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Abstract

In this thesis, methods for efficient utilization of modern computer hardware
for numerical simulation are considered. In particular, we study techniques
for speeding up the execution of finite-element methods.

One of the greatest challenges in finite-element computation is how to
efficiently perform the the system matrix assembly efficiently in parallel, due
to its complicated memory access pattern. The main difficulty lies in the fact
that many entries of the matrix are being updated concurrently by several
parallel threads. We consider transactional memory, an exotic hardware
feature for concurrent update of shared variables, and conduct benchmarks on
a prototype processor supporting it. Our experiments show that transactions
can both simplify programming and provide good performance for concurrent
updates of floating point data.

Furthermore, we study a matrix-free approach to finite-element compu-
tation which avoids the matrix assembly. Motivated by its computational
properties, we implement the matrix-free method for execution on graphics
processors, using either atomic updates or a mesh coloring approach to handle
the concurrent updates. A performance study shows that on the GPU, the
matrix-free method is faster than a matrix-based implementation for many
element types, and allows for solution of considerably larger problems. This
suggests that the matrix-free method can speed up execution of large realistic
simulations.
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Chapter 1

Introduction

1.1 Setting

When solving partial differential equations using the finite element method,
the standard procedure consists of two distinct steps, a) an Assembly Phase,
where a system matrix and right hand side vector are created to form a linear
system, and b) a Solve Phase, where the linear system is solved. In most
problems, most of the time is spent solving the linear system, and therefore,
parallelization of the Solve Phase is a well studied problem, and derives on
existing methods for parallel solution of sparse linear systems. On the other
hand, the Assembly Phase is a more difficult task involving unstructured
data dependencies.

However, with efficient parallelizations of Solve Phase in place, it becomes
increasingly important to speed up also the Assembly Phase. This is also
important for problems where the Assembly Phase needs to be performed
repeatedly throughout the simulation, such as non-linear problems problems
with time-dependent data.

A very related problem shows up when using the finite-element method
with a matrix-free approach, where the Assembly Phase is merged into the
sparse matrix-vector product inside linear solver, thus getting rid of the
explicit system matrix. Since the resulting Operator Application operation
is performed with a high frequency throughout the simulation, efficient
implementation of this operation is crucial.

This matrix-free approach is motivated by the limited memory available
for the system matrix, but also by recent trends in processor design where
memory bandwidth is becoming the main bottleneck. The Operator Applica-
tion is essentially equivalent to the assembly, so techniques for parallelization
and optimization of the assembly are largely applicable also to the Operator
Application.

1



2 CHAPTER 1. INTRODUCTION

One of the fundamental difficulties when performing the matrix assembly
or matrix-free operator application, is the concurrent update of shared
variables. Both these operations are computed as sums of contributions from
all elements in the finite-element mesh, where the contributions from a single
element correspond to degrees-of-freedom residing within that element, and
they are typically parallelized by computing the sum and the contributions
in parallel. Since many degrees-of-freedom are shared between multiple
elements, many destination variables will be affected by multiple concurrent
updates from different elements. This poses the challenge to avoid race
conditions and maintain correctness.

This thesis concerns the efficient implementation of the matrix assembly
and matrix-free operator application on modern parallel processors.

1.2 Disposition
In Chapter 2, the finite-element method is introduced, including the matrix-
free version. In Chapter 3, recent trends in processor hardware are discussed;
in particular, graphics processors and hardware transactional memory. In
this context, the main contributions of the two papers are also presented.
Finally, in Chapter 4, a overview of further ongoing and future work is found.



Chapter 2

Finite Element Methods

2.1 Background

The finite-element method (FEM) is a popular numerical method for problems
with complicated geometries, or where flexibility with respect to adaptive
mesh refinement is of importance. It finds applications in, e.g., structural
mechanics, fluid mechanics, and electromagnetics [1]. Rather than solving
the strong form of a partial differential equation, the finite element method
is finds approximations of solutions to the variational, or weak, formulation.
Consider the example of a Poisson model problem,{

∇2u = f on Ω ,
u = 0 on ∂Ω .

The corresponding weak formulation is obtained by multiplying by a test
function v in a function space V, and integrating by parts, obtaining

(∇u,∇v) = (f, v) ∀v ∈ V .

From this, the Finite Element Method is obtained by replacing the space V
with a finite-dimensional counterpart Vh. This is typically done by discretizing
the domain Ω into a partitioning K of elements. Vh is then usually chosen
to be the space of all continuous continuous functions which are polynomial
within each element. There are different types of finite elements but the most
popular ones include simplices (triangles, tetrahedra, etc.), as in Paper I, and
quadrilaterals/hexahedrons, as in Paper II. For the case of triangle elements
and their higher-dimensional generalizations, one typically considers functions
polynomial of order p, referred to as Pp. For quadrilateral elements, one
instead usually considers functions polynomial of order p in each coordinate
direction, e.g., bilinear for p = 1 or biquadratic for p = 2 in 2D. These

3



4 CHAPTER 2. FINITE ELEMENT METHODS

Figure 2.1: Location of the node points for second-order quadrilateral elements
in 2D (Q2).

elements are referred to as Qp. In the remained of this introduction, we
assume Qp elements, but Pp are treated in a similar fashion.

To fix a unique such polynomial within an element, we need to determine
its values at (p+1)D node points (see Figure 2.1). Introducing basis functions
{ϕi} in Vh, which are zero at all node points except the i’th where it equals
one, we can expand the solution u in this basis, and use the fact that we
may replace v with ϕi since they constitute a basis in Vh. We then arrive at
the following discrete system

N∑
i=1

(∇ϕj ,∇ϕi)ui = (f, φj) j = 1 . . . N

or, in matrix notation,
Au = f , (2.1)

where
Aij = (∇ϕj ,∇ϕi) , fj = (f, φj)

which has to be solved for the unknowns uj , also referred to as degrees-
of-freedom (DoFs). For a more complicated problem, e.g., involving time-
dependence or non-linearities, a similar system will have to be solved in a
time-stepping iteration or Newton iteration.

In summary, the computational algorithm for finding the finite-element
solution consists of the following two phases:

1. Assembly phase
2. Solve phase

In the first phase, the system matrix A and the right-hand side vector f are
constructed. The second phase consists of solving the system in (2.1). In most
applications, the solve phase is the most time consuming of the two. Therefore,
speeding it up has been the target of much research. Since the matrix is, in
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general, very large and very sparse, iterative Krylov-subspace methods are
typically used for the solution. Within such iterative methods, most of the
work is spent performing matrix-vector multiplications [2]. Parallelizations
of the solve phase thus relies on efficient parallelization of the matrix-vector
product for sparse matrices, which is a well studied problem. On the other
hand, the assembly phase, which is a conceptually more complicated problem
involving data dependencies and updating of shared variables, has only
recently been attacked.

2.2 The Matrix Assembly

For the example of a stiffness matrix, the assembly consist of the following
computation,

Aij = (∇ϕi,∇ϕj) =
∫

Ω
∇ϕi · ∇ϕjdx .

Now the integral is split into a sum over all the elements in the mesh K,

Aij =
∑
k∈K

∫
Ωk

∇ϕi · ∇ϕjdx . (2.2)

Since each basis function ϕi is non-zero only at the i’th DoF and zero on all
others, it will only be non-zero on elements to which the i’th DoF belong.
This effectively eliminates all but a few combinations of basis functions from
each integral in the sum, i.e., the matrices in the sum are very sparse. If we
introduce a local numbering of the DoFs within an element, there will be
an element-dependent mapping Ik translating local index j to global index
Ik(j), and an associated permutation matrix (Pk)i,j = δi,Ik(j). Using this,
and introducing ϕkl = ϕIk(l) as the l’th basis function on element k, we can
write (2.2) on matrix form as

A =
∑
k∈K

Pka
kP Tk , (2.3)

where the local matrix ak is defined as

akl,m =
∫

Ωk

∇ϕkl · ∇ϕkmdx . (2.4)

To summarize, the assembly consists of computing all of the local ma-
trices ak, and summing them up. The effect of the multiplication with the
permutation matrices is merely that of distributing the element of the small
and dense matrix ak into the appropriate locations in the large and sparse
matrix A.
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2.2.1 Parallelization

The standard way of parallelizing the assembly is to have multiple parallel
threads compute different terms in the sum of (2.3). Since each of the local
matrices are independent of each other, they can readily be computed in
parallel. However, when the contributions are distributed onto the result
matrix A, great care must be taken to ensure correct results.

As can be seen in Figure 2.1, a given degree of freedom is in general
shared between multiple elements. This means that multiple contributions
in the sum in (2.3) will update the same memory location. It is thus of great
importance to perform the updates in a way such that race conditions are
avoided (see Section 3.2). In Paper I, we avoid the race conditions by using
various primitives for safe update of variables, chiefly transactional memory
but also locks and atomic intrinsics. In Paper II, in addition to atomic
intrinsics, we also utilize a mesh coloring approach where we can process the
elements in groups such that no race conditions arise (see Section 2.3.2)

Alternative approaches for the parallelization have also been suggested,
such as a node- or row-based parallelization where each thread is responsible
for computing a single entry or row in the matrix [3, 4]. This removes the
concurrent updates of shared variables, but instead introduces a lot of extra
computations, as the local-element matrix has to be recomputed for each
matrix entry it contributes to.

2.3 A Matrix-Free Approach

There are several problems with the two-phase approach considered in Sec-
tion 2.1. First of all, as the degree of the finite elements is increased, the
system matrix gets increasingly large and less sparse, especially for problems
in 3D. In these cases, the system matrix A may simply be too large to fit in
the memory of the computer.

Secondly, the sparse matrix-vector multiplications (SpMV) constituting
the bulk of work in the solve phase are poorly suited for execution on modern
processors, since the number of arithmetic operations per memory access
is low, making them bound by memory bandwidth rather than compute
power [5, Chapter 7]. As can be seen in Figure 2.3, the computational
intensity, defined as the number of arithmetic operations divided by the
number of bytes accessed, is about 0.2, which is more than an order of
magnitude lower than what is required for the most recent processors (see
Section 3.4). Note that the SpMV operation has a very irregular access
pattern for general matrices which reduces the utilization of the available
bandwidth, requiring an even higher number of arithmetic operations per
memory access.



2.3. A MATRIX-FREE APPROACH 7

Finally, when solving non-linear problems or problems with time-dependent
coefficients, it might be necessary to reassemble the system matrix frequently
throughout the simulation. This changes the relative work size of the as-
sembly phase, and precomputing the large system matrix for only a few
matrix-vector products may not be efficient. Similarly, when using adaptive
mesh refinement, the matrix has to be reassembled each time the mesh is
changed.

Motivated by this, several authors have suggested a matrix-free finite-
element method. The idea builds on the observation that, to solve the system
using an iterative method, the system matrix A is never needed explicitly,
only its effect as an operator A[ · ] on a vector v. This means that if we can
find a recipe A[v] for how to form Av without having access to an explicit
A, we can use A[v] in the linear solver, just as we would have used Av.

Matrix-free methods have been used for a long time in computational
physics in the form of Jacobian-Free Newton-Krylov methods to solve non-
linear PDEs. There, by approximating the Jacobian-vector product Jv
directly, one avoids having to explicitly form the Jacobian J of a Newton
iteration for solving non linear problems, reducing space and computation
requirements within the iterative linear solver [6].

The Spectral Element Method is a popular choice for hyperbolic problems
with smooth solutions, which essentially is a finite-element method with very
high-order elements; up to order ten in many cases [7]. Because of this, one
can get the flexibility of finite-element methods combined with the rapid
convergence of spectral methods. The latter are generalizations of the Fourier
method, and converge at an exponential rate, in contrast to finite-difference
methods or finite-element methods which only converge at an arithmetic
rate [8]. Because of the hyperbolic nature of the PDEs involved, they can be
integrated explicitly in time, and no linear system has to be solved during
the simulation. Still, one needs to apply a FEM-type differential operator to
the solution once to march forward in time, making a matrix-free approach
interesting. Also, due to the typically very high number of degrees-of-freedom
per element in spectral-element methods, the resulting matrix has a very
low sparsity, which further motivates that a matrix-free technique can be
beneficial. Usually, it is then based on the tensor-product approach described
in Section 2.3.3.

Melenk et al. investigate efficient techniques for assembly of the spectral-
element stiffness matrix, based on a tensor-product approach [9], In [10],
Cantwell et al. compare matrix-free techniques based on a local matrix and
tensor-product evaluation, with the standard sparse-matrix approach, and
find that the optimal approach depends on both the problem setup and the
computer system.

Kronbichler and Kormann describe a general framework implementing
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tensor-based operator application parallelized using a combination of MPI
for inter-node communication, multicore threading using Intel Threading
Building Blocks, and SIMD vector intrinsics [11]. The framework has been
included in the open-source finite-element framework deal.II [12, 13].

We form the matrix-free operator by using the definition of A from (2.3),

A[v] = Av =

∑
k∈K

Pka
kP Tk

 v =
∑
k∈K

(
Pka

kP Tk v
)
.

In other words, we have simply changed the order of the summation and
multiplication. Once again, the Pk simply permutation matrices which
simply picks out the correct DoFs and distributes them back, respectively. In
summary, the algorithm consists of (a) reading the local degrees of freedom
vk from the global vector v, (b) performing the local multiplication, and
(c) summing the resulting vector uk into the correct positions in the global
result vector u,

(a) vk = P Tk v
(b) uk = akvk
(c) u =

∑
k∈K Pkuk

(2.5)

This is essentially a large number of small and dense matrix-vector
products which lends itself well to parallelization on throughput-oriented
processors such as GPUs. Due to the similarity of this operation with the
assembly, the same parallelization approach can be used, where we evaluate
the local products in parallel. Also, for handling the concurrent updates of
shared variables, in this case the DoFs, the same techniques can be used (see
Section 3.5.2).

2.3.1 Evaluation of Local Operator

Although the matrix-free operation as defined in (2.5) is a collection of
dense operations, and thus significant improvement over the initial sparse
matrix-vector product, the actual computational properties will depend
on the evaluation of the local matrix-vector product,i.e, operation (b). To
evaluate the integral in the definition of the local matrix, see (2.4), a mapping
x = fk(ξ) from a reference unit element �̂ to element k is used. Using this
transformation, (2.4) can be rewritten as

akij =
∫
�̂

(
J−1
k ∇̂ϕ̂i

)
·
(
J−1
k ∇̂ϕ̂j

)
|Jk|dξ , (2.6)

where Jk is the Jacobian of the transformation fk, and ∇̂ϕ̂i(ξ) is the reference
element gradient of reference element basis function ϕ̂i. In practice, this
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integral is evaluated using numerical quadrature,

akij =
Nq∑
q=1

(
J−1
k (ξq)∇̂ϕ̂i(ξq)

)
·
(
J−1
k (ξq)∇̂ϕ̂j(ξq)

)
|Jk(ξq)|wq , (2.7)

where ξq and wq are the Nq quadrature points and weights, respectively.
Typically, Gaussian quadrature is used since polynomials of arbitrary degree
can be integrated exactly, provided enough points are used.

Now, if the mesh is uniform, i.e., if all elements have the same shape,
then the Jacobian will be independent of k, and all the ak will be equal.
In this case, we can precompute a single local matrix a, which can be read
by all the threads during the multiplication. In this case, a very favorable
computational intensity can be achieved (see Figure 2.3).

For a general mesh, this cannot be assumed, and precomputing and storing
the individual local matrices yields much too much data to be efficient. In
this case, a tensor-product approach can be used to decrease the data usage,
and increase the computational intensity (see Section 2.3.3). This is also the
case for non-linear problems, even for a uniform mesh, since the ak depend
on the solution on element k.

In Paper II, we study the performance of the matrix-free approach in the
case of a constant local matrix. Although this is restricted to linear problems
on uniform meshes, it is still interesting to consider since in many cases, a
uniform mesh can be used for large parts of the computational domain. The
experiments and results are discussed in detail in Section 3.5.2.

2.3.2 Mesh Coloring

In addition to the approaches for handling concurrent updates presented
in Sections 3.2 and 3.3, we have also looked at a technique based on mesh
coloring. This idea uses the fact that collisions can only appear between
very specific combinations of elements, namely the ones sharing a degree-
of-freedom. Thus, if we can process the elements in a way such that these
specific combinations are never run concurrently, we can avoid the race
conditions altogether. Looking at Figure 2.1, we note that only elements
sharing a vertex will share DoFs with each other. Therefore, we would like
to find a partitioning of the elements into groups, or colors, such that no
two elements within a given color share a vertex. We could then process the
elements a single color at a time, and prevent all conflicts from appearing.

Since we do not process all elements at once, the parallelism is reduced
by a factor 1

Nc
where Nc is the number of colors. In general, Nc will be

equal to the maximum degree of the vertex graph, which is defined as the
number of elements sharing a vertex. For logically Cartesian meshes, Nc = 2d,
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since all interior vertices are shared by the same number of elements; 2d,
where d is the dimensionality of the problem. On the other hand, for more
general meshes, Nc will be larger. Still, in both cases Nc is limited and
independent of the size of the mesh, and the overhead will not grow with
mesh refinement. Therefore, for large enough problems, the overhead will be
small. The situation is illustrated in Figures 2.2 (a) and (b).

(a) apa

A

B C
D

(b) prutt

Figure 2.2: Coloring of (a) a uniformly Cartesian mesh, and (b) a more
general mesh. For (b), note that A and B share a vertex and are thus given
different colors, as are A and C. Since A and D do not share any vertices,
they can be given the same color.

For a general mesh, finding the coloring can be done using various graph
coloring algorithms [14, 15, 16]. In Paper II, where we use a uniform logically
Cartesian mesh, handing out the colors is trivial. We assign colors by
computing a binary number based on the index coordinates of an element.
In 3D, the formula for the color c ∈ {0, 1, . . . , 2d − 1} is

c = (ix mod 2) + 2 · (iy mod 2) + 4 · (iz mod 2) ,

where ix, iy, and iz are the index coordinates of the element in the x, y, and
z directions, respectively.

We note that, while the reduction of parallelism is low, this approach still
introduces some superficial dependencies, since not all elements of different
color will conflict with each other (e.g. elements from different corners of the
domain). In particular, this introduces a global barrier between the processing
of one color and the next one, preventing overlapping of elements although
conflict free ones could be found. Resolving this situation completely is a
difficult problem, but one way to solve it is to consider the dependency graph
of the problem, which can be achieved using a task-based parallelization
framework. One such task library is SuperGlue, which can handle complex
dependencies, including atomicity [17, 18]. This type of dependency can
be used to express the situation described in Section 3.2, namely that two
operations can be performed in any order, but not concurrently. In [18],
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Tillenius applies SuperGlue and achieves very good scaling for an N -body
problem similar to the one considered in Paper I (see Section 3.3.4)

2.3.3 Tensor-Product Local Operator

When the local matrix is not the same for all elements in the mesh, then
precomputing and storing the local matrices becomes impractical due to the
high memory requirement, which even exceeds that of the sparse matrix.
In this case, we can take another step in the same direction as the original
matrix-free approach, and exploit the specific structure of the local matrix.
Once again, we note that the local matrix ak is never needed explicitly, only
its effect upon multiplication with a local vector v,

ui =
np∑
j=1

aijvj ,

where np is the number of local DoFs. Equation (2.7) lets us rewrite this
operation in the following manner,

ui =
nq∑
q=1

(
J−1(ξq)T ∇̂ϕ̂i(ξq)

)
·

J−1(ξq)
np∑
j=1
∇̂ϕ̂j(ξq)vj

 |J(ξq)|wq , (2.8)

where the element index k has been dropped. The entity in brackets is simply
the gradient of v evaluated on the q’th quadrature point. Defining,

∇vq = J−1(ξq)
np∑
j=1
∇̂ϕ̂j(ξq)vj , (2.9)

(2.8) can be written as

ui =
nq∑
q=1

(
J−1(ξq)∇̂ϕ̂i(ξq)

)T
· ∇vq|J(ξq)|wq .

or

ui =
nq∑
q=1
∇̂ϕ̂i

T (ξq)J−T (ξq)∇vq|J(ξq)|wq . (2.10)

Now, for the quadrilateral or hexahedral elements under consideration, the
basis functions ϕ̂i can be expressed as tensor products of d one dimensional
basis functions ψµ. Assuming three dimensions, we get

ϕi(ξ) = ψµ(ξ1)ψν(ξ2)ψµd
(ξd) ,
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where we have dropped the symbol ˆ for reference element, and introduced
the multi-index i = (µ, ν, σ). For the basis function gradient, this implies

∇ϕi(ξ) =

ψ′µ(ξ1)ψν(ξ2)ψσ(ξ3)
ψµ(ξ1)ψ′ν(ξ2)ψσ(ξ3)
ψµ(ξ1)ψν(ξ2)ψ′σ(ξ3)

 .

Likewise, the quadrature points ξq can be expressed as

ξq = (ξα, ξβ, ξγ) ,

where ξα are the one dimensional quadrature points, and q = (α, β, γ) is a
multi-index. Note that we consistently use subscripts µ, ν, σ to index in
DoF space, and superscript α, β, γ as index for quadrature points. Defining

ψαµ = ψµ(ξα) , χαµ = ψ′µ(ξα) ,

and using the multi-index notation, we can can compute the solution at the
quadrature points as

vαβγ =
∑
µ

ψαµ
∑
ν

ψβν
∑
σ

ψγσvµνσ .

We can now rewrite (2.9) as

∇vαβγ = (Jαβγ)−1∑
µ

χαµψαµ
ψαµ

∑
ν

ψβνχβν
ψβν

∑
σ

ψγσψγσ
χγσ

 vµνσ , (2.11)

where Jαβγ = J(ξq) and the vector products are to be understood as element-
wise multiplication. Likewise, for the second step, the numerical integration
in (2.10), we have

vµ′ν′σ′ =
∑
α

χ
α
µ′

ψαµ′

ψαµ′

∑
β

ψ
β
ν′

χβν′

ψβν′

∑
γ

ψ
γ
σ′

ψγσ′

χγσ′

(Jαβγ)−T ∇vαβγwαβγ |Jαβγ | .
(2.12)

The two very similar operations (2.11) and (2.12) both consists of a series
tensor contractions – essentially dense matrix-matrix products – and a
couple of element-wise scalar and vector operations. It is thus an significant
improvement over the initial sparse matrix-vector product when it comes
to utilization computational intensity, making very attractive for execution
on throughput-optimized processors such as GPUs. This can be seen in
Figure 2.3, which shows the computational intensity and bandwidth usage
of the three main operator application approaches considered in this thesis.
It is clear that in the cases when the local matrix implementation cannot be
used, the tensor-product technique is very attractive alternative, especially
for elements of high complexity, i.e. high dimension and polynomial order.
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Figure 2.3: Comparison of operator approaches with respect to bandwidth
usage and computational intensity. The bandwidth is computed as the amount
of data which has to be read for a single operator application.
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Chapter 3

Modern Processors

3.1 Background

As widely known, computer processors undergo an extremely fast develop-
ment. According to the empirical observation of Moore’s law, the number of
transistors in a chip grows exponentially with a doubling every two years [19].
However, since the early 2000s this does no longer translate directly into
a corresponding increase in serial performance. At that point, it was no
longer possible to make significant increases in the clock frequency, since
voltage could no longer be scaled down with the transistor size due to power
issues. This is usually referred to as the power wall, or breakdown of Dennard
scaling [20]. Instead, the focus has shifted towards increasing parallelism
within the processor in the form of multicore designs.

This change has increased the burden on the programmer since utilizing
a parallel processor is more difficult than a serial one [5]. When writing a
parallel program, the work must be split into smaller tasks that can be per-
formed concurrently, and issues such as communication and synchronization
must be addressed.

3.2 Techniques for Updating Shared Variables

One of the main problems when programming multicore processors is the
coordination of memory access. In contrast to cluster computers where the
memory is distributed over the nodes, a multicore processor has a single
memory which is shared between the cores. The multicore processors are
typically programmed using threads, which all have access to the complete
shared memory. While flexible, this approach allows for subtle bugs called
race conditions.

A race condition occurs when two threads concurrently manipulate the

15
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same memory location, resulting in undefined results (see example in Ta-
ble 3.1). It is up to the application programmer or library developer to

x Thread 1 Thread 2
0 x1 ← x
0 x1 ← x1 + 1 x2 ← x
1 x← x1 x2 ← x2 + 1
1 x← x2

Table 3.1: Two threads increment the same variable x concurrently, leading
to the result x = 1 instead of the expected x = 2.

guarantee that no race conditions can appear, and this is one of the main
difficulties when writing multithreaded programs.

The code segments that potentially might conflict with each other, or
with other copies of itself, is referred to as critical sections. In order to avoid
race conditions, the critical sections need to be executed mutually exclusively,
i.e. only a single thread is allowed within a critical section simultaneously.

The most common technique for achieving exclusivity is to use locks,
which are mutually exclusive data structures with two operations – lock,
which obtains the lock, and unlock, which releases the lock. If the critical
section is surrounded with a lock and an unlock operation, then only a single
thread will be allowed to be in the critical section, since any other thread
will not succeed with the lock operation until the first thread has completed
the unlock operation following its critical section.

Another way of achieving mutual exclusivity is the concept of atomicity.
If all the operations in the critical section are considered an indivisible entity,
which can only appear to the memory as a whole, then it can be executed
safely concurrently. For simple critical sections, e.g. an incrementation of a
variable, the processor architecture may offer native atomic instructions.

Atomic instructions usually perform well because of the efficient imple-
mentation in hardware. However, they cannot be used for general critical
section and are limited to the available atomic instructions available. Al-
though simple atomic instructions such as compare-and-swap can be used
to implement somewhat more complex atomic operations, this is still very
limited since, typically, not more than a single memory location can be
manipulated.

Locks on the other hand are completely general, but can lead to several
performance related issues. A deadlock occurs when two or more threads
are waiting for each other’s locks. Lock convoying is when many threads are
waiting for a lock while the thread holding the lock is context switched and
prevented from progressing. Priority inversion happens when a low-priority
thread holds the lock, preventing execution of threads of higher priority [21].
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3.3 Hardware Transactional Memory

Another more recent technique which also uses atomicity to achieve mutual
exclusion is transactional memory. Rather than surrounding the critical
section by lock and unlock operations, all the instructions of the critical
section are declared to constitute an atomic transaction. Then, when the
transaction is executed, the transactional memory system monitors whether
any conflicting operations have been performed during the transaction. If
conflicts are detected, the transaction is aborted, i.e., all of its changes to
the memory system are rolled back to the pre-transactional state. On the
other, if no conflicts were detected, the transaction commits, i.e., its changes
are made permanent in the memory system.

Since this approach assumes a successful execution, and only deals with
conflicts if they appear, it can be regarded as an optimistic approach. This
is in contrast to the locks-based technique, where we always perform the
locking even if no actual conflicts occurred, thus being a more pessimistic
approach. This can potentially lead to lower overheads for the cases when
contention is low, i.e., when conflicts are rare.

Another great benefit with transactional memory is in the ease of use.
To get good performance with locks, it is necessary to dissect the algorithm
and identify fine-grained dependencies in order to get the most parallelism
out of it, and the problems mentioned in the previous section. On the other
hand, with transactions, one simply has to declare the whole critical section
as a transaction, and then the system will find conflicts automatically with
a high granularity (typically cache-line size). With a sufficiently efficient
implementation of the transactional memory system, this has the potential
to simplify the programming of high-performance parallel programs.

Transactional Memory was first introduced by Herlihy and Moss in
1993, where they suggest an implementation based on a modified cache-
coherence protocol [21]. In the following years, several studies investigating
possible transactional-memory implementations in hardware or software were
published [22, 23, 24, 25]. Around 2008, Sun Microsystems announced the
Rock processor; the first major processor intended for commercial use to
feature transactional memory in hardware [26]. Although eventually canceled
after the acquisition of Sun by Oracle, several prototype Rock chips were
available to researchers. More recently, IBM has included transactional
memory in the BlueGene/Q processor [27], whereas Intel has introduced
transactional memory in the form of the Transactional Synchronization
Extensions in their Haswell processor series [28]. For both of these systems,
relatively good performance when applied to scientific computing has been
demonstrated [29, 30].
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3.3.1 The Rock Processor

All the experiments in Paper I were performed a prototype version of the
Rock processor. The Rock is a 16-core processor featuring the SPARC V9
instruction set. The cores are organized in four clusters of four cores, where
each cluster shares a 512 kB L2 cache, a 32 kB instruction cache, two 32 kB L1
data caches, and two floating point units. Except for hardware transactional
memory, other exotic features of the Rock processor includes Execute Ahead
and Simultaneous Speculative Threading. Execute Ahead lets a single core
continue performing future independent instructions in the case of a long-
latency event, e.g., a cache miss or TLB miss, and return to the previous
point once the lengthy operation is ready, performing a so called replay phase.
In Simultaneous Speculative Threading, this is expanded even further where
two cores can cooperate with performing the future independent instructions
and the replay phase, thus executing a single serial instruction stream at
two points simultaneously. In both of these cases, an additional benefit is
that thread executing future instructions can encounter further cache misses,
effectively acting as a memory prefetcher. Both EA and SST utilize the same
checkpointing mechanism used to implement transactional memory [26].

The Rock supports transactional memory by adding two extra instruc-
tions:

• chkpt <fail_pc>

• commit

The chkpt instruction starts a transaction, and the commit instructions ends
it. If a transaction is aborted, execution jumps to the address referred to
by the fail_pc argument. A new register %cps can then be read to get
information on the cause of the abort.

3.3.2 Failed Transactions

The Rock processor implements a best-effort transactional memory system,
meaning that any transaction may fail, whereas other, bounded, implemen-
tations provide guarantees that transactions satisfying certain size criteria
always commit. A best-effort implementation offers flexibility and has the
advantage of potentially committing transactions of much larger size than
on a corresponding bounded implementation. However, since transactions
always may fail, even if there are no conflicting writes, a clever fail handler
is necessary to ensure forward progress and performance. In Table 3.2, the
various reasons for a fail are listed, along with the associated bits of the
%cps register. In the following, we discuss the most important reasons for
failure and how we handle them, based on our hands-on experience and the
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Bit Meaning
0x001 Invalid
0x002 Conflict
0x004 Trap Instruction
0x008 Unsupported Instruction
0x010 Precise Exception
0x020 Asynchronous Interrupt

Bit Meaning
0x040 Size
0x080 Load
0x100 Store
0x200 Mispredicted Branch
0x400 Floating Point
0x800 Unresolved Control Transfer

Table 3.2: Reasons for a failed transaction as indicated by the bits of the
%cps register. This information is based on a table in [31].

information in [32]. The absolute majority of the failed transactions belonged
to one of the following types:

Conflict Another thread tried to modify the same memory address.
Load A value could not be read from memory.
Store A value could not be stored to memory.
Size The transaction was too large.

Due to limited hardware, there are many constraints on transactions, such
as the total number of instructions, and the number of memory addresses
touched. In our experiments, we were able to successfully update up to 8
double precision variables (64 bytes) in a single transaction. More updates
frequently resulted in the transaction failing with the Size bit set. However,
once again we note that the transactional memory still provides no guarantees,
and also smaller transactions sometimes failed with the Size bit set. A
transaction will be aborted with the Conflict bit set if another core made a
conflicting access to the same cache line. The Load or Store Store bits are
set when the transaction tries to access memory which is not immediately
available, which happens in the case of a L1 cache miss or a TLB miss. In
addition, the Store bit is set if the memory location is not exclusive in the
cache coherency protocol.

For the transactions failing due to Conflict, we employ a backoff strategy
in our fail handler, where we introduce a random but exponentially increasing
delay before retrying the transaction. This is reasonable, since if two threads
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accessed the same data recently, they are likely to do so again. If the
transaction failed due to a Store error, we noticed that simply retrying it
indefinitely often never led to a success. The problem is that, although the
memory system notices that the data is not available or in the proper L1
cache state, and aborts the transaction, it does not fetch it and make it
exclusive. To trigger this, we must write to the memory location outside of
a transaction, while at the same time making sure not to change or corrupt
the data. We achieve this by utilizing a trick from [32], in which we perform
a dummy compare-and-swap – write zero if the memory location contains
zero. After this, we retry the transaction. In the event of a Load error,
we simply read the corresponding data outside of a transaction to have the
memory system fetch it into the caches, and then retry the transaction. The
fail handling scheme is summarized in Listing 3.1.

1 while transaction fails:
2 if cps == conflict :
3 back -off
4 else if cps == store:
5 compare -and -swap data
6 else if cps == load:
7 load data
8 retry transaction

Listing 3.1: Strategy for handling failed transactions

In Table 3.3, we see the amount of failed transactions for the different
experiments conducted on the Rock processor.

Experiment Failed Trans. Conflict Load Store
Overhead (1 update) 0.00026 %
Overhead (8 updates) 0.0004 %
Contention (100 %) 13.2 %
Contention (0.098 %) 0.099 %
FEM (few computations) 18.8 % 0.4 % 95.6 % 4.0 %
FEM (many computations) 19.2 % 0.2 % 96.7 % 3.1 %
N -body 0.4 % 51.9 % 34.0 % 3.1 %

Table 3.3: Amount of failed transactions as percentage of the total number
of updates. Included is also statistics of the fail cause, except for the mi-
crobenchmarks, where the fail reason was not recorded to minimize overhead.
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3.3.3 Microbenchmarks

In order to investigate the performance of the transactional memory system
for performing floating point updates, two microbenchmarks were devised,
studying the overhead of transactions, and the sensitivity to contention,
respectively. In all the experiments, we tried using two types of locks:
Pthread mutex and Pthread spin lock. However, since the spin lock always
performed the same or worse, we exclude it from the discussion.

Overhead of Synchronization

The point of the overhead microbenchmark is to see if transactions have
lower overhead than the other synchronization techniques. In this program,
we let a single thread perform one million increments of a small floating point
array using protected updates. In addition to performing the update inside an
atomic transaction, surrounding the update with a lock, and performing the
update using the compare-and-swap instruction, we also include a reference
version which does no protection at all, constituting base line. Since only a
single thread is updating the array, overhead related to contention should not
affect the result. To see if more updates can compensate for the overhead, we
vary the size of the array from one to eight doubles. The compare-and-swap
version is limited to a single double precision value and cannot be used
for larger arrays if the whole array should be updated in a single atomic
operation. Note that for cases where it is acceptable to ensure atomicity
elementwise, the compare-and-swap technique would likely perform very
poorly since the overhead is proportional to the number of updates. Finally,
the Rock processor can only perform compare-and-swap on integer values,
incurring some overhead in the form of conversion between floating point
and integer numbers, which involve stores and loads.

In the version based on transactions, we do not utilize any fail strategy
other than simply retrying the transaction if it failed. However, we do make
sure that all the data is present in the cache before the experiment to avoid
the problem with Store errors described in Section 3.3.2. To get information
on the amount of failed transactions, we count both the number of started
transactions, and the number of successful ones.

Since the operation we are trying to benchmark – the update of a few
floating point variables – is very small, we have to be very careful during
the implementation. For our first version, which was implemented in C, we
observed that the compiler produced very different results for the different
methods, yielding large performance differences. Therefore, we instead
reimplemented all of the benchmarks in assembly code, which produced
much more similar programs, and also improved the overall performance.
Moreover, to further minimize the difference between the different methods,
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we count the number of failures also for the methods where all updates will
succeed.
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Figure 3.1: Result of the overhead benchmark. The width of the lines show
the variation from 100 runs, measured as lower to upper quartile.

Looking at Figure 3.1, we see that the results confirmed our prediction
that transactions have the lowest overhead. Although we observed a few
spurious failed transactions – see Table 3.3, these do not affect the results
and are neglected. We also see that, while limited to a single entry, the
compare-and-swap version performed decently in that case.

Effect of Contention

In the contention microbenchmark, we want to see how the performance is
affected if we add contention in the form of other threads trying to update
the same memory location. We let one thread per core update its own entry
in an array of length 16, and introduce contention by having threads 2 – 16
sometimes also write to the memory location of thread 1. It is not entirely
straightforward how to go about to attain a desired level of conflicts, since
although two threads write to the same location, a conflict might not actually
happen. By controlling with what probability threads 2 – 16 write to the
shared location, we can quantify percentage of potential conflicts. Although
this is no perfect measure of the number of conflicts, the two will definitely
be correlated, and at probability 100 %, in which case all threads always
update the same location, we will have the highest amount of contention
possible. Furthermore, we avoid false sharing by making sure that array
entries reside their own cache lines. The experiment consists of each thread
performing one million updates each.

Here, we include three versions; using transactions, locks and compare-
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and-swap, respectively. Since we expect quite a few conflicts, the version
based on transactions includes the fail handling strategy in Listing 3.1. The
compare-and-swap version employs a simplified strategy involving only the
exponential backoff. To see what number of actual conflicts we obtain
for a given contention probability, we maintain a counter of the number
of transactions failing on the initial try. We also measure the number of
conflicts for the locks case, which is achieved by first attempting to grab the
lock using the pthread_mutex_trylock function, which gives us information
on whether the lock was available on the first try or not. If there was a
conflict, we simply retry grabbing the lock, but this time using the regular
blocking pthread_mutex_lock.
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Figure 3.2: Results of the contention benchmark, presented as the median
of 100 runs. The width of the lines show the variation from lower to upper
quartile.

In Figure 3.2, we see that the version using locks once again performed
the worst. What was more surprising was the results for transactions and
compare-and-swap. We had expected transactions to have a low overhead
when contention was low, and a high overhead when contention was high
as many transactions would fail and have to be retried. Also, from the
overhead experiment, we expected compare and swap to be slower than
transactions due to the higher overhead, but possibly be less sensitive to
contention. In contrast, the results show that compare-and-swap was faster
than transactions for low contention, whereas transactions leveled off for
high contention making it the fastest method in that case. One explanation
for this can be that the store buffer serializes the writes, stopping more
transactions than necessary from failing.

From Table 3.3, we conclude that there indeed was a clear correlation
between potential and actual conflicts. However, we also see that even if
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16 threads update a single location as frequently as possibility (the “100 %”
case), only a fraction of the transactions actually fail. While we do use the
exponential backoff, the initial attempts are in no way designed to avoid
conflicts.

3.3.4 FEM Assembly Experiment

In Paper I, the performance of the transactional memory system of the Rock
processor for performing floating point updates is studied. We compare the
performance of three different versions; one based on locks, one based on
atomic operations using the compare-and-swap instruction, and one based
on transactional memory.

Since transactional memory has the potential to simplify implementation
of parallel algorithms, we consider a straight-forward assembly based on
(2.3). For instance, this means that we store the matrix in a full format, since
a sparse format would require knowledge of the sparsity pattern beforehand.
Although this limits how large problems we can study, it should still let us
get a rough estimate of the expected performance. While it does use much
more bandwidth and introduce a lot of additional cache misses compared
to a sparse matrix format, the memory pattern is still similar to what can
be expected when assembling a much larger sparse matrix of the same size
as our full matrix. Also, by storing the matrix elements more sparsely, we
largely avoid false sharing.

To study how the performance is effected by the number of operations
within the evaluation of the local matrix, we have considered two versions;
one with only a few computations, and one with many computations. The
actual computations are artificial in both cases. The second version represents
more advanced methods, such as multi-scale finite-element methods, where a
smaller finite-element problem is solved within each element [33].

Figure 3.3 shows the results of the finite-element assembly application.
We can see that the compare-and-swap implementation was fastest for the
memory-intensive version with few operations, whereas for the compute-
intensive version with many operations, transactions were the fastest. This
confirms that transactions perform the best when contention is low. The
locks version was the poorest overall. Also, we note the large statistical
variation due to the rather short run times of this experiment. Finally, we
observed a very low speedup for the memory-intensive version – 3.3x at best
for the compare-and-swap implementation – which can be explained by the
fact that the application is memory bound.

Considering the amount of aborted transactions (Table 3.3), we see that
there was a relatively high amount of aborts – the highest of all experiments.
However, looking at the distribution of causes, we see that there was in fact
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Figure 3.3: Median speedup over serial for the different finite-element assem-
bly approaches. The shaded areas show the variation from lower to upper
quartile.

almost no conflicts. Rather, the vast majority of all the fails are caused by
cache misses or other memory-related problems. This is not surprising as
most of the variables are stored in their own cache line, and are only changed
very rarely.

N-Body Simulation

In Paper I, we also study a similar problem; an N -body simulation. This
is a very common model in scientific applications, such as cosmology [34],
molecular dynamics [35], and even machine learning [36]. In the N -body sim-
ulation, the forces acting between a number of particles have to be calculated.
Since the force on a given particle consists of a sum of contributions from all
other particles, it also involves concurrent updates of shared variables. Once
again, we have only studied the simple all-to-all interaction. More advanced
algorithms for N -body simulation include, e.g., Barnes-Hut [37], or the Fast
Multipole Method [38].

Just as for the FEM application, we evaluate a locks-based version, one
using compare-and-swap, and one based on transactions. To decrease the
overhead, we consider chunks of particles and update a whole chunk using a
single transaction or lock. This approach is not available for the compare-
and-swap version, due to the limitation to a single variable. Finally, we
include a more advanced algorithm using privatization of memory to avoid
the conflicts altogether, at the price of more memory and more effort from
the programmer.

In Figure 3.4, we see the results of the N -body experiment, from which we
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can conclude that transactions performed slightly better than locks. Compare-
and-swap performed considerably worse, probably because of the lack of
blocking. However, we also see that the more advanced implementation
based on privatization is still the superior version.
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Figure 3.4: Results of the N-body experiment as speedup over the fastest
serial version. The (negligible) width of the lines show the statistical variation
from first to third quartile.

In this case, only 0.4 % of the transactions failed (see Table 3.3). The
reason for this surprisingly low number is that the algorithm has a low
memory footprint – only 900 cache lines compared to more than 21 000 cache
lines for FEM application. In addition, this data is accessed in a fairly dense
matter, due to the the chunking technique. This means that most of the
memory accesses will hit in the cache. Out of the transactions that did fail,
the majority were caused by conflicting writes. Note that for this application
as much as 11 % of the failed transactions had an unknown cause.

Conclusion

Summarizing the results from both applications, we conclude that transac-
tions were faster than both locks and compare-and-swap for updating shared
floating-point variables, but that avoiding concurrent updates is the best
choice when it is available. However, we also saw that for some applications,
such as the compute-intensive matrix assembly, transactions can provide
a moderate speed up also when a very naive algorithm is used. With the
complicated fail handling strategy provided by a library, and with better
compiler support for transaction programming, this certainly confirms that
transactional memory can simplify parallel programming.
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3.4 Computational Intensity Trends

In addition to the arrival of multicore processors, another problem which
has become more severe recently is the fact that memory bandwidth has not
scaled at the same rate as the processors.This situation was not changed
by the transition to multicore processors; many slow cores will need as
much memory bandwidth as a single fast one. Between 2007 and 2012,
the processing power (Gflop/s) of Intel processors increased by about 30 %
annually, whereas corresponding increase in the bandwidth (GB/s per socket)
was only about 14 %. This balance between computations and bandwidth
can be characterized by the computational intensity, which is defined as the
ratio of the peak processing power in Gflop/s to the maximum bandwidth in
GB/s. Looking at Figure 3.5, we see that recent multicore processors and
GPUs have a double-precision computational intensity of about 5-10. This
means that for each double-precision floating-point number (8 bytes) fetched
from the memory, about 40-80 double-precision arithmetic operations are
required.
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Intel CPUs: Xeon X5482, X5492, W5590, X5680, X5690, E5-2690,
E5-2697v2, and E5-2699v3

Nvidia GPUs: Nvidia GPUs Tesla C1060, C1060, C2050, C2090, K20,
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AMD GPUs: Radeon HD 3870, HD 4870, HD 5870, HD 6970, HD 6970,
HD 7970 GE, HD 8970, and FirePro S9150
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Figure 3.5: Change in computational intensity for processors during the last
six years for double precision operations. Graph based on a blog post by Karl
Rupp [39].

We therefore have a situation where most of the ’performance improve-
ment’ of new processors will come in the form of additional computations
per memory fetch. Only for applications with a high enough computational
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intensity will this translate to any actual performance improvement. For
applications which are dominated by operations limited by bandwidth, e.g.,
sparse matrix-vector products, stencil computations, or FFT, we can not
expect any speed up.

This means that, in order to continue speeding up our applications
by leveraging new capacity, we have to find algorithms that better match
upcoming processor architectures. In practice, this means algorithms which
need less memory bandwidth, possibly at the price of requiring additional
computations. Indeed, as computations become abundant, being wasteful
and recomputing previous results might actually prove beneficial.

Next, we look at one of the main new trends in computer processors –
graphics processors, and how the high-performance computing community
has been taking advantage of them.

3.5 Graphics Processors

In recent years, programming of graphics processing Units (GPUs) for general
computations have become very popular. Driven by the insatiable demand
from the gaming market for ever more detailed graphics, the GPUs have
evolved into highly parallel streaming processors capable of performing
hundreds of billions of floating point operations per second.

The design of GPUs is streamlined to the nature of their workload.
Computer graphics essentially consists of processing a very large number
of independent polygon vertices and screen pixels. Because of the very
large number of tasks, there is no problem with executing each individual
task slow as long as the overall throughput is high. Therefore, most of the
transistors of a GPU can be used for performing computations. This is in
contrast to CPUs, which are expected to perform large indivisible tasks in
serial, or a few moderately sized tasks in parallel, possibly with complicated
inter-dependencies. To optimize for this workload, i.e. making a single task
finish as quickly as possible, a considerable amount of the hardware of a
CPU – in fact most of it – is dedicated to non-computation tasks such as
cache, branch prediction and coherency. Also, to get the necessary data for
all the individual work items, the memory system of graphics cards tend
to be focused on high bandwidth, whereas the caching system of a CPU
aims at achieving low latency. Finally, as computer graphics in many cases
can tolerate a fairly low numerical precision, the GPU architecture has been
optimized for single-precision operations. This means that while CPUs can
typically perform operations in single precision twice as fast as in double
precision, this factor is of the order of 3-8 for GPUs. As a consequence of
the higher computing power per transistor, GPUs achieve a higher efficiency,
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both economically (i.e. Gflops/$) and power-wise (i.e. Gflops/W), although
the most recent multicore CPUs are improving in this respect. See Table 3.4
for a comparison of different modern CPUs and GPUs.

Processor Cores Gflops GB/s Gflops/W Gflops/$
Intel Core i7 5960X 8 384 (768) 68 2.7 (5.5) 0.38 (0.77)
Intel Xeon E7-2890v2 15 336 (672) 85 2.2 (4.3) 0.052 (0.1)
Intel Xeon E5-2699v3 18 662 (1 325) 68 4.6 (9.1) 0.16 (0.32)
Nvidia Tesla M2090 512 666 (1 332) 177 3.0 (5.9) 0.17 (0.33)
Nvidia Tesla K20X 2 688 1 310 (3 935) 250 5.6 (16.7) 0.34 (1.0)
Nvidia Tesla K40 2 880 1 429 (4 291) 288 6.1 (18.3) 0.26 (0.78)
Nvidia Tesla K80 4 992 1 868 (5 611) 480 6.2 (18.7) 0.37 (1.1)
AMD FirePro S9150 2 816 2 534 (5 069) 320 10.8 (21.6) 0.77 (1.5)
Intel Xeon Phi 7120P 61 1 208 (2 417) 352 4.0 (8.1) 0.29 (0.59)

Table 3.4: Comparison of various processing units. All numbers are peak
values and taken from the manufacturers’ specifications. The numbers in
parentheses are for single precision, and the others are for double precision.

Scientific applications, such as e.g. stencil operations or matrix-matrix
multiplications, are usually comprised of many small and similar tasks with
a high computational intensity. Because of this, the fit for the throughput-
optimized high-bandwidth GPU hardware has in many cases been great.
However, several limitations of the graphics-tailored GPU architecture limit
how well applications can take advantage of the available performance poten-
tial of GPUs. For instance, few applications possess the amount of parallelism
needed to saturate the massively parallel GPUs. In addition, for most scien-
tific applications, double precision is necessary to obtain meaningful results,
which, as mentioned, has a performance penalty over single precision. Fur-
thermore, while dependencies and synchronization are unavoidable parts of
most algorithms, these are often very difficult or even impossible to resolve
on GPUs. Thus, in order to fully utilize GPUs, it is often necessary to
make substantial changes to existing algorithms, or even invent new ones,
which take these limitations into account. Another issue is that data has to
be moved to the graphics memory before it can be accessed by the GPU,
which is presently done by transferring the data over the relatively slow PCI
bus. To avoid this bottleneck, data is preferably kept at the GPU for the
entire computation. Another approach is to hide the latency by overlapping
computation and data transfer.

The history of general-purpose graphics-processing unit (GPGPU) com-
putations started around 2000 when dedicated graphics cards were becoming
mainstream. In the beginning, the general-purpose computations had to
be shoehorned into the graphics programming pipeline by storing the data



30 CHAPTER 3. MODERN PROCESSORS

as textures and putting the computations in the programmable vertex and
pixel shaders. Examples of early successful general-purpose computations
on graphics hardware are matrix-matrix multiplication [40], a solution of
the compressible Navier-Stokes equations [41], and a multigrid solver [3]. A
summary of early work in GPGPU can be found in the survey paper by
Owens et al. [42].

However, the many restrictions and the fact that a programming model
for graphics had to be exploited made it a daunting task to do general-
purpose computations with the graphics pipeline. In response to this, at the
end of 2006, Nvidia released CUDA, Compute Unified Device Architecture,
which simplified the programming and led to a dramatic increase in interest
for GPGPU.

The CUDA platform provides a unified model of the underlying hardware
together with a C-based programming environment. The CUDA GPU, or
device, comprises a number of Streaming Multiprocessors (SMs) which in
turn are multi core processors capable of executing a large number of threads
concurrently. The threads of the application are then grouped into blocks of
threads and each block is executed on a single SM, independently of the other
blocks. Within a thread block or an SM, there is a piece of shared memory.
Furthermore, it is possible to have synchronization between the threads of
a single block, but it is not possible to synchronize threads across blocks,
except for a global barrier. There is also a small cache shared between the
threads of a block.

An important feature of CUDA, and arguably the most crucial aspect
to attain good utilization of the hardware, is the memory model. Because
transfers from the main device memory are only made in chunks of a certain
size, and due to poor caching capabilities, it is important to use all the data
of the chunks which are fetched. When the threads within a block access
a contiguous piece of memory simultaneously, such a coalesced memory
access is achieved. For further details on the CUDA platform, see the
CUDA C Programming Guide [43]. Examples of fields where CUDA has
been successfully utilized include molecular dynamics simulations [44], fluid
dynamics [45], wave propagation [46], sequence alignment [47] and, Monte
Carlo simulations of ferromagnetic lattices [48].

In response to CUDA and the popularity of GPU programming, OpenCL
was launched by the consortium Khronos Group in 2008 [49]. In many re-
spects, such as the hardware model and the programming language, OpenCL
and CUDA are very similar. However, in contrast to CUDA, which is pro-
prietary and restricted to Nvidia GPUs, OpenCL is an open standard, and
OpenCL code can be run on all hardware with an OpenCL implementation;
today including Nvidia and AMD GPUs, and even Intel and AMD CPUs.
While the same OpenCL code is portable across a wide range of platforms, it
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is usually necessary to hand tune the code to achieve the best performance.
In addition, CUDA, being made by Nvidia specifically for their GPUs, is still
able to outperform OpenCL in comparisons and when optimal performance
is desirable, CUDA is still the natural choice [50, 51].

Critique has been raised as to the long-term viability of techniques and
codes developed for GPUs in general and CUDA in particular, since these are
very specific concepts which might have a fairly limited life time. However,
an important point is that GPUs are part of a larger movement – that of
heterogeneity and increasing use of specialized hardware and accelerators.
Recently, all the major processor vendors have started offering dedicated
accelerators for computations, which, in addition to the Tesla GPUs of Nvidia,
include Intel’s Xeon Phi co-processor and the very recently announced FirePro
cards by AMD (see Table 3.4). Since most of these accelerators share a similar
throughput-oriented architecture, once an algorithm has been designed for
one of them it is not very difficult to convert to the others. Therefore,
developing algorithms and techniques for dedicated accelerators, such as
GPUs, is relevant also for the technology of the future.

3.5.1 Finite-Element Methods on GPUs

Due to the higher complexity of the assembly phase, early attempts at
leveraging GPUs for finite-element computations focused on speeding up the
solve phase [3, 52, 53, 54]. Since in matrix-based finite-element software, the
solve phase is based on a general sparse matrix-vector product, these can
readily take advantage of sparse linear algebra libraries for GPUs. Examples
of such libraries include CUSPARSE, an Nvidia library for sparse computa-
tions included in CUDA since 2010 [55]; and PARALUTION, a library for
sparse linear algebra targeting modern processors and accelerators including
GPUs [56], available since 2012.

On the other hand, as explained in Section 2.2, the assembly is a much
more complicated operation requiring explicit implementation to be per-
formed on the GPU. In [4], Cecka et al. explore different techniques for
performing the assembly on GPUs, using both element-wise and node-wise
parallelization. Dziekonski et al. propose a GPU-based implementation of
the assembly with computational electrodynamics in mind [57]. Markall et al.
study what implementations of FEM assembly are appropriate for many-core
processors such as GPUs compared to multi-core CPUs [58].

A number of studies have considered finite-element solution of hyperbolic
problems on GPU, which often take on a matrix-free approach. However,
we are not aware of existing matrix-free work for the GPU targeting el-
liptic and parabolic PDEs. In [16], Komatitsch et al. study a high-order
spectral-element method applied to a seismic simulation on a single GPU. In
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[59], the authors expand this to a cluster of GPUs using MPI. While using
the spectral-element method, basically a high-order finite-element method,
in the earthquake application considered, the partial differential equations
are hyperbolic and an explicit time stepping can be used. Together with
the Gauss-Lobatto-Legendre integration scheme, which yields a diagonal
mass matrix, this means that no linear system is solved during the simula-
tion, although the matrix-free operator application still constitute the most
important operation.

Klöckner et al. investigate a GPU-parallelization of a discontinuous
Galerkin (DG) method for hyperbolic conservation laws [60]. Due to prop-
erties of the DG method, the mass matrix is block diagonal, which means
that the system can easily be solved element-wise, removing the need for an
iterative solve phase.

3.5.2 Matrix-Free FEM Experiments

In Paper II, we study the performance of a GPU-based implementation of
the matrix-free finite-element operator application described in Section 2.3,
for future inclusion in a FEM solver of parabolic and elliptic PDEs. This is
motivated by the improved computational intensity of this approach, which
has the potential of letting us take advantage of immense the performance
offered by the GPUs.

To do this, we apply the matrix-free method to a Poisson problem similar
to the one in Section 2.1. We consider unit square or cube discretized by a
uniform Cartesian mesh, and elements of polynomial order one to four, in 2D
and 3D. While being a quite specific and simplified case, it still constitutes
an interesting problem since more advanced non-linear or time-dependent
equations are treated in a very similar way, and since a uniform logically
Cartesian mesh is often used in major parts of the domain. Since the most
important operation in the solve phase is the application of the matrix-free
operator, corresponding to a sparse matrix-vector product, we only consider
this operation, rather than solving an actual problem.

In our experiments, we include a number of different versions of the
stiffness operator. We have implemented these in a small C++/CUDA
framework for matrix-free FEM computations. The implementations for the
CPU use OpenMP for the parallelization, whereas the ones for the GPU
use CUDA. We use double precision in all our computations, since high
numerical accuracy is necessary for scientific applications.
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Matrix-Free Versions

Six different matrix-free implementations of the stiffness operator are included;
three for the CPU and three for the GPU, with the main difference being
mainly how the conflicting updates are handled. Firstly, there is a serial
version, Mfree, which simply performs all the elements on a single thread, in
which case no protection from conflicting updates is needed. Secondly, the
version Color utilizes the mesh coloring strategy described in Section 2.3.2,
to process the elements in conflict-free chunks. Finally, there is a version
PrivateBuffers which utilizes privatization in the same way as was used in
the N -body experiments (see Section 3.3.4). By creating a separate result
vector for each thread, they can safely perform their updates without risk for
race conditions. Eventually, the multiple vectors are summed up in parallel
in a reduction phase.

For the GPU, there is also one version, referred to as GPU_Color, which
uses mesh coloring. In the GPU_Atomic version, we use atomic operations
much like the compare-and-swap technique in the transactional-memory
experiments (see Section 3.3). In CUDA, these are supported as intrinsic
functions. At last, we include a third version GPU_Max which processes the
elements all at once much like the version using atomics, but performing
the updates without any protection at all. This of course does not yield
correct results, but is included as an reference of what performance to expect
with perfect treatment of conflicts (i.e. no overhead). Due to the very large
number of threads used by the GPU, the privatization approach used on the
CPU is infeasible on the GPU.

Matrix-Based Versions

For further comparison, we include matrix-based implementations of stiffness
operator for both the CPU and the GPU, which use a compressed sparse
row (CSR) matrix format, since this is efficient for sparse matrix-vector
products and other row-wise operations. In this format, the matrix is stored
in three arrays: val, which stores the non-zero entries of the matrix in row
order; col_ind, which stores the corresponding column indices; and row_ptr,
which stores the index in the val array of the first entry of each row.

For the GPU, we also tried using the hybrid (HYB) format [61]. However,
we found that this did not perform better than the CSR format for our case.
The reason for this is probably that the HYB format is intended for matrices
with very different number of nonzeros per row, whereas our matrix has
pretty decently balanced rows.

For dynamic construction, the CSR format performs extremely poorly,
since, for each element added, all subsequent entries in the arrays must be
moved. Instead, we perform the assembly a sparse matrix of the list-of-lists
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format (LIL), where each matrix row is stored in a separate STL vector.
This improves performance of dynamic construction, while still allowing for
fast conversion to the CSR format.

The CPU version is implemented manually using OpenMP, and paral-
lelized by letting each thread compute a number of consecutive rows of the
result. The GPU version on the other hand uses the efficient SpMV routine
from the CUSPARSE, a sparse linear algebra library for CUDA [55]. In both
cases, the same CPU code is used for the assembly, and in the GPU case, we
simply copy the matrix into the GPU memory.

Experimental Setup

The experiment consists of:

(a) Setting up the data structures
(b) Transferring data for the vector of unknowns to the GPU (if applicable)
(c) Performing a number of successive operator applications
(d) Transferring the result vector back to the main memory (if applicable)

In our time measurements, we include step (b) and (d) to account for the
transfer of data over the PCI bus. We perform 20 applications in step (c),
which is a low number; in practice one might need orders of magnitude more,
depending on the problem and the use of preconditioners. The numbers
reported are normalized to the number of operator applications, i.e. divided
by 20. To get solid results unaffected by statistical dispersion, we report the
minimum time from 20 identical runs of the entire experiment. Finally, we
also measure the time for step (a) separately, to quantify the benefit of not
having to assemble a matrix.

All experiments are performed on a dedicated system with an eight-
core Intel Xeon E5-2680, 64 GB DRAM, and an Nvidia Tesla K20c. The
system runs Linux 2.6.32, with GCC 4.4 and CUDA 5.5. All manually
implemented CUDA versions use 256 threads per block, while for the version
using CUSPARSE, this was not possible to specify. All the OpenMP-parallel
CPU versions use four threads since this was found to be the fastest.

Results

Looking at the setup times in Table 3.5, we see that the matrix-free versions
need many orders of magnitude less time than the matrix-based counterparts.
The difference between the matrix-based version for the CPU and the GPU
is due to the transfer of the whole sparse matrix to the GPU memory. We
note that, while the setup time for the matrix-based versions grew with
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element complexity, for matrix-free version setup time actually decreases
instead. This is simply because we consider problems with a fixed number
DoFs, meaning that the number of elements decreases with the element order.
For a given number of elements, we expect this number to be constant.

2D 3D
Element order 1 2 4 1 2 4
SpM 6.2 8 14 8.4 18 66
Color 0.33 0.25 0.18 0.48 0.24 0.075
GPU_SpM 7.9 10 18 12 23 -
GPU_Color 0.4 0.17 0.1 0.43 0.15 0.1

Table 3.5: Setup time in seconds of different operator implementations (for
4.1 and 6.6 million DoFs in 2D and 3D respectively). A fail due to insufficient
memory is indicated by “-”.

In Figures 3.6 and 3.7, we see the performance of all versions for the
largest problems, in 2D and 3D, respectively. Here, the performance numbers
are calculated as the number of useful operations divided by the run time of
a single operator application. In other words, this does not include the extra
computations performed by the matrix-free approach.
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Figure 3.6: Performance for the largest problems solved in 2D. The problem
size was 26 million DoFs for elements of order one, two, and four; and 15
million DoFs for third-order elements.

First of all, we see the tremendous computing power of the GPU. For both
the matrix-free and matrix-based algorithms, the GPU is 4-10 times faster
than the CPU. Furthermore, this difference increases as the element order is
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Figure 3.7: Performance for the largest 3D problems. The problem size was
33 million DoFs for elements of order one, two and four; and 14 million
DoFs for third-order elements.

increased; the number of computations per second increases strongly for the
matrix-free GPU-based, whereas this tendency is much weaker for both the
matrix-based GPU version, and all the CPU versions as well. However, this
pattern is broken for third and fourth order elements in 3D, where we see a
large drop in the performance. This is caused by the local matrix becoming
too large for the L1 cache, which for the Tesla K20 is equal to 32 kB, or
4096 doubles. The local matrix consists of (p+ 1)2d doubles, and is listed
in Table 3.6 for all the configurations included in the experiments. There,
we see that exactly for p = 3, the local matrix plus various other smaller
data structures such as element indices mappings will no longer fit in the
cache. This means that the threads in a block can no longer share the local
matrix in the cache and neither will it remain there when it is needed again,
thus no longer taking advantage of the spatial and temporal locality, causing
a decrease in performance utilization. Yet, there is still a large speed up
relative to the CPU-based versions.

p
1 2 3 4

2D 16 81 256 625
3D 64 729 4096 15625

Table 3.6: Size of local matrix for various parameter values (in doubles).

Looking at the performance of the two different approaches to handling
conflicts, atomic instructions and mesh coloring, we see that both of these
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had a slight overhead compared to the reference version (GPU_Max). In 2D,
the overhead is always smaller for the coloring approach except for elements
of order one, where the two approaches perform roughly the same. In 3D, the
coloring approach was fastest for elements of order one, whereas for second-
order elements, the overheads were once again about the same. For the two
configurations which are affected by the caching problem described above, i.e.
third- and fourth-order elements in 3D, this pattern is not repeated. Instead
we see that atomic operations have a negligible overhead whereas there is
still a slight overhead for the coloring approach. The explanation for this
is that the slower execution hides the overhead of the atomic operations by
making the updates less frequent. The coloring approach on the other still
has to process the colors separately, and thus still have roughly the same
overhead as for the other configurations.

If we look at the results on the CPU, we see that, for all element order
higher than one, the matrix free algorithm was faster than the one based on
a sparse matrix. Also on the GPU, the matrix-free versions outperformed the
one using a sparse matrix for all but first-order elements. However, note that
many of the entries for the matrix-based version are missing from Figures
3.6 and 3.7. This is due the fact that the sparse matrix can amount to a
substantial size, which in this case could not be fit in the available memory.
We see this problem also for the CPU, but it is most severe for the GPU,
which is limited to matrices smaller than 5 GB. This can be seen in greater
detail in Figures 3.8 and 3.9, which show how performance scales as we
increase the number of DoFs for different element orders, in 2D and 3D,
respectively. Here, we see that for all but a few cases in 2D, the curves are
truncated because of insufficient memory.

Since the matrix-free algorithm is parallelized over the elements, enough
elements are needed for the system to be fully utilized. This is seen by the
curves for the matrix-free versions which first stays relatively constant at a
low level, followed by a rapid increase when the number of elements becomes
large enough. Furthermore, we see that this inflection point is shifted slightly
to the right as element complexity increases. For the matrix-based versions,
since these are parallelized over the rows, i.e. over the DoFs, we do not
see this tendency. Rather, we see that enough parallelism is available for
smaller problems, in particular when elements are complex. This can be seen
especially from the 3D results.

Finally, the implementation based on mesh coloring was the fastest
version for the CPU, except for first-order elements where the matrix-based
version performed the best, in both two and three dimensions. Also, for the
CPU implementation using privatization (PrivateBuffers), we observe that,
while performing decently for medium sized problems, there is a decrease in
performance for the largest problems, probably due to the overhead in terms



38 CHAPTER 3. MODERN PROCESSORS

101 102 103 104 105 106 107

NDoF

0

2

4

6

8

10

G
flo

ps

SpM
PrivateBuffers
Color
GPU Color
GPU SpM

(a) First order elements

101 102 103 104 105 106 107

NDoF

0

5

10

15

20

G
flo

ps

SpM
PrivateBuffers
Color
GPU Color
GPU SpM

(b) Second order elements

102 103 104 105 106 107

NDoF

0

5

10

15

20

25

G
flo

ps

SpM
PrivateBuffers
Color
GPU Color
GPU SpM

(c) Third order elements

102 103 104 105 106 107

NDoF

0

5

10

15

20

25

30

35

G
flo

ps

SpM
PrivateBuffers
Color
GPU Color
GPU SpM

(d) Fourth order elements

Figure 3.8: Performance versus problem size for the 2D experiments.

of memory and the reduction phase.

Conclusion

In summary, using the matrix-free method, we were able to take advantage
of the computational power of the GPU, while still being able to solve much
larger problems than the version using a sparse matrix. This, together with
the fact that the assembly can be avoided, shows that the matrix-free method
should be considered for solving realistic problems involving non-linearities
and large meshes in 3D. Finally, we saw that for element types which result
too large local matrices, our local-matrix approach performed much worse
due to data no longer fitting in cache. This indicates that a tensor-based
approach can pay off also for problems with a constant local matrix, i.e.
linear problems on a uniform mesh.
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Figure 3.9: Performance versus problem size for the 3D experiments.
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Chapter 4

Outlook

4.1 Ongoing and Future Work

Currently, we are working on implementing the tensor-based approach de-
scribed in Section 2.3.3, to be able to solve problems on general meshes
or problems involving non-linear PDEs. In addition to this, we saw in
Section 3.5.2 that the local matrix implementation used in Paper II did
not perform well when the local matrix did not fit in the L1 cache. The
tensor-product technique on the other hand does use more distinct memory
in total (see Figure 2.3), but since each thread reads less data, it may perform
better for the problematic configurations, i.e. for high element order in 3D.

We plan on including the tensor-based operator and the present function-
ality in the finite-element library deal.II, to facilitate the spreading of the
code for usage by researchers within application fields [12, 13]. In addition,
this also opens up for the possibility of leveraging existing functionality such
as treatment of general geometries, usage of adaptive mesh refinement, and
solution of more general possibly coupled equations. Ultimately, this will let
us use our GPU implementation to speed up solution of realistic application
problems such as multiphase flow, where solving physically realistic problems
in 3D is not feasible today.

Also, we are looking at alternative approaches to the parallelization
including the node-wise approach suggested by Cecka et al. [4]. Since our
implementation is still memory bound, recomputing the element integrals
may pay off if a better memory access pattern can be achieved. In addition,
the conflicting writes are avoided.

Another related approach which we are investigating employs tiling by
letting a thread block process a connected set of elements. If the DoFs within
such an element tile are ordered in a consecutive manner, these can be read
collectively by the thread block, for a good access pattern. The DoFs inside

41
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the tile are not shared with other tiles and can thus be ordered in an optimal
manner, whereas the DoFs on the tile boundary have to be treated specially
since they are shared with neighboring tiles. It is therefore desirable with a
high ratio of internal elements to elements on the boundary, implying that
tiles should be as close to cubic as possible. In practice, the partitioning
is a trade off between the shape of tiles and a balance in the size of the
tiles. Apart from the benefit of efficient reading of the DoFs, this has the
additional advantage of allowing for many of the shared updates, namely the
tile-internal ones, to be done using atomic operations in the CUDA shared
memory. Alternatively, a manual merging strategy can be used, since threads
within a block can be synchronized conveniently.

Finally, motivated by the large difference in compute power between
single-precision and double-precision operations of many graphics processors,
we also plan on investigating if some of the computations can be performed
in single precision without sacrificing overall numerical accuracy. This is
especially interesting due to the iterative nature of the linear solver in which
one can allow for extra iterations if a single iteration can be performed faster,
and has been shown to perform well [52, 62].
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Abstract—This work investigates the benefits of transactional
memory for high-performance and scientific computing by
examining n-body and unstructured mesh applications on a
prototype computer system with transactional memory support
in hardware. Transactional memory systems have the potential
to both improve performance, through reduced lock overhead,
and ease development, by providing simplified synchronization
semantics. To date, only a few early experiments have been
presented on actual transactional memory hardware, with none
of them investigating the benefits of transactional memory for
scientific computing.

We investigate straight-forward implementations to see if
replacing locks by transactions can yield better performance
and compete with more complex algorithms. Our experiments
show that using transactions is the fastest way to concurrently
update shared floating-point variables, which is of interest
in many scientific computing applications. However, if it is
possible, avoiding concurrent updates altogether yields the best
performance.

Keywords-transactional memory; performance; high perfor-
mance computing;

I. INTRODUCTION

When using shared memory for parallel programming

communication is trivial, since each thread can access the

memory used by all other threads. However, because of the

concurrent execution, this also means that race conditions

may occur with unpredictable results when several threads

access the same shared resource. To resolve this, such

critical sections of the program must be executed mutually

exclusively.

The standard way to achieve the required exclusivity is to

use locks, which allow the programmer to enforce exclusive

access to the critical sections of the code by only one thread

at a time. To use locks it is necessary to explicitly define the

critical sections in the code. Even simple uses of locks can

cause difficult to diagnose problems, such as deadlock, lock

convoying, and priority inversion [1]. Lock convoying occurs

when a thread holding a lock gets preempted, preventing

other threads that are waiting for the lock from running

until the preempted thread is rescheduled. Priority inversion

occurs when a high-priority thread is prevented from running

by a low-priority thread holding a lock.

In addition to the difficulties of correctly using locks,

acquiring and releasing them incurs an overhead from

accessing the lock variable, whether or not there is any

contention for the lock. If the amount of work to be done

inside the lock is small, this overhead can be significant.

Because the lock variable is checked before executing the

code, a lock can be considered pessimistic, in that it does

not speculatively assume it can execute.

An alternative approach to achieve exclusivity is to group

operations that need to be executed mutually exclusively

together into an atomic transaction. Such transactions can

either commit entirely (succeed) or abort entirely (fail). If

a transaction commits, all changes made to memory by the

code within the transaction are made permanent and visible

to the other threads. If a transaction aborts, all changes are

rolled back and the pre-transactional state of the system is

recalled. As all changes show up to other threads either all

at once or not at all, the transaction is atomic.

With a transactional model, instead of acquiring locks

that guard the critical sections, the critical sections are

executed inside transactions, and conflicts between threads

are handled when they occur by aborting at least one

of the conflicting transactions. The result of this is that

only one thread can successfully execute a critical section

(transaction) at a given time, thereby achieving the required

exclusivity. Transactions can therefore be considered to be an

optimistic approach because they execute first and evaluate

whether they may commit afterwards. This is made possible

by the ability to roll back the changes made during the failed

transaction.

Unlike locks, transactions can avoid the overhead of

accessing lock variables for each transaction. This has the

potential to result in better performance for very fine grained

locking approaches where the amount of computation done

for each lock is small. Equally important for the performance

is the fact transactions are allowed to execute simultaneously

inside the critical section as long they do not touch the same

data.

In addition to the technical differences, transactions have

the potential to provide a simpler programming model for

parallel systems. With transactions, the programmer need

only reason about what portions of the application must

execute exclusively, and not about how to build an efficient

locking structure that ensures that behavior. If transactional

programming is sufficiently simple, and still provides ac-

ceptable performance, it could have a very significant impact

on the field of high-performance scientific computing. This

paper seeks to investigate these two issues of performance
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and simplicity on a prototype hardware transactional mem-

ory system. To answer these questions we first investigate

the overhead and potential of transactions compared to locks

through a pair of micro-benchmarks. From there we apply

our experience to two representative scientific applications

and compare their performance to lock-based versions.

Throughout these experiments we further address some of

the realities of programming on a (prototype) hardware

transactional memory system, and describe the difficulties

we encountered.

II. TRANSACTIONAL MEMORY AND THE TEST SYSTEM

A transactional memory (TM) system provides atomicity

through transactions, which are code sections monitored for

conflicting memory accesses. For instance, if transaction A

writes to a memory location from which transaction B has

read, the TM system will abort at least one of A and B. For

the programmer, this means that the piece of code declared

to be transactional will be executed atomically, or not at all.

Transactional memory can be implemented in software,

but with support in hardware it has potential to be efficient

enough for high-performance computing. In 1993 Herlihy

and Moss showed that Hardware Transactional Memory can

be implemented as a modified cache coherence protocol with

very successful simulation results [1].

The study presented in this paper is performed on a rather

unique prototype system with support for hardware transac-

tional memory [2]. The application interface for transactions

consists of two instructions: one that starts a transaction and

one that commits it. Access to these is provided through

intrinsic functions in the prototype compiler or directly in

assembly language. Transaction status codes are returned

through a special register for transaction failures. The system

has a single 16-core processor where four cores share a

512KB L2 cache and a total of 128 GB of system RAM.

More details can be found in [2].

Early experiences with this system were reported in [3],

where they emphasized that transactions may fail for many

other reasons than just conflicting accesses. These include

transactions that exceed the available hardware storage,

system interrupts during a transaction, too many outstanding

instructions during a transaction, and misses in the TLB and

caches, which are not serviced during the transaction. We

encountered similar failures during our experiments, with a

few particular failure causes occurring most frequently. We

therefore grouped our transaction failures into the following

four classes; coherence: for transactions failing due to con-

flicting memory accesses, load: for failures due to problems

reading memory, store: for failures when writing to memory,

and other: for all other problems. A much more thorough

investigation of the error codes and their meanings is given

in [4].

III. EXPERIMENTAL METHODOLOGY

All parallel implementations were done using the pthreads

library. With locks, we refer to pthread mutexes. We have

also performed tests using the pthread spinlock which gave

similar but slightly worse results in all tests and is excluded

here for clarity. To avoid false sharing, each lock was

assigned its own cache line.

On SPARC systems, the common way to achieve atomic

updates is to use the compare-and-swap instruction. Using

this method, it is only possible to update a single value

atomically, in contrast to using locks or transactions. For

our applications, this is not a restriction. A limitation is

that the compare-and-swap instruction only works on integer

registers, while we want to update floating point values. This

means that values must be moved back and forth between

floating point registers and integer registers. To do this,

the values have to be stored and reloaded, which is quite

expensive.

IV. TRANSACTION OVERHEAD

The overhead of acquiring and releasing a lock can be

significant for code with the fine-grained locking necessary

to maximize the parallelism in many applications. Transac-

tions have the potential to avoid this overhead by eliminating

the need to access the lock variable when acquiring and

releasing the lock. To evaluate these overheads, we wrote a

micro-benchmark that increments a small array of floating

point numbers. We compared the performance with the array

accesses inside a transaction, surrounded by a lock, using

compare-and-swap, and with no synchronization at all. The

size of the array was varied to determine if more work would

amortize the overhead of the synchronization primitives and

result in higher throughput. All tests were running on a

single thread to avoid any true concurrency issues, thereby

allowing us to assess the pure overhead of these approaches.

To further isolate the overhead, the data is prefetched into

the cache before the test begins. The maximum size of the

array was limited by the hardware to 8 elements or less for

the transactions.

A. Results

The results of the micro-benchmark are shown in Figure

1 and in Table I. In Figure 1, the lines are drawn thicker

to cover the upper and lower quartiles to show the statistic

dispersion. As can be seen by the only slightly thicker lines,

the variation is small.

On the prototype system, a transaction is roughly three

times as fast as using a lock. This shows that the non-
contention overhead of a transaction is significantly lower

than that of a lock. However, real lock-based applications

are likely to see an additional penalty from the increased

bandwidth of accessing multiple lock variables, that will not

be present in a similar transaction-based program.
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The compare-and-swap version can only protect a single

element, so updates with more than one element must be

done by updating each element separately. This means that

this operation is not atomic in the same sense as the other

methods. In our case, we only need element-wise atomicity

so this poses no problem, but makes the comparison unfair.

Because of this, we only show the measurement value for

one update in Figure 1 and Table I.
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Figure 1. Overhead: Time per update (��). The width of the lines represent
the variation of the results from the lower to the upper quartile.

Table I
OVERHEAD: MEDIAN TIME PER UPDATE (��)

Number of elements per update
1 2 4 8

Nothing 12.5 30.8 29.3 52.0
Transactions 104.7 106.5 112.0 142.3
CAS 164.1 - - -
Locks 339.9 331.5 352.9 356.2

It is worth noting that even when running on a single

thread, we observed an average of about two failed trans-

actions per million, with as many as eight and as few as

zero. For the purpose of this micro-benchmark these failed

transactions were simply ignored as they did not affect the

measurements.

V. FAILED TRANSACTIONS

As mentioned earlier, a transaction may fail to commit

for many different reasons. In a real application this must

be handled correctly or the execution will produce incorrect

results. The most basic approach is to simply retry the trans-

action until it succeeds. However, since the prototype system

used in our experiments provides a best-effort form of TM,

this is not a viable approach. Our initial results further

confirmed that some of our transactions never succeeded.

We observed that when this happens, the error is always

of the store type, meaning that writing to the memory failed

for some reason. This problem is also described in [3], and

the solution they presented is to perform a write access to

the address from outside of a transaction first. Doing so

causes the page to be loaded into the TLB and marked as

writable and the appropriate line loaded into the cache. To

accomplish this, we perform a compare-and-swap operation

to the memory page with dummy data (write zero, if content

was zero), as described in [3].

However, even with this strategy, we found that some

transactions still failed to commit. The reason turned out

to be that when using the compiler-intrinsic TM-functions,

the compiler reordered other write instructions into the

transactions, and it was one of these writes that caused the

transaction to fail. To solve this, we switched to using inlined

assembly code for the transactions. However, we should note

that this is not an intrinsic problem with TM, but rather an

effect of using a prototype system that lacks adequate SW

support.

We finally settled on the following approach for handling

failed transactions. If a transaction fails with a store error,

we execute a compare-and-swap to the address to initiate

an appropriate TLB and cache load, and then retry the

transaction. If a transaction fails with a load error, we read

the data from outside the transaction and loop until the data

is ready before retrying1. If the transaction fails due to a

coherence error, we use a back-off scheme, which uses

an exponentially increasing maximum delay to choose a

random wait time before retrying.

1 while transaction fails
2 if error == store
3 compare-and-swap data
4 else if error == load
5 read data
6 else if error == coherence
7 back-off
8 retry transaction

Listing 1. Strategy for handling a failed transaction.

Although we invested a lot of time and effort in handling

failed transactions, this does not mean that using transac-

tional memory must be difficult, as many of our solutions

are general and can be included in a software library and

reused.

VI. SCALING AND CONTENTION

To test how transactions and locks scale with different

amounts of contention, we wrote a micro-benchmark that al-

lows us to control the degree of conflict between the threads.

The benchmark for � threads consists of � items2 where

each thread updates its own item constantly, and threads 2-

� also update item 1 with some probability. By changing

this probability we can control the likelihood of conflicts.

1The loop is performed using the architecture-specific branch on register
ready instruction to determine when this data is ready.

2The data is arranged to avoid false sharing through cache lines between
the threads.
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Three versions of the benchmark was implemented, where

the atomicity was achieved using locks, transactions, and

compare-and-swap, respectively.

The benchmark also measures the actual number of

concurrency conflicts by counting the number of initial

concurrency failures in the transaction case and the number

of initially busy locks in the lock case. In the benchmark,

each thread performs 1,000,000 updates and each presented

result is the median of 100 runs.

A. Results

In Figure 2, the time needed per update for the different

implementations is plotted against the amount of contention.

Here, 25% “potential conflicts” indicates that each thread

would write to the shared value on 1 out of 4 updates. We

see that the benchmark is dramatically slower for locks than

for transactions and compare-and-swap.

The compare-and-swap version is fastest overall, except

for the highest levels of contention where the transactions

version levels out.

Although all benchmarks write to the shared memory

address with the same probability, the actual number of con-

flicts varies between the versions. To analyze this, we looked

at the actual percentage of conflicts (�-axis) compared to

what we expected (�-axis) for 16 threads (Figure 3).

This data shows us that the lock-based approach ex-

perienced an almost perfect alignment between potential

and actual conflicts, whereas when using the transaction-

based approach, only about a twentieth of the potentially

conflicting writes resulted in an actual conflict. The reason

for this is not fully understood, but possible explanations

are that the exponential back-off has this effect, or that the

transactions get serialized by the memory system.

The difference in actual conflicts translates directly into

the difference in performance for the benchmark.

0.2 0.5 1.0 2 5 10 20 50 100
Potential conflicts (%)

102

103

104

T
im

e
 p

e
r 

u
p
d
a
te

 (
n
s)

Locks
Transactions
CAS

Figure 2. Scaling and contention: Time per update vs. potential conflict
rate. The width of the lines represent the variation of the results from the
lower to the upper quartile.
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Figure 3. Scaling and contention: Actual conflict rate vs. potential conflict
rate. The width of the lines represent the variation of the results from the
lower to the upper quartile.

VII. APPLICATIONS

Two common applications in the field of scientific com-

puting were chosen for our study: assembling of a stiffness

matrix in finite-element methods (FEM), and a simple parti-

cle dynamics simulation. These were chosen for evaluating

transaction memory in scientific computing because they

are both used in a multitude of computational science

applications.

It has been proposed that transactions have the potential

to simplify parallel programming. If transactions performed

significantly better than the corresponding locks implemen-

tation, this might reduce the need for algorithm redesign in

order to avoid concurrent memory accesses. Therefore we

have considered straight-forward algorithms rather than the

most advanced ones.

VIII. STIFFNESS MATRIX ASSEMBLY

Solving a differential equation by using the finite element

method consists of two steps: Assembling the stiffness

matrix for the problem and solving a linear system of

equations. There are numerous efficient and highly parallel

algorithms available for the solution of the linear system

of equations in a FEM solver, including parallel matrix

factorizations [5] and parallel iterative methods as, e.g., the

multigrid method [6]. However, efficient parallelization of

the matrix assembly is more difficult and this is often still

performed using a serial algorithm.

The reason that the matrix assembly is a difficult problem

to parallelize is that it consists of a large number of con-

current updates of matrix elements with a highly irregular

access pattern. Listing 2 shows the basic algorithm for

constructing the stiffness matrix.

Given a FEM mesh of �� points and �� triangles, the

assembly process consists of looping over all triangles and

filling in the corresponding elements in a zero-initialized

�� � �� matrix M. For each triangle, a local 3 � 3 matrix
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m is computed, whose elements are then distributed to the

global matrix M at locations determined by the vertices of

the current triangle t.

1 for t in triangle_list
2 m = compute_local_matrix(t)
3 for i in 1..3
4 for j in 1..3
5 M(t(i), t(j)) += m(i,j)

Listing 2. Stiffness-matrix assembly

A. Parallel Implementation

We have used the straight-forward way of parallelizing

the algorithm in Listing 2 by introducing parallelism at the

level of the outermost loop. Since each non-zero element

of the matrix will be updated multiple times, the update

constitutes a critical section and has to be protected. A

general solution is shown in Listing 3, where the atomic
keyword suggests that the corresponding operation must be

executed atomically. This can be implemented using locks,

by performing the operation in a transaction, or by using the

compare-and-swap instruction.

1 for t in my_triangle_list
2 m = compute_local_matrix(t)
3 for i in 1..3
4 for j in 1..3
5 atomic {
6 M(t(i), t(j)) += m(i,j)
7 }

Listing 3. General parallelization of the matrix assembly.

If Listing 3 is implemented using locks, the straight

forward implementation would use one lock per matrix

element. This means that a full matrix of �� � �� locks is

required, making the space requirement for the locks larger

than that of the matrix to be assembled, as a lock is larger

in size than a matrix element.

If Listing 3 is instead implemented using transactions

or compare-and-swap, this space issue can be avoided.

An additional benefit is avoiding the lock accesses, which

will not cache well due to the irregular and sparse access

pattern. For the transaction-based and CAS-based versions

we therefore expect a smaller memory footprint as well

as a higher ratio of computation-to-data, resulting in better

scaling than for the lock-based code.

To make our experiments resemble a modern FEM assem-

bly scheme, we introduce a significant number of floating

point operations to emulate the computation of the local

element matrices. Algorithms such as the element precon-

ditioning described in [7], where a small optimization has

to be performed for each triangle and multi-scale FEM [8],

where a smaller FEM problem has to be solved within each

triangle, frequently have non-trivial amounts of computation

in the local element calculation. By varying the number of

floating point operations for the local computations, we can

vary the computation-data access ratio for the algorithm.

Since both the transactions-based program and the CAS-

based program have fewer memory accesses to start with,

we expect them to perform better at a smaller number of

local floating point computations compared to the locks-

based version.

B. Experiments

The three different parallel implementations of Listing 3,

with locks, compare-and-swap and transactions, respectively,

as well as a serial reference version corresponding to Listing

2, were tested with 1, 100 and 1000 operations inside the

local computations, and the run-times were measured. To ob-

tain stable measurements, each implementation was executed

100 times, and the median run-time is reported. Similarly to

in the micro benchmarks, the upper and lower quartiles are

included in the plots. To concentrate on the assembly itself,

we do not include memory allocation, reading of the mesh

data or initialization of threads in the measurement.

The mesh used in the experiments was generated in

MATLAB’s PDE Toolbox using the initmesh function

with an hmax value of 0.05. It has 4146 triangles and

2154 points, which requires 82 kB of memory. The memory

required for the generated matrix is 35 MB, and the memory

required for locks in the lock-based version is 106 MB, both

of which easily exceed the 2 MB of combined L2 cache.

C. Results

The results from the experiments are shown in Table II

and Figure 4. For clarity, the results from a workload of

100 operations have been suppressed in Figure 4, but can

be found in Table II. We see that the speed-up improves with

the number of operations performed for each triangle, which

is expected as this increases the number of computations per

memory access. The transaction-based programs performed

better than the lock-based ones for all workloads. Compare-

and-swap performed the best for small workloads, but when

the workload was increased, it behaved similarly to the lock-

based version. It also had the largest statistical variation,

especially at large workloads. One reason that the variations

are generally so large for this application is that the run-

times are very small; less than 5 ms on 16 threads.

Note that in the case of the lock-based program, the

allocation and initialization of the locks will account for

a significant portion of the execution time, which is not

included here.

IX. N-BODY SIMULATION

N-body simulations are used in a vast range of com-

putational science applications for determining the motion

of �� mutually interacting “particles”, where the particles

could represent anything ranging from atoms in molecular

dynamics to stars and galaxies in astrophysics.

In standard force-field models (e.g. involving electromag-

netic forces or gravitation) the particles interact pairwise
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Figure 4. FEM assembly: Median speed-up relative to serial at different
workloads. The width of the lines represent the variation of the results from
the lower to the upper quartile. Note that the intervals for CAS (1000 ops)
and Locks (1000 ops) overlap at 16 threads in the figure.

Table II
FEM ASSEMBLY: MEDIAN RUN-TIMES IN MS (SPEED-UP VS 1 THREAD)

�threads 1 2 4 8 16

Serial (1 ops) 4.09 - - - -
HTM 10.87 6.18 3.65 2.35 1.47

(1.0) (1.8) (3.0) (4.6) (7.4)
CAS 9.52 5.20 3.22 1.92 1.23

(1.0) (1.8) (3.0) (5.0) (7.7)
Locks 23.20 12.68 7.42 4.17 2.39

(1.0) (1.8) (3.1) (5.6) (9.7)

Serial (100 ops) 6.50 - - - -
HTM 13.47 7.79 4.54 2.64 1.63

(1.0) (1.7) (3.0) (5.1) (8.3)
CAS 12.30 6.58 3.90 2.30 1.42

(1.0) (1.9) (3.2) (5.3) (8.7)
Locks 26.39 14.33 8.43 4.70 2.70

(1.0) (1.8) (3.1) (5.6) (9.8)

Serial (1000 ops) 26.33 - - - -
HTM 33.38 17.68 9.62 5.16 2.91

(1.0) (1.9) (3.5) (6.5) (11.5)
CAS 39.41 20.46 11.05 6.00 3.77

(1.0) (1.9) (3.6) (6.6) (10.5)
Locks 46.26 24.31 13.95 7.17 4.23

(1.0) (1.9) (3.3) (6.5) (10.9)

with each other. When the force between a pair of particles

has been calculated, both particles need their force variable

updated. When the task to calculate the forces is distributed

over several threads, two threads must not update the force

variable of a given particle simultaneously. Such collisions

are expected to be fairly rare, making the application suitable

for transactions by exploiting their optimistic nature.

We evaluate the interaction between each pair of particles

(�(�2
�
) interactions) in each time step. In more advanced al-

gorithms, attempts are made to avoid calculating all interac-

tions, such as by ignoring long-range interactions, exploiting

periodicity, or grouping distant particle together. However,

for long-range force fields and for particles within a short

distance of each other, all interactions need to be evaluated

explicitly, as examined here.

A. Implementation

A straight-forward serial implementation of the force

evaluations is shown in Listing 4:

1 for � = 0 to �� � 1
2 for � = � + 1 to �� � 1
3 Δ� = evalForce(��� ��)
4 �� += Δ�
5 �� -= Δ�

Listing 4. N-body: Simple serial implementation.

Here �� is the total force acting upon particle ��, and Δ�

is the contribution to �� from particle �� .

B. Parallel Implementation

When parallelizing the algorithm in Listing 4, care must

be taken to prevent multiple threads from concurrently

updating the force acting on a given particle. Furthermore,

dividing the outer loop up in even-sized chunks and dis-

tributing them over the cores gives poor load balancing, as

the amount of work in the inner loop varies. For better load

balancing, we instead distribute the outer-most loop in a

cyclic manner over the threads. This assignment to threads

can either be done statically, as in Listing 5, or dynamically.

1 for � = id to �� � 1 step by ��

2 for � = � + 1 to �� � 1
3 Δ� = evalForce(��� ��)
4 atomic { �� += Δ� }
5 atomic { �� -= Δ� }

Listing 5. General parallelization of the n-body force evaluation.

In Listing 5, id is the thread number and �� is the number

of threads. Note that Listing 5 only suggests that row 4 and

5 need to be executed atomically and says nothing about

whether they make one critical section each or share a single

critical section.

C. Implementation Using Locks

The first implementation, called basic locks follows the

code in Listing 5, and uses one lock per particle. This leads

to many locks and too much time spent on acquiring and

releasing them. To improve this, we can group the particles

such that each lock protects a group of particles. However, if

the group size is chosen too large then groups are more likely

to conflict and too much time will be spent waiting for the

group locks instead. In our case it turned out that grouping

particles into groups of 4 gave the best performance.

When dynamic scheduling is used, the contention on the

lock protecting the global index can be high. This issue

can be addressed by assigning whole chunks of indices to

threads, rather than treating them individually. Also here,

we found that handling chunks of 16 indices gave the best

performance. This method is referred to as blocked locks.
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D. Implementation Using Private Buffers

A different approach is to trade concurrency for memory

and letting each thread have its own private buffers for

calculated force contributions to which the thread have

exclusive access. These private buffers are then added to the

global variables in parallel when all force contributions have

been calculated. This requires �(����) memory instead of

�(��), but completely avoids concurrent updates of the

forces. It also requires a more substantial modification of

the original algorithm than in the other approaches. This

implementation is called private buffers.

E. Implementation Using Transactions

For the implementations using transactions, the forces are

updated within transactions to get atomic updates. We use

the same grouping strategies as when using locks, to get

the same memory access patterns. The implementation that

updates a single particle in each transaction, is called basic
transactions, and the implementation where particles and

indices are blocked into groups is called blocked transac-
tions.

The failed transaction handling strategy was adjusted

somewhat as we found that the store error occur so fre-

quently that always including the compare-and-swap opera-

tion yielded better results.

F. Implementation Using CAS

An implementation of Listing 5 using compare-and-swap

was also included, which is called basic CAS. We also

implemented a version grouping particles and indices as in

the locks implementation, called blocked CAS.

G. Experiments

Several different implementations were used and eval-

uated for the serial, parallel, and transactional memory

versions. Just as in the matrix assembly application, we

report the median run-time from 100 executions, and upper

and lower quartiles. In each execution, 1024 particles were

simulated for 40 time steps. The execution time (wall-

clock time) was only measured for the last 20 time steps

to concentrate on the behavior of long runs and filter

out possible initialization issues such as filling the caches.

Storing 1024 particles only required 56 kB of memory in

our implementations, meaning that all data easily fit in the

L2 cache. Because of the high computation-to-data ratio

of this algorithm (the number of force evaluations grows

quadratically with the number of particles), increasing the

problem size further quickly resulted in intractably long run-

times.

H. Results

The results of the n-body experiments are shown in Table

III and Figure 5. We first note that the statistical variation is

small compared to that of the FEM application, and barely

visible in the figure. This is probably due to the longer

execution times.

When comparing the most basic versions, the locks and

transactions versions performed similarly, while compare-

and-swap was slightly faster. The basic versions all per-

formed poorly, with a speed-up factor below 3 when running

on 16 cores.

Introducing blocking improved the performance in all

cases, resulting in speed-ups of up to almost 9 in the case of

transactions. However, we see that the benefit was smaller

for compare-and-swap compared to the other two. This is

expected from the results in the overhead benchmark.

The fastest run-times were obtained when using the

private-buffers implementation, which avoid concurrent

memory accesses completely. At 16 threads, it had a speed-

up factor of almost 14.
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Figure 5. N-body: Median speed-up relative to serial. The width of the
lines represent the variation of the results from the lower to the upper
quartile.

Table III
N-BODY: MEDIAN RUN-TIMES IN SECONDS (SPEED-UP VS 1 THREAD)

�threads 1 2 4 8 16
Basic locks 8.99 4.62 2.42 1.23 0.64

(1.0) (1.9) (3.7) (7.3) (14.0)
Basic transactions 4.14 2.36 1.53 0.96 0.62

(1.0) (1.8) (2.7) (4.3) (6.7)
Basic CAS 7.09 3.59 1.88 0.96 0.50

(1.0) (2.0) (3.8) (7.4) (14.2)
Blocked locks 2.37 1.20 0.59 0.30 0.15

(1.0) (2.0) (4.0) (7.9) (15.8)
Blocked transactions 1.98 1.00 0.51 0.26 0.14

(1.0) (2.0) (3.9) (7.6) (14.1)
Blocked CAS 3.34 1.68 0.84 0.42 0.22

(1.0) (2.0) (4.0) (8.0) (15.2)
Private buffers 1.24 0.62 0.33 0.17 0.09

(1.0) (2.0) (3.8) (7.3) (13.8)

1665166116611661166116661666



X. CONCLUSIONS AND FUTURE WORK

This work investigated the performance of hardware

transactional memory for scientific computing. Our micro-

benchmarks show that the potential of transactions is signif-

icant, particularly for replacing fine-grained locking as the

overhead is one-third that of locks. This, combined with

eliminating the bandwidth overhead of accessing lock vari-

ables, resulted in significant speed-ups for the FEM stiffness

matrix generation we examined. An additional benefit of

using transactions is that the initialization and storage of

lock variables is avoided.

The experiments on the n-body application showed that

when using similar algorithms, using transactions was

slightly faster than using locks. However, the private buffers

approach we used showed (unsurprisingly) that changing

the underlying algorithm significantly to avoid most of the

synchronization can be far more effective. This shows that

replacing locks by transactions is not an option to reformu-

lating the algorithm to avoid concurrency when aiming for

high performance.

Using the compare-and-swap instruction to achieve atom-

icity turned out to perform well in some experiments. How-

ever, this is only a viable approach when performing single

element updates, since compare-and-swap is limited to these.

The good performance is interesting considering that we had

to move data between the floating-point and integer registers.

We expect that hardware support for floating-point compare-

and-swap would improve the performance further.

Furthermore, our experience on this prototype system is

that programming using best-effort hardware transactional

memory is non-trivial. We experienced significant difficulty

in developing a reliable and efficient mechanism for han-

dling failed transactions. We think that there is room for

improvement of our fail handling, which could improve the

performance further.

Other topics of interest for future research are investiga-

tion of more applications, such as sparse-matrix operations,

and experimenting with HTM in existing, lock-based codes.

It would also be interesting to compare the results from the

FEM application to other, more advanced, implementations.

In summary, transactions showed to be the fastest way

to concurrently update shared floating-point variables, and

also avoids the additional storage, initialization, and memory

accesses that come with locks. Compare-and-swap performs

well but are limited to single elements updates. The best

performance overall is achieved if concurrent updates can

be avoided altogether.
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Abstract. In this paper, methods for efficient utilization of modern
accelerator-based hardware for performing high-order finite-element com-
putations are studied. We have implemented several versions of a matrix-
free finite-element stiffness operator targeting graphics processors. Two
different techniques for handling the issue of conflicting updates are
investigated; one approach based on CUDA atomics, and a more ad-
vanced approach using mesh coloring. These are contrasted to a number
of matrix-free CPU-based implementations. A comparison to standard
matrix-based implementations for CPU and GPU is also made. The per-
formance of the different approaches are evaluated through a series of
benchmarks corresponding to a Poisson model problem. Depending on
dimensionality and polynomial order, the best GPU-based implemen-
tations performed between four and ten times faster than the fastest
CPU-based implementation.

1 Introduction

For applications where the geometry can be expected to be very complicated,
methods based on completely unstructured grids, such as finite-element methods,
are popular because of their ability to fully capture the geometry. On the other
hand, in application fields where solutions also posses a high level of smoothness,
such as in micro-scale simulation of viscous fluid, or linear wave propagation in
an elastic medium, using a high-order numerical method can give high accuracy
and efficiency. However, computational challenges limit the numerical order of a
conventional matrix-based finite element-method.

Traditionally, the finite element method, FEM, has been seen as consisting of
two distinct parts; an assembly of a linear system of equations, and a solution
of this system. The system of equations is then typically represented as a sparse
matrix, and the solution is found using an iterative Krylov subspace method.
However, if high-order basis functions are used, in particular in 3D, the system
matrix becomes increasingly less sparse. In order to accurately simulate realistic
problems in three dimensions, millions or even billions of degrees of freedom can
be required. In such cases, the system matrix can simply be too large to store
explicitly in memory, even if a sparse representation is used.

In addition to the problem of storage, an equally important problem is that
of memory bandwidth. In most iterative methods, most time is typically spent
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c© Springer International Publishing Switzerland 2014
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performing sparse matrix-vector products, SpMV, with the system matrix [1].
The sparse matrix-vector product has a relatively poor ratio of computations
per memory access. On modern computer systems, even the most optimized
implementations of this operation will not utilize the computation resources
fully and is effectively bound by the memory bandwidth [2].

Matrix-free finite-element methods avoid these issues by merging the assem-
bly and SpMV phases into a single operator application step, thereby removing
the need for storing the system matrix explicitly. Since the large system ma-
trix no longer has to be read, the bandwidth footprint is reduced radically. On
the other hand, this is traded for additional computations, since the assem-
bly needs to be recomputed at each operator application. For non-linear and
time-dependent problems, this is not an issue since reassembly is necessary any-
way. In [3], Cantwell et al. perform a comparison of different matrix-based and
matrix-free approaches to high-order FEM, concluding that for order one el-
ements, sparse matrices are most efficient, while for orders two and higher, a
matrix-free approach yields the best performance. In [4], Kronbichler and Kor-
mann propose a general framework for matrix-free finite element methods.

Due to the increased computational intensity of the matrix-free approach [4],
it makes a good candidate for execution on throughput-oriented hardware such
as graphics processors. Work on porting high-order FEM code to GPUs include
the work by Cecka et al. [5], which compares different methods for performing the
assembly of an explicit FEM matrix on GPUs. In [6], Klöckner et al. proposed a
GPU implementation of a Discontinuous Galerkin method, which in many ways
is similar to finite-element methods. However, there hyperbolic conservation laws
were studied, which allows for an explicit time stepping without the need to solve
a linear system. In [7], Komatitsch et al. port an earthquake code based on the
related spectral element method to GPUs. Also here, the seismic wave equation
being studied is hyperbolic and can be integrated explicitly in time.

In this paper, we propose a matrix-free GPU implementation of a finite-
element stiffness operator based on CUDA, for future use in a solver for possibly
non-linear elliptic and parabolic PDEs. An issue in performing the operator
application is how to avoid race conditions when writing partial results to the
output. We present two different techniques to handle this; one which uses the in-
trinsic atomic instruction of CUDA to protect the writes, and a more advanced
technique based on mesh coloring to avoid the conflicts. We evaluate the two
techniques in benchmarks based on a simple model problem, namely Poisson’s
equation on a Cartesian mesh in 2D and 3D, for polynomial degrees one to four.

2 A Matrix-Free Finite-Element Method

In the following discussion, the Poisson equation with homogeneous boundary
conditions,

∇2u = f on Ω, (1)
u = 0 on ∂Ω, (2)
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in two dimensions is studied. This is a simple model problem, however it is still
representative of more complex problems as it shares most of their properties.
If the equation involves other differential operators than ∇2, they are typically
treated in a similar way. It is readily extensible to three or higher dimensions. If
there is a time dependency, a similar time-independent equation is solved at each
time step. If the equation is non-linear, it is linearized and a similar linear prob-
lem is solved, e.g. throughout a Newton iteration procedure. Non-homogeneous
Dirichlet boundary conditions can easily be transformed to homogeneous ones,
and the treatment of Neumann conditions or more general Robin conditions
leads to similar end results.

By multiplying (1) by a test function v and integrating by parts, the weak
form ∫

Ω

∇v · ∇u dV =

∫
Ω

vf dV (3)

is obtained, where v belongs to the function space V which is chosen to satisfy
the boundary conditions (2).

Now, let K be a quadrilateralization of Ω, i.e. a partitioning of Ω into a set of
non-overlapping quadrilaterals Ωk. Also, let Vh be the finite-dimensional space
of all functions v, bi-polynomial of degree p within each element Ωk, continuous
between neighboring elements, and, once again, fulfilling the boundary condition.
To find a basis for Vh, we begin by noting that in order to span the space of all
p’th order bi-polynomials of an element, (p+ 1)2 basis functions are needed for
that element. To uniquely determine the coefficients of these (p + 1)2 element-
local basis functions, (p+ 1)2 degrees of freedom, (DoFs) are needed, which are
introduced as the function values at (p+1)2 node points on each element. Note
that node points on edges and corners will be shared between several elements.
The basis is then comprised of the p’th-degree bi-polynomials {ψi}Np

i=1, where
basis function ψi is equal to unity at precisely node j = i, and zero at all other
nodes j �= i.

Expanding the solution in this space, u =
∑N

i=1 uiψi, and substituting ψj as
the test functions v, we get

N∑
i=1

Ai,jui = bj , for j = 1, . . . , N , (4)

where

Ai,j =

∫
Ω

∇ψi · ∇ψjdV (5)

bj =

∫
Ω

fψjdV . (6)

This is a linear system in the DoFs ui, which needs to be solved in order to
obtain the approximate solution u to the original problem (1).
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Noting that (5) can be writen as a sum over the elements in the mesh K,

Ai,j =
∑
k∈K

∫
Ωk

∇ψi · ∇ψjdV , (7)

we observe that each sub-integral will only be non-zero for very few combinations
of basis functions, namely the ones that have a non-zero overlap on element k.
If we introduce a local numbering of the DoFs within an element, there will
be an element-dependent mapping Ik translating local index j to global index
Ik(j), and an associated permutation matrix P k

i,j = δi,Ik(j). Using this, and
introducing ψk

l as the l’th basis function on element k, we can write (7) on
matrix form as

A =
∑
k∈K

P kAkP kT , (8)

where the local stiffness matrix Ak is defined as

Ak
l,m =

∫
Ωk

∇ψk
l · ∇ψk

mdV . (9)

2.1 Computation of the Local Matrix

The integral in (9) is usually computed by transforming Ωk to a reference ele-
ment, and using numerical quadrature. Typically, Gaussian quadrature is used
since polynomials can be integrated exactly.

Ak
i,j =

∑
q

[
J−1
k (x̂q)∇̂ψ̂i(x̂q)

]
·
[
J−1
k (x̂q)∇̂ψ̂j(x̂q)

]
| detJk(x̂q)|wq ,

where Jk is the Jacobian matrix of the transformation from reference element
to the k’th real element, x̂q are the quadrature points of the reference element,
and wq are the quadrature weights.

Now, if the mesh is uniform, i.e. all elements have the same shape and size,
Jk will be the same for all k. In this case, also Ak will be independent of k, and
a single Â can be precomputed and stored in memory. For a non-uniform mesh,
however, all the Ak will be distinct and a precomputation is unfeasible due to
the extensive storage requirement. In such a case, a tensor based approach can
be used, as described by Kronbichler and Kormann [4].

2.2 Matrix Free Operator Application

In the case of standard finite-element methods where an explicit matrix is used,
(8) is computed once and the resulting matrix is stored, to be used in the sub-
sequent multiplications. To obtain the matrix-free case, we multiply (8) by the
vector u and simply rewrite it the following way,

Au =

(∑
k∈K

P kAkP kT

)
u ⇔ Au =

∑
k∈K

(
P kAkP kTu

)
. (10)
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Since the permutation matrices merely selects and reorders rows, we have
essentially disassembled the operator application from a sparse matrix-vector
multiplication into a sum of many, small and dense matrix-vector multiplications,
where each such multiplication involves a computation of the local matrix Ak.

2.3 Parallelization

Being made up of many small, independent matrix-vector products and the
associated local-matrix computations, the matrix-free operator application in
(10) is almost trivially parallelized – the list of elements is simply split into
chunks of appropriate size and then all the chunks are processed in parallel.
However, a problem arises when assembling the results into the single output
vector.

For a given row i of the result, most of the terms in the sum in the right-hand
side of (10) will be zero, however, the terms corresponding to all elements to
which the i’th DoF belongs will be non-zero. All of these contributions will need
to be added to the single memory location at row i of the result. Since these are
computed in parallel, care must be taken to avoid race conditions while updating
the shared memory location.

Mesh Coloring. As previously stated, only the elements to which a given node
i belongs will give a contribution to the i’th row of the result. Conversely, this
means that any two elements which do not share a DoF will be free of any
conflicting updates, and may thus be processed concurrently.

One way of achieving this, is to use graph coloring. Denote two elements in
a mesh as neighbors if they do not share any node points, which will hold if
they do not share any vertices (see Fig. 1). Then, if all elements in the mesh are
colored such that within each color, no two elements are neighbors, then all the
elements within a single color can safely be executed in parallel.

A
B C

D

Fig. 1. Elements A and B are neighbors, as are elements A and C, and are thus given
different colors. Elements A and D are not neighbors and can be given the same color.

Since not all elements are processed in parallel, there is a reduction of paral-
lelism of 1

Nc
, where Nc is the number of colors needed. For a logically Cartesian

mesh, Nc = 2d, where d is the dimensionality of the problem, whereas for an
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unstructured FEM mesh, Nc > 2d in general (see Fig. 1). In both cases, how-
ever, Nc will be independent of the number of elements of the mesh. Thus, for
sufficiently large problems, the overhead will be small enough. For the uniform
meshes considered in this paper, the coloring is trivial. For the case of a general
mesh, a more advanced graph coloring algorithm must be used, such as the ones
of Berger et al. [8], Farhat and Crivelli [9], or Komatitsch et al. [7].

3 Graphics Processors

Recently, graphics processing units (GPUs) have seen an increasing use as general-
purpose processors for high-performance computations within science and tech-
nology. Computer graphics consists of processing a large number of independent
polygon vertices. Tailored for this very parallel and compute-intensive task, the ar-
chitecture ofGPUs is optimized for high throughput rather than low latency, which
is the case for CPUs. Because of this, a much larger area of the GPU chip is dedi-
cated to computations compared to a CPU. Also, memory bandwidth is typically
considerably higher than on a CPU, whereas the caching system of a CPU aims at
achieving low latency. As a consequence of the higher computing power per tran-
sistor, GPUs achieve a much higher efficiency, both economically (i.e. Gflops/$)
and power-wise (i.e. Gflops/W).

Being comprised of many small similar tasks with a high computational inten-
sity, scientific applications, such as e.g. stencil operations or linear algebra, have
in many cases been well suited for the throughput-optimized GPU hardware.
However, few applications fit the graphics-tailored GPU architecture perfectly
and in practice, issues like the limited support for double precision or the neces-
sity for very high parallelism may limit the utilization of a GPU system.

The first attempts at utilizing commodity graphics hardware for general com-
putations were based on exploiting the programmable vertex and pixel shaders
of the graphics pipeline. For a summary of the early endeavors in GPGPU, see
the excellent survey by Owens et al. [10]. However, programming the graphics
pipeline was difficult, and the real revolution came at the end of 2006, when
Nvidia released CUDA, Compute Unified Device Architecture. The CUDA plat-
form provides a unified model of the underlying hardware together with a C-
based programming environment. The CUDA GPU, or device, comprises a num-
ber of Streaming Multiprocessors (SMs) which in turn are highly parallel multi-
core processors. The threads of the application are then grouped into thread
blocks which are executed independently on a single SM. Within a thread block
or an SM, there is a piece of shared memory, and a small cache. Finally, syn-
chronization is limited and only possible between threads within a block, except
for global barriers. For further details on the CUDA platform, see the CUDA C
Programming Guide [11]. Examples of studies based on CUDA include molecular
dynamics simulations [12], fluid dynamics [13] and wave propagation [14].

Although CUDA is vendor specific and GPUs have a very specialized ar-
chitecture, they are both part of a larger movement – that of heterogeneity
and increasing use of specialized hardware and accelerators. Thus, developing



456 K. Ljungkvist

algorithms and techniques for dedicated accelerators, such as GPUs, is relevant
also for the technology of the future.

4 Experiment Code

As part of this research, a small framework for high-order finite-element appli-
cation in efficient, heavily templated C++/CUDA has been developed. Because
of the high accuracy which is needed when solving scientific problems, double
precision is used throughout the code. The mesh is stored in an array of points
and an array of elements. For the elements, an element struct is used comprising
a list of DoF indices. This array-of-structure format was found to perform better
than a structure-of-array approach, both for the CPU and the GPU.

We have implemented several different versions of the stiffness-matrix oper-
ator. Apart from the matrix-free GPU implementations, we include serial and
parallel matrix-free implementations for the CPU, as well as matrix-based im-
plementations for both CPU and GPU, for comparison.

4.1 Matrix-Based Implementations

The matrix-based reference implementation for the CPU, SpM, uses a Compressed
Sparse Row (CSR) matrix format, since this performs well during matrix-vector
multiplication. For the assembly, a list-of-lists (LIL) format is used, since this has
superior performance during incremental construction. After the construction,
the LIL matrix is converted to the CSR format, without much overhead. Still,
the matrix construction amounts to a significant part of the total execution time
(see results under Sect. 5.1). The sparse matrix-vector product is parallelized in
OpenMP, by dividing the rows in chunks evenly over the processors. We used
four threads, since this gave the best performance.

The corresponding implementation for the GPU, GPU_SpM, uses the efficient
SpMV kernel of CUSPARSE, a sparse matrix library released by Nvidia as part
of CUDA. The matrix assembly is performed on the CPU identically to the SpM
implementation, and then copied to the GPU.

4.2 Matrix-Free Implementations

Our matrix-free implementations follows the idea described in Sect. 2.2. Since
a uniform mesh is assumed, the local matrix is the same for all elements and a
single copy is precomputed and stored. The serial version is called Mfree.

There are two versions parallelized using OpenMP, both based on computing
the contribution from multiple elements in parallel. The main difference between
the versions is the technique used to solve the conflict issue described in Sect. 2.3.
In the PrivateBuffers implementation, each OpenMP thread writes its result
to its own version of the output vector. After all threads have finished comput-
ing, a parallel reduction phase sums up the buffers into a single vector, trading
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off the conflicts for the extra storage and computations. Finally, there is an im-
plementation Color which uses the mesh coloring method described in Sect. 2.3
to avoid the conflicts. Once again, four threads are used since this gave the best
speedup relative to the serial version.

Much like the matrix-free implementations for the CPU, the ones for the
GPU mainly differ in the treatment of conflicts. In all implementations, each
thread handles a single element. A block size of 256 threads was chosen since
this performed best in the experiments. There is one version, GPU_Atomic, which
uses the built-in atomic operations of CUDA to protect the conflicting writes.
There is also an implementation GPU_Color using the more advanced coloring-
based treatment of conflicts described in Sect. 2.3. Finally, a version without any
protection, GPU_Max, is also included to get an upper bound on the performance
for an element-wise parallelization of the matrix-free operator application.

5 Numerical Experiments

The performance of the different implementations described above are evaluated
through a series of benchmark experiments. These are based on the Poisson
problem studied in Sect. 2. The unit square domain is discretized by a Cartesian
mesh of quadrilateral elements of order p. A similar problem in 3D is consid-
ered, i.e. a unit cube discretized by a Cartesian mesh of p’th-order hexahedral
elements. In detail, the experiment consists of the following parts:

1. Setup of data structures for the mesh, the vectors, and the operator.
2. Transfer of data to the appropriate memory location (i.e. device memory for

GPU-based implementations).
3. 20 successive applications of the operator.
4. Transfer of data back to main memory.

To evaluate the execution time for the operator application, the time for steps
2–4 is measured, and the time for a single application is calculated by dividing
by the number of iterations, i.e. 20. Furthermore, to get more stable results, 20
repetitions of steps 2–4 are performed, and the minimum time is recorded. The
experiment is run for all the operator implementations described in Sect. 4, with
polynomial degrees of one to four.

All experiments are performed on a server with an Intel Xeon E5-2680 eight-
core processor @ 2.70GHz, 64 GB DRAM and an Nvidia Tesla K20c GPU with
2496 cores and 5 GB of ECC-enabled memory. The test system runs Linux 2.6.32,
with a GCC compiler of version 4.4, and a CUDA platform of version 5.5.

5.1 Results

Figures 2 and 3 depict the performance of the most important implementations
as a function of the number of degrees of freedom, in 2D and 3D respectively.

Firstly, we see that performance increases with the problem size as the paral-
lelism of the hardware is saturated, in particular for the versions for the GPU,
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Fig. 2. Scaling of the performance with the problem size (NDoF ), for the 2D experi-
ments

due to its much higher parallelism. Also, it is evident that the GPU versions
performed significantly faster than the ones for the CPU. Furthermore, we see
that, as the complexity of the elements increases, i.e. as polynomial degree and
dimensionality grow, so does the benefit of using a matrix-free approach. Al-
though the matrix-based implementations for CPU and GPU performed on par
with the matrix-free ones for element order one, they are outperformed already
for second order elements. Moreover, in many cases, as expected, it was simply
impossible to use the matrix-based version, since the storage requirement for the
matrix exceeded the system memory (indicated by the truncated curves for SpM
and GPU_SpM). Finally, as predicted, the setup times were reduced considerably.
For the example of fourth-order polynomials in 2D, SpM required 14 seconds for
the setup, whereas Color required only 0.2 seconds, a difference that was even
larger in 3D. Similar times were recorded for the matrix-based and matrix-free
GPU implementations. The performance for the largest problems is presented
in more condensed form in Fig. 4 (a) and (b), which display the performance
of all implementations at the largest problem size as p varies, for 2D and 3D,
respectively.

For the results in 2D (Fig. 4(a)), we begin by noting that the matrix-free GPU
versions gave very good speedups over the reference versions (between 5.4 and 10
times versus the fastest CPU version). In fact, the amount of work performed per
time by the matrix-free GPU versions grew steadily with the polynomial order,
whereas for both the matrix-based GPU implementation and all the CPU imple-
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Fig. 3. Scaling of the performance with the problem size (NDoF ), for the 3D experi-
ments

mentations, this stayed roughly constant. Comparing the results of GPU_Color
and GPU_Atomic with the result of version without any protection, GPU_Max, we
see that there is an overhead of dealing with conflicting updates, but that using
a coloring approach was more efficient than using atomic intrinsics.

From the results of the CPU-based matrix-free versions, it is clear that the
straightforward implementation using private buffers gave a very poor speedup,
due to the overhead of performing the buffer reduction. On the other hand, just
as in the case of the GPU implementations, the parallelization based on coloring
achieved a good speedup of about 3.5.

Looking at the results for the 3D experiment (see Fig. 4(b)), we see that,
once again, using a matrix-free method on the GPU can give large speedups
(4.5 – 10×). However, although we still see a speedup over the CPU, there is
a significant drop in performance when going to order 3 and 4. An explanation
for this can be found by looking at the size of the local matrix, (p+ 1)(2d) · 8B,
which for d = 3 and p = 3 exactly matches the size of the L1 cache available
per SM, namely 32kB. Thus, the threads within a block can no longer fetch the
local matrix collectively by sharing reads.

Finally, we note that the Gflops numbers in Fig. 2 - 4 are fairly low, and quite
far from the theoretical 1.17 double precision Tflops of the K20. However, this is
no surprise since the SpMV operation is bandwidth-bound, which is also the case
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Fig. 4. Performance for the largest problems solved (with 26.2M, 26.2M, 14.8M, and
26.2M DoFs (2D) ; and 33.1M, 33.1M, 14.0M and 33.1M DoFs (3D), respectively). The
missing bars for SpM and GPU_SpM indicate a fail, i.e. the matrix did not fit in main
memory.

for a matrix-free version using a precomputed local matrix. This is confirmed
by the numbers for global memory bandwidth utilization reported by nvprof,
which lie around 110 GB/s, compared to the official peak 208GB/s (reported for
ECC off), indicating a fairly well utilized bandwidth.

6 Conclusions

Our GPU implementations of the matrix-free stiffness operator achieved speedups
of 4.5 and 10 times relative to the fastest CPU-based implementation. The re-
sults indicate that as element complexity grows, i.e. if the dimensionality and el-
ement degree increases, so does the performance benefit of using the GPU, which
is promising for future use in a high-order finite-element method solver of ellip-
tic and parabolic PDEs. Finally, as indicated by our results for the setup times,
applications where frequent reassembly is necessary, such as time-dependent or
non-linear problems, can benefit substantially from using a matrix-free approach.
In addition, with the matrix-free method, we were able to solve problems an order
of magnitude larger than with the matrix-based methods.

We saw that for a too large local matrix, performance drops significantly.
However, as was pointed out in Sect. 2.1, the strategy based on a local matrix
is limited to uniform meshes, meaning that for more realistic problems, other
approaches, such as the tensor based technique of Kronbichler and Kormann [4],
are necessary anyway. Considering this, the present result suggests that such
methods can be favorable also for uniform meshes due to the lower memory
footprint, for which the already good speedups can be expected to improve
further.

Topics of ongoing research include development of a tensor-based operator
implementation, as well as techniques for reduction of the high bandwidth usage,
and solution of realistic problems within the field of two-phase flow simulation.
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