-helium temperatures. It
is well-known that superconductivity can be viewed as a Bose-Einstein con-
densation of Cooper pairs in a conductor. We can also turn to a similar effect
for magnonic system, the Bose-Einstein condensation of magnons discussed
earlier, to realize the magnon qubit which will be fully functional at room tem-
perature. In a magnonic analog of the Cooper-pair box the role of charge is
played by the magnon concentration and the operations are performed by an
external magnetic field.
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2.3 Skyrmions: Tying spins in a knot

According to Landau: The ordered phases arising from the second order phase
transitions are homogeneous, however this statement has to be made more
accurate. In fact, spatially inhomogeneous phases occur if the free energy
contains spatial derivatives of the order parameter. In metals with lack of
inversion symmetry, when the underlying lattice is not invariant under reflec-
tions in the origin, a number of extra terms in free energy functional shows
up. The celebrated DM interaction D;; (S; x S;) acting between two neighbor-
ing spins is among them; DM constructed from Lifshitz-invariants originates
from relativistic spin-orbit coupling and in its simplest form for a cubic lattice
~m- (V xm), where m is the magnetization. In some magnetic structures a
modulation of the spin arrangements over periods, which are long compared
to the size of the lattice cell and usually not commensurate with it, can be
observed. The existence of such magnetic structures is due to competition be-
tween exchange interactions and relativistic effects like spin-orbit coupling.
The direction of the DM vector D;; is determined by the bond symmetry,
whereas the strength of spin-orbit coupling gives its intensity. Among the
macroscopic manifestations of DM interaction are:

1. DM stabilizes long-periodic spatially modulated structures with a fixed

sense of rotation.

2. DM favors arrangements of the magnetic moments in antiferromagnetic

materials (weak ferromagnetism).

An interesting playground to try the formulas (2.22) and (2.23) are the helical
magnets, a special class of magnetic structures where a magnetic periodicity
is incommensurate with crystalline lattice. A number of reasons cause the for-
mation of incommensurate magnets. For cubic crystals the exchange interac-
tion exclusively would force collinear orientation of magnetic moments. The
macroscopic robustness of the magnetic structure is determined by its stability
with respect to perturbation violating spatial uniformity. Meanwhile, the rel-
ativistic effects of non-exchange nature can be permitted by crystalline struc-
ture contributing to the total energy with the terms linear in spatial derivatives
(i.e. lack of inversion symmetry). In helical magnets the formation of ground
state energy results from the competition between the Heisenberg exchange
and DM couplings. In two-dimensional structures this competition leads to a
spin-spiral ground state configuration which becomes unstable with magnetic
field having the tendency towards skyrmionic crystal. For three-dimensional
structures the phase diagram is even richer allowing the formation of conical
state [179].

Microscopically when passing through the lattice an electron feels the mag-
netic field associated with its motion relative to the lattice, coupling thus this
magnetic field with electron spin via the Zeeman term. The spin-orbit cou-
pling of the Rashba-type is Hy, = 0,0 - k, where o, is spin-orbit constant,
while a set of Pauli matrices ¢ acts on spin space. Thus, the bare Hamiltonian
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of a helical magnet can be chosen to be the sum of that of a non-interacting
two-dimensional electron gas in the presence of spin-orbit coupling. Accord-
ing to Moriya the DM interaction stems from spin-orbit coupling, so one has
to keep track of the terms proportional to 0y, €.g. in the first order in O,
the Gilbert damping [216] [by doing integral (2.22), expanding it in @ and
plugging into (2.15)]

o =

2 log™! Qsov/Bpm — A , (2.24)
/9 Osor/8UM~+ A

where A is spin-splitting constant and U is the corresponding chemical poten-
tial. Almost the only theoretical approach that can be applied for studying the
dynamics of magnetic structures is the Landau-Lifshitz equation. However,
the validity of Landau-Lifshitz equation is limited to low temperatures when
the magnitude of magnetization is fixed. The interplay between DM and ex-
change interaction, as described above, provides a microscopic explanation
for many observed spin-spiral structures, and as we will discuss below, are
essential ingredients when discussing the newly discovered magnetic phases
with non-trivial topology, like the skyrmions [179, 31].

The model due to Skyrme treats a nucleon as a vortex-state of pion-matter,
which existence is guaranteed by topological reasons and analogous to a vec-
tor field on sphere. Thus the obtained chiral soliton turns out to be stable
with respect to smooth perturbations. Its stability is preserved by a gener-
alized Hobart — Derrick criterion, but the price one has to pay for that con-
sists in stability with respect to a certain class of perturbation only (i.e. to
some degree conditional stability). However, this theorem is satisfied for chi-
ral solitons that are characterized by a topological charge Q. Skyrme’s model
results in the Lagrangian with terms containing antisymmetric spatial deriva-
tives of field components. There exists a condensed matter analog of field-
theoretical skyrmions, namely two-dimensional cylindrically-symmetric soli-
ton stabilized by DM interaction (proportional to Lifshitz invariants and thus
similar to Skyrme term). The existence of skyrmions in antiferromagnets and
magnetic metals have been shown theoretically. In the last case the Hamilto-
nian comprises the terms capable to change magnetization direction, leading
thus to spontaneous crystallization. Besides crystals with lack of inversion
symmetry, skyrmions can be observed on the interface of two magnetic mate-
rials thanks to the boundary effects which violate the symmetry in question.
For example, in case of nanodisc, the magnetization direction is forced to align
along tangent line to minimize demagnetization fields on the lateral area and
being combined with exchange field gives rise to a vortex-like structure sin-
gular in the origin. Topological charge characterizing the skyrmion can be

defined by
1 dn dn
0= [awy <n- [axxgy]), (225)
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where n = m/|m| points in the direction of magnetization. The skyrmions
are believed to be applied in the rapidly developing field of storage devices.
The formal Boolean logic can be implemented by the presence of a skyrmion
in a specific region, which might be controlled and easily manipulated with
external spin-polarized current or an STM tip, and in contrast to domain walls
the motion of skyrmions can be achieved by applying a lower field. These
topological objects were first observed in bulk MnSi belonging to the class
of helical magnets. Well below the Curie temperature a spin-helix or conical
state is present at low external magnetic field along [100] direction.

In Dzyaloshinskii’s seminal work [60] on non-centrosymmetric magnets
and their inhomogeneous magnetic states, only one-dimensional magnetic spi-
ral states had been identified. Bogdanov’s major achievement [31] is the
recognition that the field equations of Dzyaloshinskii’s theory allows true soli-
tonic solutions that destroy the homogeneity of magnetic states. Helices as
one-dimensional modulations in Dzyaloshinskii’s theory are also only succes-
sions of localized domain-walls, i.e., helical kinks. Existence of such localized
states, and the mechanism of phase transformations by their nucleation as fixed
(infinite size) mesoscale objects are ruling principles of all continuum systems
described by an energy including Lifshitz invariants [179]. Therefore, and
more impressively, the magnetic state built up from skyrmions decomposes
into an assembly of molecular units. Depending on small energy differences
owing to additional effects, different extended textures with variable arrange-
ments of the skyrmion cores may arise, just as in a molecular crystal. In three-
dimensional magnets, hence, in any magnetic crystal with Lifshitz invariants
in the magnetic free energy, the skyrmions form tubular string-like solitonic
objects with a fixed diameter and a stable core structure.

Chiral magnets have recently attracted the interest of the spintronics com-
munity since they present novel opportunities to control the electron spin. Het-
erostructures consisting of thin layers of helical magnets and traditional fer-
romagnet would enable injection and control of spin-polarized currents into
helical magnets. A spin-polarized current flowing in a helical magnetic sys-
tem is predicted to induce a torque that would produce new kinds of magnetic
excitations. The wave vector of the spin spiral in bulk MnSi is oriented along
[111] in the absence of magnetic field, forming four domains at T < T in four
equivalent directions. At low temperatures the magnetic structure tends to-
wards a conical mono-domain structure at B ~ 0.1 T and turns to become a
ferromagnet at higher fields, B =~ 0.6 T. The behavior is qualitatively differ-
ent close to the critical temperature 7, ~ 27 K in the fields B ~ 0.120 — 0.2
T allowing the formation of the so called A — phase, whose spin structure is
still under debate. The idea that the A — phase is of paramagnet nature had
been rejected when neutron scattering experiments confirmed the existence
of magnetic order. Recent experiments revealed the formation of a skyrmion
crystalline structure, which can be visualized as a set of three spin spirals al-
located at 27 /3 relative to each other on the plane perpendicular to the exter-
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nal field. A set of subsequent measurements with Mn;_,Fe,Si, Mn;_,Co,Si,
Fe_,Co,Si which crystallize similar to MnSi in the B20 structure verified the
early studies. Thermodynamic stability of skyrmionic condensed phases rel-
ative to helices can become favourable in cubic chiral helimagnets near the
magnetic ordering transitions where the magnitude of the order parameter (the
local magnetization) becomes inhomogeneous [204]. Here, spin-structures
twisted into the localized configuration have simultaneously strongly vary-
ing magnetization density. This picture is now rendered more precisely by a
confinement effect of solitons. Near the magnetic ordering transition, when
directional and longitudinal degrees of freedom start to couple, localized chi-
ral modulations begin to interact in an attractive manner. This confinement
is in contrast to the major part of the H — T — phase diagram in chiral mag-
nets where kink modulations and skyrmions have repulsive soliton-soliton in-
teractions. In this temperature range the condensed phases like helicoids or
skymion lattices are stable due to the negative formation energy of the chiral
solitonic units overcoming the repulsion. A transformation of these condensed
phases takes place by setting free these units as in a crystal-gas resublimation.
Hence, the radius of the isolated skyrmion diverges at such nucleation tran-
sitions. This process has been seen in recent direct microscopic observations
of skyrmions and skyrmion lattices at low temperatures in nanolayers of B20
metals. Above a definite temperature which is called confinement temper-
ature, below the magnetic ordering temperature 7, < Ty, the soliton-soliton
interactions become oscillatory and attractive for certain separations between
solitons. Magnetic states in that temperature region, therefore, display strong
longitudinal modulations, clustering behavior of localized states, frustration
effects, and the ability to form mesophases. The puzzling magnetic anomalies
in chiral helimagnets, like MnSi and other B20 metals (Fig. 2.3) near the mag-
netic ordering transition, must be rooted in this mechanism as it is generic to
non-centrosymmetric magnets.

Vortex states in magnetic nanodisks provide the simplest example of a mag-
netic structure, where effects of the chiral couplings may become noticeable.
Within the usual micromagnetic description the shape and size of the vortices
are determined by the competition between the exchange and stray-field en-
ergy. In particular, the vortices with different chirality are degenerate: The
four possible vortex ground states differentiated by their handedness and po-
larity all have the same energy. However, these studies did not take into ac-
count the induced DM interactions, which should generically exist in these
systems due to broken mirror symmetry by the surface. As the vortex states
are chiral themselves, the effect of the chiral DM interactions is subtle: In the
presence of DM couplings the chiral degeneracy of the left- and right-handed
vortices is lifted. The different chiral versions of the vortex states are shown
to display strong dependencies on the materials properties of such nanodisks.
Within a micromagnetic model for these effects, numerical calculations of the
shape, size, and stability of the vortices in equilibrium as functions of magnetic
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Figure 2.3. Crystallographic structure of MnSi, a cubic magnet of B20 structure with
lack of inversion symmetry, belongs to P23 and is characterized by a certain chirality.
In the right structure Mn atoms (red spheres) move clockwise (left panel), and coun-
terclockwise otherwise (right panel). The illustration is from www.nsp.phys.spbu.ru.

field and the material and geometrical parameters provide a general analysis of
the influence of the broken mirror symmetry caused by the surface/interfaces
on their properties [38, 39]. The DM interactions impose differences in the
energies and sizes of vortices with different chirality: These couplings can
considerably increase sizes of vortices with one sense of rotation and suppress
vortices with opposite sense of rotation. Numerical calculations show that vor-
tices with different chirality have not only different energies and sizes, but also
their magnetic structures differ. In case of chirality that is unfavourable with
respect to the chiral DM couplings, the vortex core consists of a narrow inter-
nal part and an adjacent ring with a reverse magnetization rotation. Measured
sizes and total perpendicular magnetization for vortices with opposite chirality
may be used for experimental determination of strength of surface/interfaces-
induced DM interactions in ultrathin magnetic films/film elements.

DM interactions are also an important ingredient of the complex magnetic
behavior observed in magnetic insulators, such as transition-metal oxides.
Ternary and quaternary oxides are natural hosts for the DM couplings be-
cause of the complex crystal structures that often have low crystallographic
symmetry and polar atomic arrangement. Unfortunately, even a qualitative
assessment of these couplings is generally impossible, which makes the DM
interactions one of the most enigmatic aspects of real materials. One of the
main problems in spintronics is a controllable motion of magnetic textures.
There are two ways of to drive the motion, i.e. incoherent and coherent meth-
ods. The first one is typically realized by injecting a spin-polarized current
into a sample. On the other hand, the coherent method is realized in a mag-
netically ordered state by twisting the phase angle of the magnetic order pa-
rameter which directly couples to a magnetic field. For example, one can use a
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rotating magnetic field, which is applied to one end of the sample and is strong
enough to orient the magnetization parallel to it. Because of the stiffness of the
spin system, the spin rotation at one end is transmitted to the other end of the
sample, which is not subject to the direct effect of the rotating magnetic field.
Transmission of the torque through the sample presents a spin current. The
incoherent current injection method to drive the sliding dynamics has already
been proposed in Ref.[120]. Meanwhile, chiral helimagnets are promising
candidates to realize the coherent method [119]. In particular, it was demon-
strated that the chiral soliton lattice in a chiral helimagnet exhibits a sliding
motion when a time-dependent magnetic field is applied parallel to the helical
axis, in addition to a static field perpendicular to the helical axis. As it has
been pointed out in Ref. [33, 32], once the sliding is triggered, the soliton lat-
tice maintains its persistent motion assisted by a generation of inertial mass.
Another observable consequence of the coherent motion is an appearance of
the spin motive force (SMF) [19], when the time dependence of the longitu-
dinal magnetic field manifests itself in the temporal regime of the SMF. Re-
markably, the chiral soliton lattice is a macroscopically ordered object, which
contains macroscopic amounts of magnetic solitons (kinks). Due to this very
large number of the solitons, the SMF is expected to be strongly amplified as
compared with the SMF caused by a single magnetic domain wall in a ferro-
magnet. Numerical estimations [33, 32] show that the SMF reaches the order
of millivolts that makes chiral magnetic crystals to be extremely promising for
spintronic applications.

Topological magnon insulators have so far completely avoided attention de-
spite their potential importance for spin-wave logic and memory devices. The
main focus is, therefore, to extend the physical understanding developed for
topological insulators and graphene to these magnonic systems. At the mo-
ment there exists a number of works [193, 194, 233, 139] which exploit the
idea of topological protection for spin waves. One is due to Shindou, Mat-
sumoto, and Murakami [193] who demonstrate that a suitably designed 2D
magnonic crystal can support topologically protected magnonic edge modes.
A magnonic crystal, proposed in [193], is a periodic array of iron islands in
yttrium iron garnet (YIG). The latter provides the highest coherence length for
magnons, which is of the order of centimeters. It has to be noted that magnons
are bosons, hence magnonic crystal has much in common with photonic or
phononic ones. It is, therefore, no wonder that the idea of magnonic edge
modes roots in the seminal work by Raghu and Haldane [176] who recently
discussed the chiral edge states in photonics crystals and introduced the bo-
son Chern numbers and Berry curvature for photonic bands. The proposed
edge modes were subsequently realized in actual photonic crystals (metama-
terials) by Wang et al. [228]. Unidirectional propagation of electromagnetic
waves was indeed experimentally observed and lead to new applications of the
metamaterials. This shows that the idea of designing magnonic insulators with
helical (chiral) edge modes is more than viable. In analogy to the spin Hall ef-
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fect, which arises due to strong spin-orbit interaction, the magnon Hall effect
may be induced in actual materials by strong DM interaction. This paves the
way for the existence of topological magnon insulators (topological magnets)
which are ferromagnetic insulators in the bulk but posses topologically pro-
tected spin-wave surface states. Another work [233] proposes that thin films
of some insulating ferromagnets, such as Lu; V207, may become topological
magnon insulators where the topologically protected edge modes exist due to
DM interaction.

It is known that spin Hall effect is associated with spin-orbit interaction
which breaks the underlying symmetry. The observation of a magnon Hall
effect due to DM interaction may be addressed within the same paradigm. In
fact, DM interaction acts as an effective magnetic field resulting in that non-
trivial topological properties show up. This enables the existence of topologi-
cal magnon insulators (topological magnets) which are ferromagnetic insula-
tors in the bulk but posses topologically protected spin-wave excitations. In
Paper II in the list of publications of the thesis, this was worked out in some de-
tail, and is discussed further here. We start by considering spins on a Kagome
lattice which interact via exchange and DM couplings. The Hamiltonian reads

H:Z(Jiij'Sj—i-Dij[S,’XS]']). (2.26)
i,J

We keep exchange interaction for both nearest (NN) J; and next-nearest
neighbors (NNN) J,, whereas DM acts between NN only D = De;. In what
follows, we show that real-valued J, can drive topological phase transitions in
the system. Thus, the Hamiltonian can be written

H=3Y <,/J%+D2 5787 + 75757 | +JIS§S_Z].> + Y 5SS,

(i) (@)
(2.27)
where tan ¢ = D/J,. Kagome-like structures possess three inequivalent lattice
cites in a unit cell, on employing Holstein-Primakoff transformation S;r =

a;\v28S, Sé =5— aja,- we reduce (2.27) to

0 &a(k) &(k)
m={ gk 0 gk |, (2.28)
ak) &(k) 0

where we have defined &,(k) = ae ¢ cos(k - e,) + B cos(k - g,). We have
chosen the following parametrization for the basis vectors e; = (1,0), e; =
(—1,4/3)/2, and e3 = (—1,—+/3)/2, while g; = e; —e3, g2 = e3 — ey, and
g3 = e —ep. We have also defined o = 2§, /J12 +D?, and = 2SJ,. Itis well

known that for NN couplings exclusively the band structure contains a flat
region while the rest touch each other in the corners of hexagon (+27/3,0),
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(+7/3,£m/+/3) provided ¢ = 0,7/6,7/3. Thus, for certain values of DM
interaction the system becomes gapless, while any small deviation results in
the gap being opened up. The latter signals that the Kagome lattice allows ap-
pearance of an edge mode. We now show that inclusion of J, does not violate
this picture for certain J>. Indeed, the energy spectrum of the Hamiltonian is
determined by three independent roots of a secular equation and is given by

A 6+ 27nn | 4A3
E,,2\/;cos< 3 >, tan 0 = W_l’ (2.29)

where n = 0,+£1 and we put

A=02(f+1)+2aB(2f —1)cos¢ + B> (h+1) (2.30)

and

B=a’fcos(30)+a’B(2f +h)cos(2¢)+ aB(3f +g—2)cos¢ + B>h,
(2.31)
provided the functions f = 2cos(k-e;)cos(k-e;)cos(k-e3), g = 2cos(2k -
e;)cos(2k - e;)cos(2k - e3), and h = 2cos(k-g;)cos(k - g»)cos(k- g3). In the
most general case

3v3aB(a—2B)
(+2B)(a—p)(a—4p)

which is zero whenever 8 = 0 or a/f3 = 2. Thus, two bands touch each other

tan 0 =

: (2.32)

when J, = 0, that which was expected, and when J, = 112 +D? /2, or which

is equivalent J; = J, = D/+/3. To identify a topological invariant for the two-
dimensional Hamiltonian (2.26) which is translationally invariant, thus, its
eigenstates are of the Bloch-type signaling Berry curvature and correspond-
ing Chern number can be defined in the usual manner

1
6 =— | d’kQ,(k 2.33
27 oy (k) (2.33)

with Q, (k) = Vi X (u,(K)|iVk|un(K)). To proceed and estimate the Chern
numbers we linearize the Hamiltonian by placing the quasimomentum in the
vicinity of (+27/3,0) and tuning 8 = a /2 + A (we choose ¢ = 7/3)

By alketiky)  b(ke—iky)
he=| alke—ik)  E.  clke+iky) |, (2.34)
blke+iky) c(ke—iky) — E
here k, = k, — ko, I~<y = ky — koy, whereas Ey = o0/2— A, Eg = -0t — A, E| =
a/2+2A (a = c = a\/3/4, b= a+/3/2). The upper band is isolated from
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Figure 2.4. (a) The dynamic structure factor is shown along the high symmetry points
I'5K' —M —T,where K’ =2K and M’ =2M. K’ and M’ are referred to as points in
the extended Brillouin zone. (b,c) Berry curvature shown in real spin-space averaged
over a time interval of 100 ps. In b,c, the system is perturbed with an energy of 814
and 261meV, respectively. Moreover, the D/J ratio has been chosen to be 0.4 and
T = 1 mK. The red colour indicates an excitation where the atomic magnetic moment
deviates from the ground-state orientation that is represented by the moments pointing
almost along the z axis. Blue-light colour represents atomic moments oriented almost
along the z axis in a ground-state configuration.

the rest and can be decoupled by projecting (2.34) onto a 2 x 2 subspace hj =
Phy P, therefore

E_ ky + ik,
W= ( ity ) ) —woot Y o (239)
x y 1 i=X,y,2

where 0y is a 2 X 2 unit matrix, o is a set of Pauli matrices, and up = (@ +A) /2.
The determinant of the matrix

Uy c 0 0 k.
uy, | =10 —c 0 ~y , (2.36)
u, 0 0 -3/2 A

is known to determine the change of the Chern numbers across the point M =
(kX7ky7A> = (k())c:k()yyo)

AC (M) =€ (M +0) — € (M —0) = sgn (det||us;||) = 1. (2.37)

In a kagome ferromagnet (described by a Hamiltonian, as given in equa-
tion (2.26) with J, = 0, see Paper II), the DM interaction is not forbidden
by the symmetry of the lattice because the middle point between two sites is
not an inversion centre. Consequently, in the presence of significantly large
DM interactions, the magnon dispersion curves of a kagome magnet present
similarities with the energy band spectra of topological insulators. In fact, in
such a system the magnon dispersion relation is gapped in the bulk but al-
lows traveling gapless edge states that are topologically protected against any
variation of the material parameters unless the band gap in the bulk collapses.
Even though our studied sample is one atomic-layer thick system, we denote

61



of o

434
< 34
4
<
4

]
o

b

)
of Sof

o

:

S S udu e
4
<
<

Figure 2.5. (a) Illustration of a skyrmion-antiskyrmion (SA) pair before the collision
with the edge of the kagome stripe. Dashed lines are a guide to the eye for recognizing
the antiskyrmion magnetic texture, while the other half of the magnetic excitation
resembles a magnetic texture like in the Belavin-Polyakov monopole. (b—f) Several
frames showing the coupled SA pair colliding with the edge of the stripe and the
resulting SA decoupling because of the chiral edge states.
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hereafter bulk states by the states that exist well inside the sample and con-
sequently, by abuse of language bulk skyrmions, refers also to the skyrmions
that exist inside the 2D sample. We consider here magnetic excitations of a
2D kagome lattice, for example, as given by a [111] surface of the pyrochlore
lattice at a temperature of 1 mK, unless stated otherwise. We assume a very
low temperature in the majority of our simulations because the results de-
scribed here are easier to observe at that temperature, and most likely also in
experiments, because the perturbations from thermal fluctuations are smaller.
Very low temperature conditions make the analysis easier; however, we have
also analyzed the conditions to stabilize skyrmions at room temperature in the
penultimate subsection of Paper II. We start by analyzing bulk and edge states
of this system, and to this end we show in Fig. 2.4a the magnon dispersion, as
revealed from the dynamical structure factor. Note that the results in Fig. 2.4a
are obtained using open boundary conditions for a large sample composed of
50-400 unit cells. The intense colored curves represent bulk magnons, which
are seen to be grouped in three branches, with noticeable gaps in-between.
Most noteworthy is that in between the gaps one can find four twisted edge
states that form a continuous state. These states cannot be perturbed, so that a
gap opens because they represent edge modes that are topologically protected.
In fact, the presence of a DM interaction with a fixed handedness acts as an
effective magnetic field in the system. This makes the magnon spectrum of
the kagome lattice looks similar to the energy band structure of topological
insulators. Here we are focused on the generation and manipulation of topo-
logical excitations as well as their collisions. In order to analyze the edge and
bulk modes in real space, we show the real-space Berry curvature, averaged
over a time interval of 100 ps, in Fig. 2.4b,c. The results of Fig. 2.4b,c were
obtained after exciting the first two rows of atoms with an external magnetic
field on the left side of the sample, and then the time evolution of the system
was monitored. The excitation was carried out first with an energy of 261
meV and second with an energy of 814 meV. The first excitation represents
magnon energies that are allowed in the bulk, whereas the second excitation
represents an energy for which bulk states are forbidden, since this energy lies
in the magnon gap. Fig. 2.4c (261 meV case) displays spin waves that propa-
gate over the whole sample, corresponding to the expected bulk modes of the
261-meV excitation, whereas Fig. 2.4b (814 meV case) shows magnon exci-
tations that only propagate along the edges, that is, representing edge modes.
The data in Fig. 2.4a—c demonstrate that magnetic excitations of a kagome
lattice have just as rich physics, in terms of non-trivial topology, as the elec-
tronic structure of topological insulators. The advantage with investigations of
magnetic excitations is that it is possible to keep track of the real-space infor-
mation of the magnetic excitation as a function of time, for example, as given
by the information in Fig. 2.4b,c.

In general, a skyrmion that moves towards an edge becomes annihilated.
However, for the kagome magnet the annihilation of the skyrmion does not

63



occur once it reaches the edge, since the existence of chiral magnonic edge
states gives rise to profound changes in the excitations of the kagome lattice,
as we have seen in Fig. 2.4. Thus, once the skyrmion-antiskyrmion (SA) pair
reaches the edge, the chirality forces them to be separated as two distinct en-
tities. The meron and antimeron emanating from the collision of the SA pair
at the edge of the kagome lattice have drastically different speeds, since the
distance travelled by the antimeron is shorter than the one of the meron during
the same period of time. A magnification of the SA pair discussed in Fig. 2.5.
For further discussions about the connection between speed and the strength of
interaction parameters of the Hamiltonian. Notice that because of the chosen
magnetic orientation of the spins studied here, the meron has counterclockwise
chirality contrary to the antimeron, which has clockwise chirality. In Fig. 2.5a
we show the coupled SA pair, just before it reaches the edge. Note that the
dashed line shows the magnetic texture for a half-antiskyrmion. Hence, this
illustrates how the SA pair is coupled before it reaches the edge. Figure 2.5b-f
shows the time evolution of this SA pair over a time interval of 90 ps, just be-
fore (Fig. 2.5b) and just after (Fig. 2.5¢c—f) it reaches the edge. Note that once
the coupled SA pair reaches the edge, it becomes unstable, due to non-trivial
topology, and breaks up into a separated meron and antimeron (Fig. 2.5e,f),
and then they travel along the edge in a decoupled manner with opposite di-
rections. The results of Fig. 2.5 demonstrate that it is possible to create SA
pairs in a kagome lattice and that they are stable over a substantial period of
time. It is also clear that SA pairs can travel with supersonic velocities of ~
1,300 m/s. However, the linear momentum of such SA pairs is unfortunately
difficult to control or design by the initial conditions of their generation. A
way to overcome this problem is to make use of the topological properties of
the edge states of the kagome magnet and to place the local excitation at the
edge of the sample. This was elaborated on in Paper II in the list of publica-
tions of this thesis.
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3. On the possibility of magnetic engineering

3.1 Magnetoplasmonics: When magnetism meets
plasmonics

Plasmonics is on of the cutting edges of the modern physics bringing nan-
otechnology into optics. Fundamentally, plasma oscillations in solids are
collective oscillations of electron gas density controlled by electron-electron
interaction; in the simplest case, the oscillation dispersion is defined by the
electron concentration in the conduction band, the permittivity of the medium
(where the electrons are embedded), and their effective mass. However, in
a more general situation, e.g., interband plasmons, the plasmon dispersion
is determined by the underlying band structure. And its damping is mainly
attributed to both single-particle mechanisms of carrier scattering off impu-
rities and Landau damping. Microscopically Landau damping is responsible
for plasmon decay to an electron and a hole, while on macroscopic scale this
decay is equivalent to the inverse Cherenkov effect (when an electron is accel-
erated by the field of a plasma wave) [109].

The term plasmonics has been coined to emphasize the connection to the
study of plasmons in low-dimensional systems, while frequency and damp-
ing of two- and three-dimensional plasmons is defined by the geometry of
the sample under consideration and the permittivity of the surrounding space
(as Coulomb force lines of interacting electrons also pass through the sur-
rounding medium [121, 191, 35]). The latter results in supersensitive plasmon
sensors [231] being developed. Plasmon excitation is widely used in surface
spectroscopy [4, 3], and local plasmon excitation is employed for a giant en-
hancement of Raman light scattering [122] and of different nonlinear optical
processes [5]. The feasibility of realizing time-resolved surface plasmon op-
tics has also been discussed, and the first successful steps in this direction have
been reported [148, 145]. The excitation of local plasmons on the tip of a scan-
ning probe microscope by an incident electromagnetic wave may be employed
for producing under the tip a subwavelength domain with a strongly enhanced
field; this, in turn, was used for local spectroscopy and nanolithography with
an ultrahigh spatial resolution which far exceeded the Rayleigh limit [144].
Another possible application of plasmons and plasmon polaritons is ultrafast
information transfer (for instance, between the elements on a chip), faster than
with electron current pulses. Lastly, an interesting possibility consists in the
development of quantum plasmonics for quantum informatics, etc.

All these promising applications are significantly restricted by the damping
of plasmons — their finite mean free path. This can be overcome with the help
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of active plasmonics which operates with spasers, plasmon analogs of lasers
[24, 171, 140]. In particular, it will be possible by using a spaser in the form
of the tip of a scanning probe microscope and measuring the loss-induced
dips in its generation spectrum to realize supersensitive spectroscopy with an
ultrahigh spatial resolution [147], which represents, in a sense, a spaser analog
of selective near-field laser spectroscopy. This method may also be utilized for
the supersensitive spaser spectroscopy of surfaces.

Another possibility of technological use is magnetoplasmonics. The mag-
netooptical effects are among the most important effects in optics thanks to
the possibility to modulate both polarization and intensity of electromagnetic
field in the frequency range 10 — 100 GHz. The effects of this type are the
most prominent in ferromagnet materials, which however being opaque in near
infra-red region are characterized by quite dramatic optical losses. Neverthe-
less, the bismuth-based iron garnets [237] are known to possess a lower value
of the absorption coefficient, so that for example a thin film with width of 10
um made of Bi,DyFesOj; does not change the intensity of transmitted light
dramatically, but rotate the polarization plane by 7 /4. The magneto-optical
materials play an important role in modern technology, and can be produced
artificially with miniaturization, e.g., the optical properties can now be modi-
fied not only by changing the chemical structure but also by means of geome-
try variation, provided the typical size is to be comparable to the wave-length.
When this size is much smaller compared to the wave-length of radiation it
can be thought as quasi-uniform, such a material is now known as a meta-
material [220]. The peculiarity of the structure in question is that it can be
approximated by some effective medium with well-defined permittivity € and
permeability u, which are of course different from those of uniform medium.
Playing with geometric size and shape of a unit block of metamaterial, vari-
ous resonance peaks in frequency spectra of € and g might be obtained. In
a certain frequency range both permittivity and permeability are to be nega-
tive, so that the refraction index is negative. Furthermore, arrangement of unit
elements relative to each other is of quite big importance as well — it was estab-
lished the most interesting is periodic (crystal-like) structure, thus justifying
the name photon crystal.

Hence the appearance of the resonances is mainly due to geometry but
not the electronic structure. Interaction of incident electromagnetic light with
eigenmodes of such metamaterals can lead to generation of waveguide modes
in insulating materials, while in hybrid metal-insulator multilayers a purely
surface (surface plasmon-polariton) electromagnetic wave can be probed. The
last example is of great interest for engineering applications as it leads to high
degree of electromagnetic energy localization right along the interface sepa-
rating metal and insulator (plasmon crystals).

The optical properties of a macroscopic medium are basically determined
by the tensors € and fi. In most of the cases especially in the visible and
near infra-red region ;; ~ 6;;. Apparently, in magnetically-ordered media the
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permittivity tensor €(m) is determined by the magnetization (ferromagnet) or
sub-lattice magnetization (anti-ferromagnet). For the sake of brevity, we pro-
vide a quantitative picture for ferromagnet crystals only, thus the permittivity
can be written as [237]

0 .
&ij = Ei(]-) — 1€}k 8k + Kijkimimy, (3.1
where g; = A;jm; defines the gyration vector, e;j; is totally antisymmetric

pseudo-tensor, while ei(J(-)), Aij, and K;j; are purely determined by crystallo-
graphic symmetry. In isotropic medium the gyration vector is proportional
to magnetization g ~ m. Magneto-optical Faraday effect consists in optical
rotation when a linearly-polarized electromagnetic wave propagates along the
magnetization direction m by some angle 6 [132].

There are also inverse magnetooptical effects when the optical field changes
magnetization of the system through which it propagates [168, 166]. The gy-
rotropic media with non-zero g gains a finite magnetization when an ellipti-
cally polarized wave travels through a material. It was recently observed by
ultrafast magnetization manipulation in ferromagnet materials with femtosec-
ond laser pulse [116, 117, 211, 85]. The formation of external magnetic field
in gyrotropic systems can be derived from simple thermodynamic consider-
ations: An isotropic magnetically-ordered medium acquires an extra energy
[132, 168, 166, 214]

AEy ~g- (E*xE) (3.2)
due to electromagnetic irradiation, so that an effective magnetic field present in
the system Hegr = —dAE);/dm ~ E* X E, thus requiring the use of elliptically-
polarized field to induce magnetization.

The idea to utilize nanostructuring for resonant enhancement of magneto-
optical effects was first applied in one-dimensional photonic crystals. Pho-
tonic crystals are known to be a spatially periodic material with a period com-
parable to the wavelength of the optical radiation. Multiple interference of
electromagnetic waves diffracted in each unit cell of the crystal leads to the
formation of the frequency bands for which it is impossible to spread radia-
tion over photonic crystals, i.e. the photonic band gap. At these frequencies,
the light undergoes a perfect reflection from the crystal surface, while at other
frequencies the light passes through the photonic crystal.

The possibility of external influence on the optical properties of photonic
crystals [129, 43, 154] extends the range of applications in integrated optics.
One option for this is the use of photonic crystals made of magnetic materials.
This raises the opportunity of controlling the optical properties of the photonic
crystal by an external magnetic field [130, 229, 30, 69, 93]. The last two
options are of particular interest because they not only can achieve substantial
restructuring, but also lead to new interesting effects in magneto-optics, such
as a giant circular and linear birefringence or mode conversion.
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One-dimensional magnetophotonic crystals consisting of anisotropic di-
electric layers and the ferromagnet are theoretically studied in [69]. In such
a structure, the effect of strong spectral nonreciprocity, having a high prac-
tical value, was detected, e.g. the crystal may be opaque to the wave prop-
agating from right to left, and at the same time, allow this wavelength to
pass in the reverse direction. Along with one-dimensional magnetophotonic
crystals their two- and three-dimensional counterparts were also considered
[173, 123, 20, 110, 111, 55]. In most cases, an experimental realization of
these structures are colloidal solutions of ordered particles of spherical or
cylindrical shape. Dramatic enhancement of magneto-optical effects in such
crystals have been observed.

Magneto-optical effects can also be enhanced by the excitation of eigen-
waves of a structure, particularly in the metal-dielectric structures by excit-
ing surface plasmon-polaritons (SPP). The most interesting regime of surface
plasmon-polariton generation can be implemented on a metal-insulator het-
erostructure consisting of perforated metal layer and homogeneous ferromag-
netic dielectric film deposited on a non-magnetic substrate.

From the first site, the nanostructured film of a ferromagnetic metal on the
substrate is the most suitable system for amplification of magneto-optical ef-
fects, since the specific Faraday rotation in such films is ~ 10°° /cm~!. How-
ever, for typical ferromagnetic metals such as Fe, Ni, Co and their alloys
within optical frequency range optical losses are quite large, and the plas-
mon propagation does not exceed a few micrometers. At the same time, for
the periodicity of the structure to be of a significant impact on their optical
properties, it is necessary that the length of the propagation of the SPP to be
significantly larger than the period of the structure (about 10 micrometers and
more). Consequently, all optical phenomena caused by the SPP, in such metals
are strongly suppressed.

If the magnetic material in a plasmonic heterostructure is replaced by weakly
absorbing ferromagnetic insulator (¢ ~ 100 cm~! at A = 800 nm), one can
significantly reduce the optical losses. Furthermore, it avoids the use of ferro-
magnetic metal. Thus, it becomes possible to use instead of the ferromagnet,
noble metals which optical losses are substantially lower. Since the optical
losses in both insulating and metallic layers are relatively small, the propaga-
tion of SPP increased several times compared with the structures containing
ferromagnetic metals. An example is the system [bismuth-substituted iron
garnet] / [silver] £ =7 um at A = 900 nm. In addition, small optical losses
in the magnetic dielectric layer are capable of driving in it waveguide modes,
which, along with the plasmon modes can also have a significant influence on
the magneto-optical properties of the material. Thus, the heterostructure type
[ferromagnetic insulator] / [precious metal] has great potential for plasmonics
and magneto-optics.

Periodic system of holes or slits in the considered heterostructure permits
to manipulate the energy spectrum of SPP and other electromagnetic modes
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excited in this system. The period of the structure must be comparable with
the wavelength of the modes. Therefore, by analogy with the photonic crystal,
the system can be called plasmon crystal.

3.2 Spin polarization: Optically induced phenomena

Another method to get over the difficulty pointed out in the previous section
involves the search for and use of novel systems with a weak plasmon damping
like doped graphene. Fundamentally, the genuine interest in graphene — a one-
atom thick layer of carbon atoms, which is stable even without a substrate (see
[78, 160,42, 108,47, 128, 146, 1]) — and in recently found (three-dimensional)
topological insulators (see [86, 172]) is due to the fact that there is a two-
dimensional electron gas with a zero effective mass and a zero gap between
the conduction and valence bands in these entirely different materials. The
two-dimensional electron gas in question is described by the Dirac equation
with a zero mass (similar to neutrinos), thus making a possibility to bridge ul-
trarelativistic physics of elementary particles and quark matter with condensed
matter. This leads to a number of interesting effects, e.g. the absence of back-
ward reflection from potential barriers at normal incidence (Klein tunnelling),
weak anti-localization, and the half-integer quantum Hall effect (which hap-
pens even at room temperature) [108].

In low-dimensional structures like quantum wells, qauntum dots, graphene
the motion of charge carriers is restricted to one- or more directions and gives
rise to quasiparticle spectrum redistribution owing to size-quantization effects.
The latter strongly affects optical and kinetic properties in such systems and
leads to a variety of new phenomena to be observed [75, 58]. The key ingre-
dient of spintronics consists in detailed investigations of interaction between
spin-degree of freedom and a polarized external field, e.g. optical orientation
of spins [230] happens due to angular momentum transferring from a photon
of external field to the electron sub-system of a low-dimensional structure.
This can be mainly attributed to spin-orbit coupling: In semiconductor nanos-
tructures a value of such coupling is determined from symmetric and geomet-
ric considerations. In narrow-band semiconductors spin-momentum locking
is rather rigid, whereas in graphene the influence of spin-orbit coupling can
be neglected which means that the interaction with light is defined by orbital
degree of freedom of electrons and holes exclusively.

A considerable distinction from ultrarelativistic particle physics can be ob-
served: In the Dirac equation for graphene, instead of the speed of light a
quantity 300 times lower appears, while this equation holds only in the lab
frame (this turns out to be an artifact of the Galilean-invariant Schrodinger
equation which can be reduced after straightforward algebra to the effective
Dirac equation describing quasiparticles in graphene). One should also keep
in mind that these are the so called envelopes which obey the Dirac equation
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in an external field. These envelopes describe the slow modulation (due to
slowly varying external fields) of Bloch functions which oscillate with a lat-
tice period (in this case the adiabatic approximation is used, which leads for
ordinary crystals to the Schrodinger equation with an effective mass).

The linear dispersion of quasiparticles in graphene [227, 198] can be de-
rived from the Schrodinger equation, taking account of the symmetry and the
existence of two sublattices in monolayer graphite, within an approximation
accounting for the closest neighbor interaction. But this linear spectrum (valid
up to an energy of the order of 1 eV), i.e. the presence of Dirac-effective elec-
trons, is associated, as may be shown, with the symmetry of graphene, and
this property is protected from the presence of impurities (and some other per-
turbations by symmetry with respect to time reversal). The role of spin can
be attributed to pseudospin which emerges due to the fact that the hexagonal
lattice in graphene may be represented in the form of two equivalent triangular
lattices displaced relative to each other. The presence of two more components
in the Dirac equation for graphene is associated with the existence of two in-
dependent valleys in the Brillouin zone (since the existence of two sites in the
elementary cell of graphene results in two sites in the elementary cell of the
reciprocal lattice).

An important property of graphene is the possibility to easily control the
density of electrons or holes by means of control electrodes or chemical dop-
ing, which opens up an opportunity to graphene-based plasmonics [153, 125,
25, 127]. In particular, it is possible to produce plasmon waveguides and
plasmon switches using the specially profiled coatings and control electrodes.
Critically important additional virtues of graphene for plasmonics are a weak
damping, a long mean free path of plasmons in it, and the capability of work-
ing in the terahertz frequency range. The weak damping opens the way for the
development of a graphene-based quantum plasmonics or single-plasmonics.
It will be of interest to control plasmons by applying external magnetic field
[25]. The specific character of the graphene band structure results in nontriv-
ial features of its dielectric response: Singularity in the low-frequency range
(however weaker than for normal metals), unusual optical properties [67], and
a weak damping of quasiparticles. These properties demonstrate an ability to
create graphene-based photonic crystals with a photonic gap in the far-infrared
spectral region [26].

As noted above, Dirac electrons exist not only in graphene, but also on the
surfaces of recently discovered new materials — three-dimensional topologi-
cal insulators [86, 172]. Up to now different realizations of two- and three-
dimensional topological insulators have been studied. The new paradigm is
that topological insulators are not associated with the emergence of sponta-
neous symmetry breaking in a crystal and, in turn, with its attendant order
parameter (as in the case, for example, of magnetics, ferroelectrics, etc.), but
with the emergence of a topological invariant in Hilbert space, which is de-
termined by the properties of the Bloch states occupied by electrons. In this
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sense, there is an analogy between the properties of topological insulators and
the quantum Hall effect in which none of the states in the plateau region in-
side the system is conductive, but there are zero-gap chiral states (a unidirec-
tional current determined by the direction of the magnetic field) at the system
boundaries protected against the scattering off impurities by the presence of
a topological invariant. This picture is especially simple in sufficiently strong
magnetic fields, where the drift approximation applies to electrons and the
topological invariant has a simple meaning: It characterizes the connectivity
of drift electron trajectories [15]. In three-dimensional (so called strong) topo-
logical insulators, there is a gap in the spectrum of bulk states, as in ordinary
insulators, but on the surface they have, thanks to the existence of the topo-
logical invariant, zero-gap surface electron states with zero effective mass of
electrons and holes (similar to graphene), which are described by the Dirac
equation with a zero mass.

These states are known to be topologically protected: Nonmagnetic impu-
rities cannot form a gap and localize these states because of the presence of a
topological invariant. One of the most important properties of the Dirac equa-
tion with a zero mass is a strict connection between the directions of electron
momentum and spin (or pseudospin for graphene). Thanks to strong spin-orbit
coupling, electrons on the surface of a topological insulator possess a rigid
correlation between the spin and momentum directions: Their spin is perpen-
dicular to the momentum, and this property was experimentally revealed by
angle- and spin-resolved photoelectron spectroscopy. A similar strict connec-
tion between electron momentum and pseudospin (and not spin) is true for
graphene owing to the mathematical equivalence of the Dirac equations with
a zero mass for both systems, which this connection follows from.

The plasmon dispersion law can be found by linearizing the equations of
motion for Dirac electrons, which corresponds to a random phase approxi-
mation. The validity of the random phase approximation is defined by the
dimensionless quantum parameter equal to the ratio between the characteris-
tic energy of Coulomb interaction and the quantum kinetic energy. For Dirac
electrons with a linear dispersion, this ratio is independent of the electron con-
centration and equal to the effective fine-structure constant in which the speed
of light is replaced by the electron velocity from the underlying Dirac equation
for a topological insulator/graphene, and the charge squared is divided by the
permittivity of the surrounding medium. This permittivity is rather large for
topological insulators, and the random phase approximation, therefore, makes
sense. Thus, a plasma wave in a topological insulator is always associated
with a spin wave owing to spin-momentum locking (if the electron momen-
tum, which defines the plasmon momentum, is oriented along a certain direc-
tion the plasmon momentum is fixed, because of the strict momentum-spin
connection for Dirac electrons, a certain spin polarization emerges as well).

Interesting effects occur when a magnetic impurity layer or a film of mag-
netic material is deposited onto the surface of a topological insulator. The
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external exchange interaction (noninvariant with respect to time reversal) of
this layer with Dirac electrons induces a gap in the spectrum of the Dirac elec-
trons, and the topological insulator becomes a quantum magnetoelectric: An
external electric field induces (apart from the ordinary electric polarization of
the volume) a magnetic moment, while a magnetic field induces an electric
dipole moment. This gives rise, notably, to appearing quantized nondiago-
nal Hall conductivity, and therefore to the quantum Faraday and Hall effect —
quantized rotations of the polarization plane of transmitted or reflected elec-
tromagnetic waves (in the absence of an external magnetic field). The chiral
properties of the system give rise to chiral properties of the excitons inside
the topological insulator gap (dependence of the energy on the sign of angular
momentum projection). That is why these chiral excitons make a resonance
contribution to the nondiagonal conductivity of the system, which may greatly
enhance the Faraday effect in comparison with its quantized magnitude (de-
fined only by the fine-structure constant) (see Refs [66, 175]).

The Coulomb field of the electrons located above the surface of a topolog-
ical insulator with two-dimensional chiral electrons induces a magnetic po-
larization which is equivalent, owing to the symmetry of the problem, to the
presence of image magnetic monopoles (similarly to image charges). For a
sufficiently dense two-dimensional electron gas, the emerging total external
magnetic field of all the image monopoles may be considered to be uniform
and proportional to the surface density of the external electrons and the mag-
netic monopole charge. This field can manifest itself in the Hall effect for the
external electrons and a change in the plasmon dispersion.

When irradiated with an external field the system goes to a non-equilibrium
state due to absorption and emission of energy quanta, spin and charge currents
appear as a result. These processes are more prominently manifested in optical
and kinetic response. Quasiparticle dispersion in the vicinity of two Dirac
cones in graphene can be linearised [42], so that

& = tvrlk|, (3.3)

where vp &~ ¢/300 is quasiparticle effective velocity and k is a quasimomen-
tum measured from K (or K') points of corresponding Brillouin zone. The
signs + in the formula are attributed to conduction and valence bands respec-
tively. The linear dependence of the spectrum (3.3) suggests an analogy with
two-dimensional electron gas with extremely huge spin-orbit splitting. In the-
ory, two operators of pseudo-spin, consistent with usual spintronics notations,
are defined around k = 0.

Electron transport and optical properties of graphene in the linear regime
[47, 67, 165] are well-studied and are not of interest, contrary to phenomena
happening in the non-linear regime which help to establish the symmetry of
a system, identify the band structure, as well as to measure relaxation param-
eters peculiar to spin, charge and energy [97, 75, 77, 68, 98]. Photoconduc-
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Figure 3.1. A monolayer graphene, placed in the x —y plane and surrounded by two
semi-infinite dielectric media with permittivities €, and &, is irradiated with circularly
polarized light (yellow arrow).

tivity, high harmonic generation, optical rectification, electron photon-drag
are among the effects well studied for parabolic-band semiconductors and are
now established in graphene. However, in the absence of spin-orbit coupling
the direct spin polarization with circularly-polarized electromagnetic field is
impossible in graphene, but the orbital dynamics of electrons and holes are
strongly modified leading to a number of peculiarities in photo-electric coeffi-
cients.

To provide a phenomenological picture of new effects generated in clean
suspended graphene [76, 106, 81] we put a system to an external electromag-
netic field

E(r,1) = E(q,0)e """ L E*(q, @)e'® (3.4)

with a complex amplitude E(q, ®) of the frequency @ and a wave-vector q.
The current density in powers of the field amplitude reads

ja(r) = [0} ) Eyv(@,@)e O c.c.| +of3), By (a, 0)E; (9, 0)

v vn

+ {Nizv)nEv(q, w)Ey(q, w)e*Zi“”+2iqr+c.c.] . (3.5

where subscripts correspond to Cartesian coordinates. In the formula (3.5)
terms up to quadratic are taken into account only: The first term is responsible
for linear electron transport, the second one generates the d.c. current, while
the last one leads to the second harmonic generation. Being extremely sensi-
tive to underlying crystalline symmetry the second-order response is non-zero
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provided point-group symmetry does not contain spatial inversion and the con-

(2) (2)

ductivities van and 6/1vn to be odd functions of k. Thus, in the system with

lack of inversion the lowest contribution is given by

Gﬁzv)n (q,0) = ;(fv),, (0,0) + Py uvnqu (3.6)

and G;(sz)n (0, ®) is non-zero. The point-group symmetry of an infinite mono-
layer of clean suspended graphene is Dg;, which comprises spatial inversion,
thus only the processes with momentum-transfer are allowed, i.e. 6(2) 0,w) =
¢ (0, ) =0. T.he tensor @, can b.e split into symmetric and antisym-
metric terms relative to v and 1 permutation

EVEX +EYE
. S v&tn v= A
Jr = levnQ#f—*_lTluvqﬂ (EXE*)V' (37)
Symmetric with respect to v, 7 permutation, the fourth-rank tensor Tfuvn is
responsible for the linear electron-photon drag which is non-sensitive to the
sign of light circular polarization; while the third-rank pseudo-tensor Tflm
provides the contribution to circular electron drag, sensitive to it.
It is worth to note that the current can flow only on the graphene plane
(let say x —y plane): In Dg, A = x,y is characterized by four independent

components Tl - Eixx + chcyy’ T2 - T)'gcxx - 73656)')' - 27—)'c§)xy’ T3 = zy-gxz’ and
T, =TS, thus

 Txxzze

E.|? +|E,|? E.|* — |E,|? E.Ef+E'E
T1|X| ’y| qx+T2<’ X| |y|q+ X=y xyqy)

Jjx = 5 5 5 5
E.E* +E*E
+B————|E['q: + uq.| - (38)
and
) E.|?+|E,|? E.|?2 — |E.|? EE*+E'E
]y:Tl| x| 2’ y| C]y"’TZ( y| 2| x| qy+ X }2 X yqx>
E,Ef +E*E
%qﬁnq},y@ﬁ (3.9)

A quick look at the formulas (3.8) and (3.9) shows that a drag current is
present in the system at oblique incident of light, while the circular drag effect

permitted by Dg;, determined by antisymmetric T/{‘” n

Jx=iTiqy (E" X E), — i, (E* X E), (3.10)

and
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Jy=—iTiq (E* xE)_+iTyq; (E* x E), G.11)

with T; = xyz and T = ,*;x. The photocurrent appears in the direction per-
pendicular to the incident plane. The formulas (3.8), (3.9), (3.10), and (3.11)
can be drastically simpified taking account the fact that the coefficients 73, Ty,
and T5 are negligibly small when the band structure is formed by 7 — orbital
electrons (in this case the z — component of a field is absent), so these terms
might be dropped out. Therefore,

EPLIEE, | IEL B
X

=T > — 5 v

(3.12)

EE'+EE, .
Jy = Tz%qx —iTiqy (E* X E), (|[E*+ B, ). (3.13)

The other non-linear effects can be addressed in the same fashion.

The presence of a circularly polarized field strongly affects transport of
quasiparticles propagating in graphene. Moreover, a time-periodic field gives
rise to a dynamical gap opening, while the resulting photocurrent can flow
without any applied bias voltage. Taking account of non-linear phenomena
dramatically enhances the number of processes which could be observed. The
recently discovered photovoltaic Hall effect is among them. Being illumi-
nated by intense circularly polarized light the wave function of charge carriers
in graphene picks up a geometric phase due to a non-adiabatic evolution of
k — points in the Brillouin zone. In fact, when the trajectory of a k — point
encircles the Dirac cone, a gap opens up in the Floquet quasienergy spectrum
at zero-momentum. In this case the geometric phase coincides with so called
Aharonov—Anandan phase. The formation of a gap can be formally associated
with topological effects and experimentally detected via Hall-type conductiv-
ity (which can be linked to quantum anomalies from high-energy physics).
The wave function of any quantum system subjected to an external periodic
field acquires a non-trivial topological phase. Typically such systems are char-
acterized by a set of quasienergies, whereas any topological phase originates
from a certain gauge symmetry, making the standard analysis based on sym-
metry considerations inapplicable. Therefore, a systematic study of a quan-
tum problem including combination of both non-linearity and time-periodic
potential seems illusive. However, certain information can be extracted from a
perturbative expansion. For the probing field with frequency @ we can evalu-
ate the dynamical conductivity of graphene irradiated with circularly polarized
light, using the Kubo formula:

Cur(®,T) /dte’“”H (T+1/2,T —1/2). (3.14)
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In the following we analyze both longitudinal and transverse (Hall) compo-
nents. The retarded current-current correlation function which appears in the
formula (3.14) is given by

5, (11,12) = —igsgv0(t1 —12) Y ([Ju(11), jin(12)] ) » (3.15)
k

the current operator is determined by fa = evpG,. It is worthy to note that in
(3.14) we have defined T = (| + 1) /2 and Fourier transformed with respect
to t = t; —t;. The momentum summation in (3.15) can be done within the
so called generalized Kadanoff-Baym ansatz (Paper IV) which assumes the
direct relation between the lesser Green function and occupation fraction, i.e.

Glf(thtZ):i Z pkaﬁ|cbktx(tl)><cbkﬁ(t2)|a (3.16)
a,f=+%

the subscripts & and 8 denote the band indices, whereas pyqp is the non-
equilibrium density matrix, which is in fact different from its steady-state
counterpart as long as the system is driven out-of-equilibrium and in gen-
eral needs to be determined from a kinetic equation. However, in order to
simplify the analysis we assume the density matrix to be diagonal, while
its non-zero elements coincide with the Fermi distribution and use the form
Prap = O(EF — €ka)0qp (the system is supposed to be doped up to Er > 0).
By doing so we obtain a closed set of equations, while the information related
to quasiparticle dynamics in graphene is encoded in Eq. (3.14). Furthermore,
this information is redundant to some degree: Indeed, unless we are interested
in accurate time-resolved measurements we can average this expression over
T, and derive

(0 (1
6((9):Z< % \@) oy (©) ) (3.17)

T\ —oy (@) oy (@)

where the summation index / counts the number of photons participating in the
process. To be specific and without loss of generality we present calculations
for one-photon processes, i.e. we restrict ourselves to / = —1;0;1. However,
experimental results can be fit easily with our formula as long as the used ap-
proximations hold. One should also keep in mind that the results obtained
for pristine samples are more accurate in the high-frequency region, otherwise
electron transport in graphene is strongly affected by subtleties of scattering
processes which are beyond the scope of our work. It is worth noticing that in
the absence of photons the conductivity tensor is diagonal and its real part co-
incides with the well known result Recy(®) = e?/(4%)0 (hw — 2Er ), whereas
non-linear processes associated with photon emission/absorption give rise to
a photovoltaic Hall effect with non-zero off-diagonal part. Analytically, the

longitudinal conductivity oy(®) = GIE,I) () can be written

I=—1,0,1
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2 _
Go(w):F(Sw)+Da£)z (F((:o_é)) F(a)w++£§2)>’ (3.18)

whereas the expression for the Hall term, oy (@) = Y Gg) (), is

I==+1
_ .DQ? ([F(w—Q) F(o+9Q)
on(w) =i - < -2 ~ oro > (3.19)

Here D = (evpEo/ (th))z, and in the expressions above we have used the
function
2¢? hz —2EF
F(z) =" e
&= | he+2Er

Interestingly, the combination of logarithmic singularity as well as step-like
behavior at z =2EF, i.e. the energy of interband transition, in Eq. (3.20) is typ-
ical to materials with linear dispersion. However, this singularity is smoothed
either with increasing temperature (we performed our calculations at 7 = 0)
or taking into account momentum relaxation.

Considerable interest to graphene-based optoelectronics and plasmonics
is mainly caused by the linear dispersion of charge carriers. In fact, it is
well-known that in a two-dimensional electron gas, with parabolic dispersion,
placed at the interface between two dielectric media only the TM — polarized
mode, known as the surface plasmon polariton, can propagate. However, gen-
eral arguments predict the existence of a TE — mode in materials with linear
spectrum, like graphene. In the tiny region near the Dirac point the imaginary
part of the conductivity is negative and an almost undamped mode exists for
1.67Er < hw < 2Efp. Interestingly, the spectrum corresponding to the TM
— mode can be derived purely from microscopic analysis making allowance
for retardation effects, while a proper description of the TE — wave requires
solution of Maxwell equations. As a result, dispersion of the TE — mode ap-
proximately coincides with that for light in media. Moreover, in the previous
section we demonstrated that the conductivity tensor (3.17) is characterized by
both longitudinal (3.18) and transverse (3.19) components. This fact can lead
to a number of unexpected phenomena, like hybrid surface waves in graphene,
by mixing the TE — and TM — modes together. To demonstrate this, we as-
sume a monolayer of graphene placed in the x — y plane (Fig. 3.1) which is
surrounded by two dielectric media (e.g., graphene placed on a substrate with
a dielectric medium on top) with permittivity & (z > 0) and & (z < 0) (see
Fig. 3.1). The appearance of the off-diagonal conductivity (3.19) gives, as
we shall see below, rise to TE — and TM — mode coupling similar to that in
the presence of magnetic field. To proceed we solve Maxwell equations with
corresponding boundary conditions on the interface (EJr E_) xz=0 and
(Hy —H_) xz = 476K /c. The substitution Ex,Hy = Ey Hye i@ tiPrAz

( (h|z| — 2EF) + ! log

) (3.20)
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results in A2 = B2 — £.k3 with ko = @/c. It is important to emphasize that the
complex parameter 3 can be viewed as a wave-vector for modes propagating
towards the x— direction and that are independent (uniform) of y. A set of
Maxwell equations enables two self-consistent solutions, namely: the TE —
mode with non-zero H,, Ey, and H_,

EfF=(0,1,0), Hi"=(FiAs+,0,B)/ko (3.21)

as well as the TM — mode with Ey, H,, and E; components

EM = (£iAs,0,—B) /(exko), HIM =(0,1,0). (3:22)

Keeping (3.21) and (3.22) in mind we can construct the general solution to a
set of Maxwell equations as a superposition of TE — and TM — modes

Er=ALETP+BLEM, Hy=A HIF+B.AM, (3.23)

where the coefficients A+ and By showing the relative weight of modes of dif-
ferent polarization are to be determined by matching the correspondent bound-
ary conditions at the interface z = 0. Thus, the dispersion relation is defined
by

10y 8+k() e_ko 10y /l+ A G[%,
_ _ - — | = 3.24
( c 4miy 47r7L> ( c * 41k + 4mko c? (3:24)

We note that whenever oy = 0 the expression (3.24) becomes decoupled and
is nothing but a superposition of two waves propagating independently of
each other. In fact, if a circularly polarized field is not present in the sys-
tem, the conductivity tensor is diagonal o) = F(®)/8 compared to (3.18) and
the dispersion (3.24) is split into a TM — wave (the first multiplier) and a TE —
wave (the second multiplier). On the other hand, a non-zero Hall conductivity
causes a coupling, resulting in hybrid surface waves. Interestingly, contrary
to the case of a metal, the graphene-based setup shown in Fig. 3.1, permits to
manipulate hybrid surface wave polarization by changing chemical doping as
well as by adjusting external circularly polarized field parameters. This opens
new perspectives to create graphene-based elements in the rapidly developing
area of metamaterials. Further considerations of the discussion presented here
can be found in Paper IV of the list of publications for this thesis.

3.3 Topological matter: Non-magnetic gap opening

Observation of the spin Hall effect in a class of semiconductors with strong
spin-orbit coupling [104, 27, 124, 91] has revived an interest to topological
phases in condensed matter. A term topological insulator has been coined to
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describe a system which behaves like an insulator in the bulk but conducts at
the surface. The conduction is due to the presence of extended edge states
which possess a remarkable property of topological protection. It is predicted
that the electrons traveling along the surface are protected against the back-
scattering and preserve their quantum phase coherence over a long distance
despite the presence of impurities, interactions, and external fields. Supercon-
ductor analogs of topological insulators give rise to exotic edge modes which
are composed of a "real-valued" fermion field known as Majorana fermion.
Some aspects of these modes are experimentally confirmed [156]. This achieve-
ment greatly increases the chances of quantum computation being realized in
the solid state. Topological phases have been explored in other physical sys-
tems such as photonic crystals, cold atomic gases, strongly-correlated electron
systems and liquid helium [176, 224, 28]. Much of excitement about topolog-
ical insulators is related to the nature of surface conduction which is provided
by unidirectional quantum states. The phenomenon which is called topolog-
ical protection makes it harder to destroy the quantum phase coherence of
conducting electrons propagating at the surface.

The modern theory of phase transitions originates in the Landau’s sugges-
tion that the transition from one state of matter to another must correspond
to a spontaneous symmetry breaking. This idea gives rise to the phenomeno-
logical theory of phase transitions which is formulated in terms of the order
parameter. The quantum Hall effect (QHE), discovered more than 30 years
ago, has posed some awkward questions regarding the original Landau ap-
proach. Indeed, the QHE might be treated as a phase since the macroscopic
observables such as the quantized Hall conductivity are not affected by smooth
variations of material parameters. Still the transitions between different Hall
plateaus are not related to violation of any underlying symmetry. The puzzle
has been successfully resolved with the introduction of topological order. The
quasiclassical dynamics of the wave packet propagating in periodic dissipa-
tive media turned out to be instrumental for the theoretical understanding of
the order. In an attempt to explain the anomalous Hall effect in a ferromag-
net as an intrinsic property of the band structure, Karplus and Luttinger [107]
pointed out that the position operator, X, in a periodic lattice fails to commute
with itself. As a consequence the standard quasiclassical expression for the
group velocity acquires an anomalous term, which is proportional to what is
now called the Berry curvature. In modern interpretation the Berry curvature
being integrated over a Brillouin zone gives a topological invariant, the Chern
number. The system possessing a non-zero topological invariant may be called
topological matter. The relation between topological invariants and the scat-
tering matrix was recently established [6]. The boundary between topological
phases with different Chern numbers (or other topological invariants) must
support the edge modes. These are exactly the edge modes, which are present
e.g. on the surface of a two-dimensional topological insulator. The modes
are topologically protected against any variations of the material parameters
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Figure 3.2. Low-energy LDOS (states/energy/area) averaged over in-plane nearest-
neighbour sites to a TI surface potential impurity. (a) Non-interacting system with a
vacancy and supercell size n = 10 (black), n = 14 (blue), and a V = 65¢ impurity and
size n =10 (cyan). (b) System with a vacancy and size n = 10 for no interactions U =0
(black), U = 2¢ (blue), and U = 2.4¢ (cyan), where U, = 1.8¢. For the spin-polarized
systems the spin-up LDOS (dotted line) and spin-down LDOS (dashed-dotted line)
are plotted. The linearly dispersing TI surface state LDOS ~ 0.01 for £ = £0.5 and
is not visible.

unless the band gap in the bulk of the material is collapsed. Based on the gen-
eral theory outlined above one can search for the presence of edge modes in
magnonic crystals. To perform the task we shall identify time-reversal and in-
version symmetric band structure characterized by the touching bands which
split as soon as the time-reversal symmetry is broken. To compute the band
structure the well-established plane-wave method is typically used. Depend-
ing on the periodicity one can distinguish one-, two-, and three-dimensional
magnonic crystals. The simplest example of the one-dimensional magnonic
crystal is the sandwich-like structure consisting of periodically placed mag-
nets. The spectrum of such a crystal is gaped in the direction perpendicular to
the layers.

Moving back to topological insulators we show that, in the presence of
even weak electron-electron interactions, nonmagnetic impurities can generate
a magnetic state locally around the impurities (within mean-field paradigm).
More specifically, the critical interaction strength to reach a spin-polarized
state is dependent on the impurity strength and concentration, following a
Stoner-like criterion and approaching zero for dilute concentrations of strong
impurities. Moreover, we find that the magnetic state induces an energy gap,
which is directly proportional to the maximum value of the magnetization, but
reduced with decreasing impurity concentration. Thus, nonmagnetic impuri-
ties can, in the presence of even weak electron-electron interactions, sponta-
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neously generate a finite mass in the Dirac surface state of a TI. Nonmagnetic
impurities on the surface of a TI have been shown to induce localized impurity
resonances, with the impurity resonance energy scaling as Eyes ~ 1/V . Thus a
vacancy, where V' approaches infinity, gives a resonance at the Dirac point, as
shown in Fig. 3.2a for the noninteracting case. Finite impurity concentrations
lead to a double-peak resonance, which narrows with decreasing concentration
(compare black and blue). It also shifts the resonance slightly past the original
Dirac point, since potential impurities induce a small residual overall doping
into the system. A resonance peak firmly located at the Dirac point for finite
supercells thus requires a large, but finite, V (cyan). The large DOS around
the Fermi level close to a strong potential impurity fundamentally changes the
sensitivity to interaction effects. In Fig. 3.2b we show how the resonance peak
changes between the noninteracting case (black) and U > U, (blue, cyan). The
resonance peak splits into two spin-polarized peaks with an energy gap devel-
oping in between. The peak splitting increases with interaction strength and
the spin polarization is large but not complete. The resulting magnetization
is strongly localized around the impurity. We find that the magnetization is
essentially zero beyond the fourth in-plane neighbors and a surface effect, dy-
ing out within six atomic layers (one lateral unit cell). The magnetization is
antiferromagnetically aligned between [111] planes but ferromagnetic in each
plane, apart from the surface plane where it oscillates with the distance to the
impurity. The critical interaction strength U, for finite magnetization depends
on both impurity strength and concentration, as we will discuss below, but is
always significantly reduced from the clean limit for strong impurities, e.g., in
Fig. 3.2b, U, = 1.8¢ compared to U, > 5t without impurities.

In order to determine when a finite magnetization is induced by nonmag-
netic surface impurities, we plot U, as a function of impurity strength for a
fixed impurity concentration in Fig. 3.3a. Even though Lieb’s theorem does
not guarantee U, = 0 for vacancies, we still find that a particular large and
finite impurity strength gives essentially U, = 0, and thus finite magnetization
even for infinitesimally weakly interacting TIs. This result can be explained
by studying the impurity resonance peak positions in Fig. 3.2a. Strong im-
purities push the resonance peak towards the Fermi level and thus U, goes
down sharply as the resonance state starts to generate a large DOS around the
Fermi level. However, a finite concentration of strong impurities also induces
a finite residual doping in the system. This leads to the impurity resonance
eventually moving past the Fermi level, which reduces the DOS at the Fermi
level, and thus U, increases again when approaching the unitary scattering
limit. With decreasing impurity concentration the residual doping decreases
and the dip in U, is found for increasing impurity strengths, such that in the
limit of an isolated vacancy U, = 0. To corroborate this picture we also plot
the energy of the central dip in the double-peak resonance structure (blue).
Clearly, having the resonance peak exactly positioned at the Fermi level, i.e.,
the dip at E = 0, is extremely well correlated with a vanishing U,. In Fig. 3.3b
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Figure 3.3. Critical interaction strength U, /¢ (black, crosses) as a function of impurity
strength V /1 for supercell size n = 10 (a) and as a function of supercell size n for a
vacancy (b). In (a) the energy of the dip (scaled by a factor of 10) in the double-peak
resonance is also plotted (blue) along with zero energy (dotted line). In (b) the DOS at
the Fermi level p(Er) averaged over in-plane nearest-neighbour sites to the impurity
(scaled by a factor of 5) is also plotted (cyan).

we investigate more closely the concentration dependence of U, for vacan-
cies. Decreasing concentration leads to both narrower resonance peaks and
smaller residual doping. This results in a higher DOS at the Fermi level for
vacancies (cyan) and we see how this transfers into U, steadily decreasing
with the supercell size n. This inverse correlation between DOS at the Fermi
level and U, is a very characteristic feature of Stoner magnetism. The Stoner
criterion for a bulk ferromagnetic state reads U.p(Er)/2 = 1, where p(EFr)/2
is the bulk DOS at the Fermi level Er for one spin species in the paramag-
netic state. However, in nonhomogenous systems with impurities, impurity-
induced Stoner magnetism has been shown to not be sensitive to the precise
DOS at Ef, but to the whole impurity band if it is narrow enough.We clearly
see such an effect in Fig. 3.3a,where U, is primarily determined by the cen-
ter of the resonance peak, i.e., the dip between the two peaks. We find an
approximately constant relation between U, and p(EF) for a range of differ-
ent impurity concentrations, but the critical interaction strength is noticeably
reduced compared to the bulk Stoner criterion.

The energy gap E, could, in principle, depend on the supercell size n, the
interaction strength U, and the impurity strength V. Above we have shown
that V determines the DOS at the Fermi level, which in turn sets U, through an
impurity-induced Stoner mechanism, and thus we replace the dependence on
V with U,. In Fig. 3.4a we then plot the energy gap E, (cyan) as a function of
U for fixed n and two different U.. We also plot the maximum magnetization
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Figure 3.4. (a) Energy gap (cyan) and maximum site magnetization (black) tracking
each other essentially perfectly as a function of interaction strength U /¢ for a super-
cell with n = 10 and a vacancy (thick lines, circles) and a V /r = 65 impurity (thin
lines, stars). (The similarity in y values is a coincidence.) (b) Energies for the two
impurity-induced resonance peaks (black, stars) and the in-between dip (blue, circles)
for a vacancy in a non-interacting system (dotted lines) and for the corresponding
spin-polarized system when U /U, = 1.14 (solid lines) with energy gap edges (cyan,
circles) as a function of system size n. Small arrows mark the shift of the peak en-
ergies appearing at finite spin polarization. The inset shows the extracted energy gap
(difference between cyan lines).

max(m) (black), which we find to be a function of only (U /U, — 1). For both
a vacancy, where U, = 1.8¢, and for a V = 65¢ impurity, where U, ~ 0, the
energy gap tracks the maximum magnetization extremely well over the whole
range of interaction strengths. The maximum magnetization value is found on
the nearest-neighbor sites to the impurity (second surface layer), but instead
using the average magnetization gives a similarly strong linear dependence
between the energy gap and magnetization. We thus conclude that the func-
tional dependencies of the energy gap can be reduced to E, = C(n)max(m),
with C being a function only of the impurity concentration. For any finite im-
purity concentration we find that the energy gap is a global property of the
system, i.e., it does not vary with distance from the impurity. Thus the en-
ergy gap decreases when the impurity concentration is decreasing, since the
same maximum magnetization needs to sustain an energy gap over a larger
area. This is verified in the inset in Fig. 3.4b, where we plot the energy gap
as a function of the concentration for fixed magnetizations and find that C(n)
clearly decreases for increasing n. In Fig. 3.4b we show more details on how
the resonance peak structure evolves with impurity concentration for a nonin-
teracting system (dashed) and for a fixed U /U, > 1 (solid). The energy gap
(cyan) develops around the initial dip (blue) in the double-peak resonance. In
order to accommodate the finite energy gap for U /U, > 1 the two resonance
peaks (black) are pushed out to larger energies. With decreasing impurity con-
centration both the overall energy gap and the peak-peak distance decrease.
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We can now also draw qualitative conclusions in the limit of very low impu-
rity concentrations. The overall residual doping is then diminished and thus
only vacancies produce impurity-induced resonance peaks close to zero en-
ergy. Such resonance peaks are very sharp so U, approaches zero for isolated
vacancies and even extremely weakly interacting TIs will have a finite mag-
netization. However, even though max(m) only depends on U /U, and can
therefore be large even for very weakly interacting TIs, the size of the induced
energy gap will be severely limited by the small function C(n). We thus do not
expect any sizable energy gap in the limit of very low impurity concentrations.
Further aspects of this problem, are elaborated upon in Paper III in the list of
publications of this thesis.

To complement the above supercell calculations using a Hubbard-U inter-
action, we also study the effect of long-range Coulomb interactions in a con-
tinuum model while treating the impurities within the coherent potential ap-
proximation (CPA) [137]. The kinetic part is here described by a 2D gapless
Dirac term, whereas the electron-electron interaction strength is characterized
by the dimensionless coupling g = e*/(&vr), where e is the charge of the
electron and & the dielectric constant of the system. We further here assume
that the impurities are randomly distributed over the lattice sites, with the on-
site potential taking values V and O with probabilities ¢ and (1 — ¢), respec-
tively, which allows for a binary alloy analogy with the impurity concentration
directly linked to c. For a strongly scattering medium with low impurity con-
centration the effect of the impurities can be incorporated in a self-consistent
manner using CPA, which is based on a single-site approximation in a multi-
ple scattering description. It takes into account terms that are linear in ¢ but
disregards scattering off impurity clusters.

Using the self-energy, which is assumed to be translationally invariant after
configurational averaging, as well as spin independent and site diagonal, the
single particle Green’s function of the disordered (but noninteracting) system
can be written as G2p, (€,k) = (e —ocpa(e) — z—f)_l, where € = +vpk is the
bare dispersion relation and ocp4 (€) is determined by self-consistently:

_ cu
1— ugo(S — GCPA(S)) ’

GCPA(S) (3-25)

where u is the impurity strength. For small concentrations of vacancies (Imo <
vrk. with a cutoff k. for integral regularization) with the bare Green’s function
[196]

1 €] .
= 2¢el — | = . 3.26
go(€) prs [ elog <Vch> m|£} (3.26)

we obtain a finite concentration of charge carriers in the vicinity of € = 0.
Calculating the change in energy (similar to [164])
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relative to the paramagnetic state we find ferromagnetism when g, ~ 3.7, to
be compared to g. =~ 5 in the absence of disorder (here S is area and the
distribution function f(&s) can be found by integrating out frequency in
ImGcps(€,k)). Thus, also a continuum model with long-range Coulomb in-
teractions facilitates a finite magnetization for noticeably weaker electron-
electron interactions in the presence of impurities treated within the CPA. Note
that this is in spite of the CPA averaging over impurity configurations, thus not
explicitly relying on localized impurity-induced resonance states.
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4. Conclusions and outlooks

In the last chapter we briefly summarize the results emphasized in the thesis,
outline the directions where some of our findings can be applied, and provide
a brief outlook for current trends in technological development.

86

e We have studied the formation of extended van Hove singularities in the

triangular lattice. We have found from both the renormalization group
and strong-coupling numerical analysis that the phenomenon is driven
by many-body interactions: The delicate interplay of many-particle scat-
tering and nesting gives rise to band flattening near saddle points, while
the associated high intensity in the spectral function may find interesting
applications in tunneling experiments and spintronics. The phenomenon
can be interpreted as a precursor to a strongly correlated many-body
ground state. Its study in the controlled environment of cold atom ex-
periments may fundamentally improve our understanding of correlated
systems.We have shown the effect to be robust when tuning interaction,
temperature, and chemical potential. In particular, its signature in the
occupation function is found to persist to relatively high temperatures,
making the phenomenon detectable in experiments with ultracold atoms
in optical lattices.

We have discovered the formation of the topologically protected magnon
edge states in the kagome lattice and shown that the kagome lattice
supports skyrmion-antiskyrmion pairs, meron and antimeron excitations
even at room temperature. The latter has been detected for a wide range
of parameters describing the magnetic excitations, in particular, for the
DM coupling and the Heisenberg exchange interaction. The results
clearly demonstrate that the interlayer exchange interaction does not
affect the stability of the skyrmionic excitations. We have established
the possibility to control the movement of skyrmionic excitations and
that such excitations are long-lived. We have also observed that these
particle-like excitations can move on well-defined straight lines and even
be made to turn around corners. This opens a way to use such excita-
tions in different emerging technologies, e.g., in data storage or magnetic
bits manipulation. We have also investigated meron-meron and meron-
antimeron collisions. The former are found to undergo elastic collisions,
whereas the latter are more complex. Thus, the annihilation of a meron-
antimeron after collision is followed by the creation of a new meron, a
process which occurs as a highly non-local phenomenon.



e We have investigated the formation of quasienergy spectra in monolayer
graphene irradiated with circularly polarized light. The system evolv-
ing under time-periodic Hamiltonian gains a non-adiabatic topological
phase and acquires Hall-type conductivity as a result. We have worked
out the conductivity tensor in one-photon approximation and show that it
leads to the formation of hybrid surface waves propagating in graphene
sandwiched between two dielectrics. The dispersion relation derived for
such waves shows that they incorporate the effects associated with inter-
band particle-hole transitions. The results can be applied in experimen-
tal studies of hybrid surface waves in graphene, that could help realizing
and implementation of graphene-based plasmonics.

e We have shown that strong nonmagnetic impurities on the surface of
a strong topological insulator can induce a finite magnetization and an
energy gap in the presence of even weak electron-electron interactions.
Strong impurities and also vacancies give rise to localized resonance
peaks around the Dirac point. The resulting increased low-energy DOS
leads to a strongly reduced critical interaction strength to reach a mag-
netic surface state. Thus, even very weakly interacting topological insu-
lators will have a finite magnetization emerging around strong nonmag-
netic impurities. The finite magnetization gives rise to a global energy
gap which is linearly dependent on the maximum value of the magneti-
zation, but decreases with reduced impurity concentration.

The main results of this thesis can be put into context of trends in modern
solid state physics, mesoscopic physics and nanotechnology. Nowadays, nan-
otechnology is a collection of methods and techniques, allowing to manipulate
matter and information on nanoscale (100 nm and less, e.g., nanowires, nano-
electronics, nanopowder), rather than a completed technological platform. The
main tool for investigating processes on submolecular level is an atomic force
microscope (it permits to measure interatomic distance and address each atom
individually), while plasma synthesis, molecular deposition, and lithography
are among the methods used for nanostructure fabrication. In the meanwhile,
mesoscopic physics (basically what this thesis is about), which is able to accu-
rately explain a bunch of phenomena at microscopic level where quantum co-
herence is an important entity, is also in the basis of modern nanotechnology,
therefore the trend on technologization of mesoscopic effects will continue
(for instance, quantum dots or quantum wells from theoretical viewpoint).
The term “mesoscopics” has been introduced in physics by W. van Kempen
and M. Ya. Azbel from paleontology and is used to refer to relatively small
systems, where however the number of particles is too large to apply the equa-
tions of quantum mechanics directly, but still too small to use statistics (since
fluctuations characterizing the system are of the order of corresponding mean
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values). Thus, at the moment two disentangled concepts, namely atomic force
microscopy, which enables to address atoms and molecules directly and in
general originates from optics and metrology, and mesoscopic physics, which
enables material synthesis and realization of quantum transistor and is mainly
rooted in quantum field theory, are a pillar of modern nanotechnology. This
self-contradiction can potentially lead to either splitting of nanotechnology
into two independent areas or setting of a new universal technology allowing
matter manipulation on atomic scale. In fact, atomic force microscopy, widely
used in modern technology, has helped to achieve extremely high on-chip inte-
gration, but the principle direction is likely to be related to the ability to create
a densely packed and ordered arrays of quantum dots — nanotransistors. Such
a technology will speed up the emergence of nanosensors, and in combina-
tion with spintronics will lead to femto-technology replacing thus the nano-
paradigm. Principally new results can be reached by including the effects of
purely quantum-mechanical nature into nanotechnological considerations, e.g.
quantum paradoxes (one can think of recently achieved quantum cryptography
or quantum teleportation). Therefore, subsequent technologization of the con-
cept of entangled states is highly desirable, which undoubtedly leads to the
invention of a quantum computer with extremely high performance, making
the progress in energetics and propulsion engineering unavoidable.
Nanotechnology along with biotechnology is currently considered as the
only large-scale project from natural science that can have a considerable eco-
nomic impact. However, one can point our three different scenarios associated
with social transformation due to technological progress. The first, or inertial,
scenario basically assumes the subsequent development of information tech-
nology (IT) and progress in bio- and nanotech based on state-of-art IT infras-
tructure. The second option, or natural scenario, suggests to focus on biotech
development. While the last one, the breakthrough scenario, merely relies on
nanotech and requires institutionalization of nanotechnology and emergence
of new universal tools capable to address the matter on atomic scale indepen-
dent of its physical nature. The inertial scenario in its turn can be divided into
two sub-scenarios: IT development in the context of up-to-date trends, relying
on the use of existing computers and network infrastructure, and total robotiza-
tion, which requires building of infrastructure compatible with robot-androids.
In the latter case currently exploited IT services will have to pale into insignif-
icance. However, from our perspective, the nanotechnological scenario seems
more reasonable to speculate about. Nanotechnological revolution, if any, will
mainly be determined by the progress in material fabrication and characteriza-
tion and is expected to revive space exploration on new technological grounds
and allow man-made ecosystems. This is in contrast to biotech scenario, which
is believed to govern human development and human’s environment. In the
paradigm of nanotechnology we ideally can produce any material for a partic-
ular application. Social transformations under nanotech revolution are known
to be extremely dramatic: A capability to synthesize any substance with de-
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sired properties dictates new standards of manufacturing and potentially leads
to new regionalization and the emergence of closed autonomous nanotechno-
logical clusters. An important ingredient of nanotechnological paradigm is the
ability to systematically utilize quantum effects in a macroscopic world. Thus,
the main direction has to be the subsequent implementation of quantum effects
in materials and machines. Consequently, the natural definition of nanotech-
nology can be granted in the following way: A set of methods and technology
which transfer the quantum effects to a macroscopic level. To conclude, we
are at the crossroads at the particular moment when we have to make a choice
in favor of one of the futures, though the logic of the dynamical scenario al-
lows variability and excludes strict determinism. In case of success, nanotech
revolution will bring new possibilities for the exploration of deep space and
world oceans, give an impulse for medicine, energetics, and engineering, and
perhaps will be referred to as the transition to the “quantum world” (or, “man-
created inanimate world”).

In this thesis we have treated strongly correlated systems from different per-
spectives, however we believe that such a multidisciplinary consideration will
facilitate practical implementation of the concepts proposed above. In fact, we
simply list a few possible options: Computer modeling of the physical proper-
ties of complex compounds is an essential element of technological design of
advanced materials for applications in modern industry. The number of pos-
sible variants of multicomponent systems, in general, is so great that a blind
search for materials with the desired properties can be prohibitively expensive
and time consuming. The ability to quickly and relatively cheap try a poten-
tial compound by computer simulation is the only way to solve this problem.
Currently, the most common methods are based on the paradigm of density
functional theory (DFT). These methods work well for wide-band materials
where the kinetic energy of the electrons exceeds the Coulomb interaction.
Based on this approximation one can obtain not only complete information on
the spectral properties of materials, defined by electron transitions, but also
on the magnetic properties, the elastic constants, and phonon spectra describ-
ing the vibrations of the crystal lattice. Nevertheless, the most challenging at
the moment are the narrow-band materials in which the direct account of the
Coulomb interaction fluctuations is necessary for the correct description of
their physical properties, and DFT methods are not sufficient. These materials
are interesting because they may be on a way towards electronic, magnetic
or structural transition, which results in anomalous response to external field,
making, thus, this class of materials promising for prospective application.
The developed in the last years methods like DFT+U (Hubbard U correction)
and DFT+DMFT allow to describe the properties of many new narrow-gap
materials, though these methods are far from being panacea and have to be
modified. In that sense, combination with dual fermion approach could be in-
dispensable for band-structure computation. The second example comes from
IT sector: Nowadays the flagships of IT industry are focusing on the cre-
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ation of a new generation of computing systems in which information will be
transferred by light pulses instead of electrical signals as it takes place now.
Basically, to convert the space-time optical signals diffractive structures with
resonant properties are used. Under resonance we mean anomalous change
of reflection and transmission coefficients occurring when the eigenmodes of
the diffractive structure are excited. Thus produced resonant structures, e.g.,
diffraction gratings, nanoresonators, and multilayer coatings, can be applied
to differentiation and integration of incoming optical signals, to the optical
resolution of differential equations as well as to the problem of the phase-
amplitude modulation of optical radiation, setting the platform for all-optical
data processing. In the meanwhile, direct application of topological insulators
has to rely on the existence of topologically protected surface states. Incorpo-
ration of impurities allow to control the spin magnetization, as well as achieve
Hall quantization at zero field, which is highly desirable for quantum metrol-

ogy.
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5. Svensk sammanfattning

Stora framsteg inom informationsteknologi &r ofta nira linkat med gardagens
science fiction. Vid granskning av ett par populdra websidor dedikerade &t
framtidens datoranvindning demonstrerar [-Net-samfundet tydligt att de redan
har lagt grunden till en nano-slang. Vi kan till exempel finna att en nanodator
ar antingen en hogpresterande kvantmekanisk dator i storleksordningen nano;
eller en dator gjord av datorlogiska element av molekylir storlek; eller att
nanorobot-kontrollen maste vara nano. Problemet med terminologin &r inte
vad skaparna av ny hardvara dr bekymrade dver. Fordndring av fysikaliska
egenskaper hos logiska enheter vid reducering av storleken pa dess arbetsele-
ment, montering och integration av dessa enheter, mojligheten till determinis-
tisk kontroll av dess funktion, férlorad information och termodynamik hos na-
noenheter, den fysikaliska begridnsningen av att representera och bearbeta data
ar nagra av de kritiska fragorna som noggrant maste utredas. Nanoelektronik,
nanodatorer, nanorobotar och molekyldra mekaniska maskiner kommer inte
enbart att fordndra IT mot ett mer avancerat dmnesbaserat omrade, det kom-
mer ocksa att stidlla manga besvirliga fragor av humanistisk natur. I jamforelse
med till dags dato spekulationer om kloning av djur med hjilp av stamceller
eller anvindandet av dem i medicin kommer kanske etiska fragestillningar om
nano-vetenskap inte att verka sa forfirliga. Med Gvergangen till nanovirlden
kommer det att vara mojligt att reducera den minimalt tillatna storleken pa en
dator till subcellulédr niva. Lagringstitheten av artificiella system overskrider
redan den ménskliga arvsmassan. Sitt att presentera information i system ska-
pade av ménniskan har nidstan redan natt den fysikaliska begridnsningen satt
av de fundamentala naturlagarna. Det &r tydligt att nanodatorer kommer att
utvecklas samtidigt i ett par olika riktningar beroende av bearbetning av infor-
mation — med kvantlogik som bas, klassisk logik, neurologik och ocksa nagra
andra mer svardefinierade — genetisk, molekylért biologiskt och molekylart
mekaniskt.

For tillfallet sa dr den mest avancerade hardvaran baserad pa elektroniska
nanotransistorer, inkluderande singel-elektron transistorer och spinnpolaris-
erade, eller spinntroniska transistorer. Den kvantmekaniska begridnsningen
satt av Paulis uteslutningsprincip och Heisenbergs osédkerhetsprincip har redan
natts. Dessutom, begrinsningen av virmeavgivning definierad av Landauers
princip nér en bit av information gar forlorad i irreversibla datorberékningar
ar ocksa nadd. Fastin applikationer av singel-elektron transistorer fortfarande
ligger langt in i framtiden s& arbetas det pa att designa diverse arkitektoniska
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nanodatorer. Emellertid sa dr de fysikaliska kriterierna som i allménhet bestim-
mer de berdkningsméissiga mojligheterna onekligen avgorande. For att illustr-
era detta sa betraktar vi artificiellt odlade kvantprickar. Dessa #r halvledande
Oar inbdddade 1 en dielektrisk matris vilka karaktériseras av att de har ett kvan-
tifierbart antal elektroner. Kvantnummer avser antalet elektroner inom fysiken
och detta tros inte fluktuera. Coulombkraften mellan elektronerna &r signifika-
tiv och om till exempel en kvantprick &r ockuperad av en elektron sa hindrar
repulsionen en andra elektron fran att befinna sig i samma kvantprick. Detta
fenomen kallas for kvantblockad. Kvantblockad &r hjértat av singelelektron-
transistorer. Kanske dr en kvantprick det enklaste exemplet pa ett korrelerat
elektronsystem. I allménhet s ses korrelationen som en vixelverkan mel-
lan olika komponenter i ett komplext system. Emellertid sa foreligger det en
paradox som kommer av det faktum att man med modern fysik idag kan skriva
ekvationer for att beskriva néstan vilket system som helst, dock klarar man inte
alltid av att 16sa dessa ekvationer. Man kan bara finna en 16sning da systemet
bestar av en uppsittning av partiklar som inte interagerar med varandra och
kan hanteras separat eller bara svagt interagerar. I det sistnimnda fallet sa
sdger vi att vi kan utveckla en teori som har en liten parameter. Sma parame-
trar ar vildigt viktiga for existensen av var virld som helhet. Till exempel
sa dr ljuset i var virld svagt kopplat med materia dér individuella atomer och
elektromagnetiska vagor inte talar med varandra. Numeriskt sa beror detta pa
att det finns en motsvarande liten parameter kind som finstrukturkonstanten
(approximativt 1/137). T de flesta fall dr fysik baserat pa konceptet om sma
parametrar som kan viljas pa ett eller annat sétt. Att darfor driva hardvarupre-
standan till dess gréins kan potentiellt belysa problemet med hdgtemperatur-
supraledare, dér elektronkorrelationen inte bara dr stark, utan dér rader ocksa
icke-lokalitet i rummet. Densiteten hos transistorer i integrerade nanokretsar
ar for nirvarande extremt hog, likvil i det 1anga loppet dr energifragor under
de tillstanden véldigt viktiga for nanodatorteknologin. Dir finns en funda-
mental begrinsning av densitet pa logiska element som inte dr associerat med
atomstrukturen pa materian, det dr istillet en fraga om termodynamik och den
datorberdknande processen i sig sjédlv. Dess hidrkomst dr uttryckt av Landuers
princip, vilken sédger att en bit av forlorad information leder till en frigivning
av viarmeenergi motsvarande kpT log2, dédr kg dr Boltzmans konstant och T
ar processorns temperatur. Ingenjorer soker for nirvarande efter 16sningar pa
problemet med Overhettning genom att till exempel implementera reversibla
datorberidkningar vilket 4r mojligt for datorprocesser baserade pa vetenskapen
om kvantinformation. Dir finns nagra andra fysikaliska mekanismer som
tillater optimering av termodynamiken hos en klassisk datorer. Hérledda un-
der antagandet att en temperatur 7 kan anvédndas for att karaktirisera en dator-
berdkning kan Landauers princip i omgivningen av en datorberidkning karak-
tariseras av en temperatur 7 och att vi med Landauers princip kan relaxera
systemet i system med tva eller fler temperaturer (dessa system dr kénda for
att inte vara i termodynamisk jimvikt). Ett vilkédnt paradigmatiskts exempel
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ir urladdning av en fluorescerande lampa dédr atommolekylidra delsystem &r
karaktiriserade av rumstemperatur (300 K), i jamforelse med 30-50 ganger ho-
gre temperatur (10000 K) for fria elektroner. Darmed foreslar det sistnamnda
att datorberdkningar bor genomforas i superkylda delsystem med mycket 1ag
temperatur och att information bor skrivas innan informationen &r paverkad av
forlusten fran att systemet gar mot termisk jamvikt. Konsekvent implementer-
ing av detta tillvigagangssitt leder oss till idén om en optimal kombination
mellan kvantmekaniska och klassiska berdkningar. Till exempel kan man an-
vinda vixelverkan mellan kalla kvantstralar av ljuspartiklar med arrayer av
varmare tunga partiklar. Sadana datorer existerar redan, till exempel en op-
tisk dator dir ljusstralar med 1ag entropi kan passera igenom ett system utan
praktiskt taget nagon termisk forlust. Enligt Landauer sa frigors virme bara
vid stralningsdetektorer nir resultatet skrivs ut. Detta dr den huvudsakliga
fordelen med fiberoptiska kommunikationssystem. Dédrmed utfor optiska da-
torer de kallaste berdkningarna. Emellertid kan en liknande typ av process
ocksa implementeras i elektroniska datorer. Datorberikningsprocessen kan
utforas i ett termodynamiskt icke-jamviktslidge eftersom massan av en elek-
tron dr mycket mindre dn den for en atom. Man kan skapa nanostrukturer for
datorberdkningar med buntar av superkylda elektroner som fortplantar sig i en
matris med tunga atomer. Transistorer dér elektroner kan passera genom en
fungerande kanal nistan helt utan att utséttas for nagra termiska kollisioner
med atomer existerar redan (ballistiska transistorer). Nésta steg blir att ut-
forma en ballistisk transistor med kalla elektroner.

Vi kan sammanfattningsvis séga att en av de mest pressande utmaningarna
med modern elektronik &dr att skapa mycket snabba enheter med minimala
termiska forluster. Att vinda pa elektroners spinn (eller rittare sagt deras rik-
tning) mojliggér dndring av ett materials magnetiska eller elektroniska till-
stind. An viktigare ir att spinn kan #ndras vildigt enkelt genom att applicera
ett externt magnetfilt, ett elektriskt filt eller att mekaniskt toja materialet. Idén
att anvédnda spinns frihetsgrader ledde till uppkomsten av tva nya grenar inom
elektroniken — spinntronik och forskning pa magnoner (studier av spinnvagor,
det vill sdga magnetiska fluktuationer som propagerar i tiden med en vaglangd
1 storleksordningen en tiondel av ljus med samma frekvens). Spinntronik ir
praktiskt taget en gren i fasta tillstandets elektronik dér fysikaliskt relevant
information &r presenterad inte enbart med laddning utan ocksa med partik-
larnas spinn, som kan ses som deras egna mekaniska moment. Spinn kan
visualiseras som en rotation av en partikel runt sin egna axel, emellertid, trots
tydligheten i presentationen och den sjdlvklara meningen med termen s kan
inte klassisk fysik forklara uppkomsten av spinn. En foljdriktig forklaring ges
enbart av relativistisk kvantmekanik. Varje elementarpartikel dr karaktiriserad
av ett spinnkvanttal som bara kan anta positiva heltal (0, 1, 2,...) eller halvtal
(172, 3/2, 5/2,...). Till exempel har en foton spinn 1 och en elektron spinn 1/2.
Forutom det mekaniska spinnmomentet sd kan en del partiklar ockséa ha ett
magnetisk moment. En foton har noll magnetiskt moment medan en elektrons
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magnetiska moment ar skilt fran noll. Om vi betraktar laddningsoverforingen
uppkomna av partiklars rorelse hamnar vi i konceptet om konventionell elek-
trisk strom. Om vi betraktar spinntransport far vi spinnstrom (mekanisk och
magnetisk). Under normala forhallanden sa r tillstand med olika spinnpro-
jektioner lika populerade sa att spinnstrommen dr noll. T framtiden tros man
kunna hitta batterier utan kemiska reaktioner som konverterar elektrisk energi
till magnetisk och vice versa, magnetoresistiva minnen med noll energifor-
brukning med nistan evinnerliga resurser och optiska enheter pa nanoskala.
Nyckeln till denna typ av innovation ir att kontrollera spinnet hos partiklar
i funktionella material. Inom spinntronikforskningen sa utforskas for tillfél-
let den magnetiska och den magnetooptiska vixelverkan i halvledarstrukturer,
dynamik och spinnkoherensegenskaper i kondenserad materia och kvantmag-
netiska fenomen i nanostrukturer. Tillsammans med tidigare kiinda magneter
har nya funktionella material for spinntronikapplikationer dykt upp, till exem-
pel substanser som pa en och samma gang kan vara magnetiska, halvledande
och optiskt aktiva.
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