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Abstract
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Gauge theories are one of the corner stones of modern theoretical physics. They describe the
nature of all fundamental interactions and have been applied in multiple branches of physics.
The most challenging problem of gauge theories, which has not been solved yet, is their strong
coupling dynamics. A class of gauge theories that admits simplifications allowing to deal
with the strong coupling regime are supersymmetric ones. For example, recently proposed
method of supersymmetric localization allows to reduce expectation values of supersymmetric
observables, expressed through the path integral, to finite-dimensional matrix integral. The last
one is usually easier to deal with compared to the original infinite-dimensional integral.

This thesis deals with the matrix models obtained from the localization of different 5D gauge
theories. The focus of our study is N=1 super Yang-Mills theory with different matter content
as well as N=1 Chern-Simons-Matter theory with adjoint hypermultiplets. Both theories are
considered on the five-spheres. We make use of the saddle-point approximation of the matrix
integrals, obtained from localization, to evaluate expectation values of different observables in
these theories. This approximation corresponds to the large-N limit of the localized gauge theory.

We derive behavior for the free energy of 5D N=1* super Yang-Mills theory at strong
coupling. This result is important in light of the relation between 5D theory and the world-
volume theories of M5-branes, playing a significant role in string theory. We have also explored
rich phase structure of 5D SU(N) N=1 super Yang-Mills theory coupled to massive matter in
different representations of the gauge group. We have shown that in the case of the massive
adjoint hypermultiplet theory undergoes infinite chain of the third order phase transitions while
interpolating between weak and strong coupling in the decompactification limit.

Finally, we obtain several interesting results for 5D Chern-Simons theory, suggesting
existence of the holographic duals to this theory. In particular, we derive  behavior of the free
energy of this theory, which reproduces the behavior of the free energy for 5D theories with
known  holographic duals.

Keywords: Supersymmetric localization, Matrix Models, Chern-Simons theory,
Supersymmetric Field Theories, (2, 0) theories

Anton Nedelin, Department of Physics and Astronomy, Theoretical Physics, Box 516, Uppsala
University, SE-751 20 Uppsala, Sweden.

© Anton Nedelin 2015

ISSN 1651-6214
ISBN 978-91-554-9164-2
urn:nbn:se:uu:diva-243320 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-243320)

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-243320


To my family and my friends





List of papers

This thesis is based on the following papers, which are referred to in the text
by their Roman numerals.

I J. Kallen, J. A. Minahan, A. Nedelin and M. Zabzine, N3-behavior
from 5D Yang-Mills theory, JHEP 1210 (2012) 184.

II J. A. Minahan, A. Nedelin and M. Zabzine, 5D super Yang-Mills theory
and the correspondence to AdS7/CFT6, J. Phys. A 46 (2013) 355401.

III J. A. Minahan and A. Nedelin, Phases of planar 5-dimensional
supersymmetric Chern-Simons theory, JHEP 12 (2014) 048.

IV A. Nedelin, Phase transitions in 5D super Yang-Mills theory,
Manuscript.

Papers not included in the thesis

V M. N. Chernodub and A. S. Nedelin, Phase diagram of chirally
imbalanced QCD matter, Phys. Rev. D 83, 105008 (2011)

VI M. N. Chernodub and A. S. Nedelin, Pipelike current-carrying vortices
in two-component condensates, Phys. Rev. D 81, 125022 (2010)

Reprints were made with permission from the publishers.





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Part I: Background Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 5D Super Yang-Mills theory on S5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Vector Multiplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Hypermultiplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Correspondence to 6D (2,0) theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Chern-Simons terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Supersymmetric Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 The basic idea of localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Vector Multiplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Hypermultiplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Summary of Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Matrix Models Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1 The partition function of matrix model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 One-cut solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Many-cuts solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Part II: Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 General properties of the matrix model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1 Renormalization of coupling constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Convergence of the Matrix Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Decompactification limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Planar limit of N = 1∗ super Yang-Mills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1 Saddle point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.1 Weak Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2.2 Strong Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Wilson Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 Comparison with supergravity calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Supersymmetric Chern-Simons theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.1 Saddle point equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



7.2 Weak Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3 Strong Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.4 Yang-Mills – Chern-Simons phase transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.4.1 Weak coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.4.2 Strong coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.5 Wilson loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.6 A comment on the choice of contour and solution . . . . . . . . . . . . . . . . . . . . . . 75

8 Phase transitions in massive theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.1 Fundamental hypermultiplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.2 One adjoint hypermultiplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.1 Correspondence between 5D and 6D theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.2 Supersymmetric Chern-Simons-Matter theories . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.3 Phase transitions in massive theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Summary in Swedish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



1. Introduction

This thesis is devoted to exact results in supersymmetric gauge theories. The
principle of gauge symmetry is one of the cornerstones of modern theoretical
physics. Theories that possess gauge symmetry have been known for a very
long time. To be more precise, the first gauge theory to come into play was
Maxwell’s theory of electromagnetism in the middle of 19th century. How-
ever, the importance of gauge symmetry was not recognized until 50 years
later when developing quantum mechanics for particles in an external elec-
tromagnetic field [44]. This work in the early 20th century led to the first
formulation of a U(1) gauge symmetry and can be considered the foundation
for quantum electrodynamics (QED) formulated in the 1950’s. This led to the
rapid development of gauge theories in the form that we know today. Very
soon after the birth of QED Yang and Mills generalized it to the case of non-
abelian gauge groups in order to describe interactions of protons and neutrons.
Later it was realized that all interactions in nature are nothing else but gauge
theories. This was first worked out for the case of unified electromagnetic and
weak interactions in the papers written by Glashow, Salam and Weinberg in
1960’s [48, 113, 104]. It appeared that both interactions can be unified into one
electreoweak interaction described as an SU(2)×U(1) gauge theory. Finally,
the discovery of asymptotic freedom [52, 94] led to the triumph of Quantum
Chromodynamics (QCD), i.e. the SU(3) gauge theory of the strong interac-
tions. All of these gauge theories unified together form the Standard Model
of particle physics, which describes all fundamental forces present in nature,
except gravity. We also should notice that though gauge theories are usually
thought of as fundamental theories, they can also emerge in other branches of
physics such as condensed matter theory, where they also can play an impor-
tant role [56].

However, just because the theory is formulated does not mean it is solved. It
is well known how to deal with weakly interacting theories. In this case well
established tools of perturbation theory can be successfully applied. How-
ever, sometimes theory has a large coupling constant, which makes perturba-
tion theory impossible. In particular, this situation takes place in QCD which
has weak coupling at very high energies, but strong coupling at the scale of
ΛQCD ∼ 220MeV. This is the typical scale of, for example, mesons and it is
known to have rich physics such as confinement and dynamical chiral symme-
try breaking. Most of the phenomena that occurs on this scale were observed
both experimentally and numerically, but still lack a theoretical explanation.
Similar issues with strongly interacting theories appear in condensed matter

9



physics, such as strongly correlated electron systems. One class of these sys-
tems is the holy grail of modern condensed matter physics, high-Tc supercon-
ducting cuprates. Thus the development of tools appropriate for a description
of non-perturbative effects in gauge theories is a very important problem in
modern theoretical physics, both from fundamental and applied points of view.

In the past twenty years there has been quite substantial progress in un-
derstanding the non-perturbative dynamics of certain gauge theories. This
progress is intimately related to string theory which is considered to be the
main candidate for a the theory unifying all interactions in nature. There are
two concepts incorporated in modern string theory that are particularly related
to this progress, duality and supersymmetry.

By using the term “duality” physicists usually mean that different systems
have the same physics. There are many different dualities in string theory.
However, here we consider only one of them, the AdS/CFT or gauge/gravity
duality conjectured by Maldacena in [79]. This duality makes the correspon-
dence between certain gauge theories living in d dimensions and string the-
ories living in a background containing (d + 1) dimensional Anti-de Sitter
space. Thus, performing calculations on one side of the duality we can obtain
results for the other side. Surprisingly, the most interesting case of a strongly
coupled gauge theory corresponds to the supergravity limit of a string theory.
Supergravity is much easier to deal with then the full string theory. Thus the
gauge/gravity duality gives us hope to obtain results in strongly coupled theo-
ries. Unfortunately, this method is limited to the class of theories admitting a
duality. However, the AdS/CFT duality can at least give some hints on gen-
eral mechanisms involved in the strong coupling dynamics of gauge theories.
In recent years there was some noticeable progress in applying this powerful
tool to QCD [40, 69, 24], condensed matter physics [86, 56] and even hydro-
dynamics [96].

However, this thesis deals more with a second concept - supersymmetry.
Supersymmetry is simply symmetry relating fermionic and bosonic degrees
of freedom. It was first developed independently in pioneering works by Ger-
vais and Sakita [46], Golfand and Likhtman [49], Akulov and Volkov [112]
and Wess and Zumino [114, 115]. Later in the 1980’s the full power of super-
symmetry was realized in string theory where it has elegantly solved both the
problem of the tachyon excitation in the closed bosonic string spectrum and
the introduction of matter particles into the spectrum. Supersymmetry can also
cure some problems of the Standard Model, such as the hierarchy problem for
example. Because of all these reasons supersymmetry seems to be natural and
could exist in nature . It has not yet been found, but the search at the LHC is
still going on.

But even though supersymmetry will is not found it is useful to study su-
persymmetric theories. The reason is that presence of the supersymmetry, as
well as any other symmetry, puts extra constraints on the dynamics of the the-
ory and leads to simplifications. Thus, supersymmetric gauge theories can
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be considered toy-models, providing a qualitative picture of gauge theories in
general.

One way to simplify supersymmetric gauge theory calculations, supersym-
metric localization, was introduced by Nekrasov in 2002 [91] and later re-
formulated by Pestun in 2007 [93]. In particular Pestun considered N = 2
super Yang-Mills theory on the four-sphere and realized that localization can
be used to simplify the full quantum field theory path integral to a finite di-
mensional matrix integral. The latter is easier to work with then the original
infinite-dimensional integral. This reduction allowed Pestun to prove a con-
jecture for supersymmetric Wilson loops put forward by Erickson Semenoff
and Zarembo in [41]. Different aspects of the matrix integral obtained by
Pestun were later considered in a series of works by Russo and Zarembo
[23, 98, 103, 99, 100, 101, 5].

At the same time the localization method was also used to derive results
for three-dimensional ABJM theory [1]. Localization of this theory was per-
formed by Kapustin, Willet and Yaakov in [64]. Interestingly, the correspond-
ing matrix model is solvable and was solved following papers by Drukker,
Marino and Putrov [85, 84, 37, 38].

Finally, in 2012 localization was also performed for N = 1 supersymmetric
Yang-Mills on S5 by Källen and Zabzine in [63] and later was generalized to
the theory with additional N = 1 hypermultiplet by Källen, Qiu and Zabzine
in [62]. In this thesis we discuss details and solutions of the matrix model
obtained after localizing different five-dimensional gauge theories.

This thesis is organized as follows. We start by reviewing some background
material on different topics related to five-dimensional super Yang-Mills and
its localization. In particular, in chapter 2 we review details of supersymme-
try transformations and five-dimensional super Yang-Mills and Chern-Simons
actions on S5. We also go through the main motivation for a large part of the
research presented in this thesis. Namely, we describe how five-dimensional
maximally supersymmetric Yang-Mills theory is important for the descrip-
tion of the dynamics of M5-branes. Finally, we give a brief overview of the
properties of five-dimensional Chern-Simons theory, which has many features
that differ from three-dimensional Chern-Simons theory. In chapter 3 we dis-
cuss the main idea of localization and review particular calculations for the
case of five dimensions. Chapter 4 reviews standard technique used to the
matrix model. In chapter 5 we describe general properties of matrix models
obtained after localization of five-dimensional Yang-Mills-Chern-Simons the-
ory. In chapter 6 we discuss results of paper I. In particular we show how N3

behavior of the free energy of five-dimensional N = 1 super Yang-Mills with
an adjoint hypermultiplet can be found using the matrix model obtained from
localization. We also discuss how our results support the duality between five-
dimensional super Yang-Mills and six-dimensional (2,0) theories conjectured
in [77, 35]. In chapter 7 we introduce Chern-Simons terms in the matrix model
and discuss the possible existence of holographic duals of this theory. We also
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prove the existence of phase transitions between a theory dominated by Yang-
Mills or Chern-Simons terms. Chapter 8 describes the rich phase structure of
N = 1 super Yang-Mills with massive matter multiplets in the decompacti-
fication limit, i.e. when the radius of the five-sphere is taken to be infinitely
large. Finally, in chapter 9 we briefly summarize all results presented in this
thesis as well as possible future directions.
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Part I:
Background Material





2. 5D Super Yang-Mills theory on S5

In this chapter we give a brief overview of supersymmetric gauge theories in
five dimensions. The chapter will start with the construction of 5D supersym-
metric Yang-Mills theory with arbitrary gauge group on the five-sphere. Then
we will briefly discuss the 6D (2,0) theories and their relation to 5D SU(N)
super Yang-Mills. The final section of this chapter shows how Chern-Simons
terms can be included in the five-dimensional theory.

2.1 Vector Multiplets
In this section we introduce supersymmetry transformations and the 5D vector
multiplet action on the five-sphere S5. In our notations, derivations and rea-
soning we closely follow [58] and [62]. The review presented here is brief,
but more details about supersymmetry on curved five-manifolds can be found
in [58, 63, 62, 66].

The N = 1 vector multiplet of 5D super Yang-Mills contains a vector field
Aµ , with µ = 1, ..,5 being Euclidian spatial indices, a real scalar σ and a spinor
λ I satisfying the SU(2)R Majorana condition

(ψα
I )
∗ = ε

IJCαβ ψ
β

J , (2.1)

where I,J = 1,2 are SU(2)R indices and α,β = 1, ..,4 are spinor indices of
Spin(5)w Sp(2). ε IJ is the SU(2)R invariant antisymmetric tensor raising and
lowering R-symmetry indices. The choice of signs in this tensor is defined by
ε12 = 1. Finally, Cαβ is the charge conjugation matrix.

For the off-shell formulation we also need to introduce the triplet of auxil-
iary scalar fields, DIJ , that satisfies the following relations

(DIJ)
† = DIJ ≡ ε

II′
ε

JJ′DI′J′ , D[IJ] = 0 . (2.2)

In our conventions all fields in the vector multiplet are Hermitian matrices for
a non-abelian gauge symmetry.

The supersymmetry transformations and corresponding invariant action for
5D super Yang-Mills are well known for the case of flat space R5, however in
this thesis we will concentrate on the case of super Yang-Mills theory on the
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five-sphere S5 constructed in [58]. In this case the supersymmetry transforma-
tions take the following form

δξ Aµ = iε IJ
ξIΓµλJ ,

δξ σ = iε IJ
ξIλJ ,

δξ λI = −1
2

Γ
µν

ξIFµν +Γ
µ

ξIDµσ +ξJDKIε
JK +2t J

I ξJσ ,

δξ DIJ = −iξIΓ
µDµλJ +[σ ,ξIλJ]+ it K

I ξKλJ +(I↔ J) , (2.3)

where ξI is the supersymmetry transformation parameter. We choose it to be
a Grassmann even spinor that satisfies the Killing spinor equation on S5

DµξI ≡
(

∂µ +
1
4

ω
ab
µ Γ

ab
)
= Γµt J

I ξJ ≡ Γµ ξ̃I , (2.4)

In the equations above the following gauge field strength and covariant deriva-
tives were used,

Fµν = ∂µAν −∂νAµ − i
[
Aµ , Aν

]
,

Dµσ = ∂µσ − i
[
Aµ ,σ

]
,

DµλI = ∂µλI +
1
4

ω
ab
µ Γ

ab
λI− i

[
Aµ ,λI

]
. (2.5)

Here ωab
µ is the spin connection, with latin indices a,b, ... being vielbein in-

dices. Γa denotes coordinate-independent gamma-matrices, while Γµ = ea
µΓa

corresponds to coordinate-dependent ones. Finally we use the following defi-
nition for the antisymmetrized products

Γ
µ1µ2...µn ≡ 1

n! ∑
σ

(−1)P(σ)
Γ

µσ(1)Γ
µσ(2) . . .Γµσ(n) , (2.6)

where we sum over all possible permutations σ .
The matrix t J

I can be defined from the SU(2)R Majorana conditions im-
posed on the spinors ξI and ξ̃I . We can choose t J

I to be equal to any linear
combination of the Pauli matrices with imaginary coefficients. For conve-
nience we choose

t J
I =

i
2r

σ3 . (2.7)

In order to obtain the form (2.3) of supersymmetry transformations one
requires the commutator of two supersymmetry transformations δξ and δη to
result in the combination of a gauge transformation δG, a translation L , a
dilation δD, a Lorentz rotation δL and an R-symmetry rotation δR,[

δξ , δη

]
= L (−iv)+δG

(
γ + ivµAµ

)
+δD(ρ)+δL(Θ

ab)+δR(RIJ) , (2.8)
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with the transformation parameters of given by

vµ = 2ε
IJ

ξIΓ
µ

ηJ ,

γ = −2iε IJ
ξIηJσ ,

ρ = −2iε IJ(ξIη̃K−ηI ξ̃K) ,

RIJ = −3i(ξIη̃J +ξJη̃I−ηI ξ̃J−ηJ ξ̃I) ,

Θ
ab = −2iε IJ(ξ̃IΓ

ab
ηJ− η̃IΓ

ab
ξJ) . (2.9)

One can also observe rigid supersymmetry transformations in curved space-
time from supergravity following the recipe of [42]. In particular one needs to
start with the 5D off-shell supergravity coupled to Yang-Mills theory [74, 75].
Then in order to obtain rigid supersymmetry one should first give expectation
values to the scalar triplet of the Weyl multiplet tIJ and the metric. This fixes
the background on which we put the super Yang-Mills theory. In order for
the background to be supersymmetric we should set the gravitino ψ I

µ and the
fermion χ I from the Weyl multiplet together with their supersymmetric varia-
tions to zero. This procedure was worked out for 5D manifolds in [58, 54, 92]
and in the case of the S5 background led to the same supersymmetry trans-
formations as in (2.3). However notice that the algorithm described above,
in principle, can work for more general manifolds. In particular in [54] the
authors used it to describe supersymmetric Yang-Mills on squashed spheres.

The Lagrangian density of 5D super Yang-Mills that is invariant under su-
persymmetry transformations (2.3) is [58]

Lvect. =
1

g2
Y M

tr
[

1
2

FµνFµν −DµσDµ
σ − 1

2
DIJDIJ +2σtIJDIJ−

10 tIJtIJσ
2 + iλIΓ

µDµλ
I−λI

[
σ ,λ I]− itIJ

λIλJ
]
. (2.10)

All equations in this section were written for the theory on S5. However
one can always send the radius of the sphere to infinity (r→ ∞) in order to
recover the usual well-known relations for flat space super Yang-Mills theory.

2.2 Hypermultiplets
In this section we consider hypermultiplets for 5D supersymmetric theories.
The N = 1 hypermultiplet contains a doublet of complex scalars qA

I , a fermion
ψA and auxiliary scalars FA

I . Here I = 1,2 is the R-symmetry index and A =
1, . . . ,2r is the index enumerating the r hypermultiplets. These fields obey the
following reality conditions(

qA
I
)∗

= ΩABε
IJqB

J ,
(
ψ

Aα
)∗

= ΩABCαβ ψ
Bβ ,

(
FA

I
)∗

= ΩABε
IJFB

J , (2.11)

where ΩAB is the antisymmetric invariant tensor of the Sp(r) flavor symmetry.
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Unfortunately off-shell supersymmetry cannot be realized for hypermulti-
plets with a finite number of auxiliary fields. This is because one cannot find
a supersymmetry transformation that closes on the algebra.

However for localization it is only necessary to find a supersymmetry trans-
formation that squares to set of transformations in (2.8). Such a transformation
has been found in [58] and has the following form

δqA
I = −2iξIψ

A ,

δψ
A = ε

IJ
Γ

µ
ξIDµqJ + iε IJ

ξIσqA
J −3tIJ

ξIqJ + ε
I′J′

ξ̂I′FJ′ ,

δFA
I′ = 2ξ̂I′

(
iΓµDµψ

A +σψ
A + ε

KL
λKqA

L
)
, (2.12)

where ξ̂I′ is the constant spinor satisfying the following relations

ε
IJ

ξIξJ = ε
I′J′

ξ̂I′ ξ̂J′ , ξI ξ̂J′ = 0, ε
IJ

ξIΓ
µ

ξJ + ε
I′J′

ξ̂I′Γ
µ

ξ̂J′ = 0 . (2.13)

The supersymmetry transformation (2.12) squares to the sum of a gauge
transformation δG, a translation L , a dilation δD, a Lorentz rotation δL, an
R-symmetry rotation δR and additionally an SU(2)′ rotation δR′ ,

δ
2
ξ
= L (−iv)+δG

(
γ + ivµAµ

)
+δD(ρ)+δL(Θ

ab)+δR(RIJ)+δ
′
R(R

′
I′J′) .
(2.14)

with

vµ = ε
IJ

ξIΓ
µ

ξJ ,

γ = −iε IJ
ξIξJσ ,

RIJ = 3i
(
ε

KL
ξKξL

)
tIJ ,

Θ
ab = −2iε IJ

ξ̃IΓ
ab

ξJ ,

R′I′J′ = −2iξ̂I′Γ
µDµ ξ̂J′ . (2.15)

The Lagrangian invariant under the supersymmetry transformations (2.12) can
be written in the following form

Lhyper. = ε
IJDµ q̄IDµqJ− ε

IJ q̄Iσ
2qJ−2iψ̄Γ

µDµψ
B−2ψ̄σψ

−iq̄IDIJqJ−4ε
IJ

ψ̄λIqJ +
15
2

tKLtKLε
IJ q̄IqJ− ε

I′J′F̄I′FJ′ , (2.16)

where we have introduced

q̄A = ΩABqB, ψ̄A = ΩABψ
B, F̄A = ΩABFB . (2.17)

The final ingredients to be introduced are the masses of the hypermultiplets.
The easiest way to to do this is to introduce an auxiliary vector multiplet. Then
the mass terms in the Lagrangian can be obtained from the vacuum expectation
values of the fields in the multiplet

〈σ〉= M , 〈DIJ〉=−2tIJ〈σ〉=−2tIJM , 〈Aµ〉= 〈λ 〉= 0 , (2.18)
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where M is the hypermultiplet mass matrix. Using (2.16) the mass terms for
the hypermultiplet Lagrangian can be written down in the following form

Lmass = q̄I
(
−ε

IJM2 +2i tIJM
)

qJ−2ψ̄Mψ . (2.19)

Notice, that if we introduce the hypermultiplet masses, the supersymmetry
transformations (2.16) should be changed to include these masses.

One important issue to be discussed here, as it will be useful for us later on
, is supersymmetry enhancement. In flat space N = 1 supersymmetry can be
enhanced to N = 2 if one introduces massless hypermultiplet in the adjoint
representation of the gauge group. However, the generalization of this result
to the five-sphere is not obvious, since 5D super Yang-Mills is not a conformal
theory and thus the flat space theory can not be mapped canonically onto the
sphere.

The easiest way to find the parameters for which the enhancement takes
place is to consider the mass terms in (2.19) together with similar terms for
the scalars σ and qI in (2.10) and (2.16)

− 4
r2 σ

2 +(
15
4r2 −M2)ε IJ q̄IqJ +2iMtIJ q̄IqJ . (2.20)

Looking at these terms we can try to find a special point at which enlargement
of the global symmetries takes place. The value of parameters will then corre-
spond to supersymmetry enhancement. In particular, one can notice that there
is a special point M = 1

2r (or M =− 1
2r ) where the terms in (2.20) become

− 4
r2 σ

2 +
3
r2 q̄1q1 +

4
r2 q̄2q2 . (2.21)

The expression above suggests an enlargement of the global symmetry to
SO(1,2)× SO(2). Thus we can conclude that in order to obtain super Yang-
Mills theory with 16 supersymmetries on the five-sphere of radius r one needs
to add an adjoint hypermultiplet with the mass M = 1

2r . Notice that in flat space
the scalar in the vector multiplet is massless, so for enhancement of the super-
symmetry the hypermultiplet also should have massless scalars. However on
the sphere the situation is different. Supersymmetry requires the vector mul-
tiplet scalar to have a mass term which is different from the conformal mass
term. In order to get enlargement of the supersymmetry one should compen-
sate for this difference by introducing a mass M for the hypermultiplets.

The same result has been obtained in [67, 53] in a more strict way. In par-
ticular, in [67] the authors explicitly constructed 5D super Yang-Mills theory
with 16 supercharges on S5. This led them to the Lagrangian of the same form
as (2.10), (2.16), (2.19) with the mass parameter, M, being equal to 1

2r .
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2.3 Correspondence to 6D (2,0) theories
In this section we will discuss 6D (2,0) theories, which motivated a major part
of the studies presented in this thesis.

6D theories with (2,0) supersymmetry is one of the most interesting and
puzzling one in Nahm’s classification of superconformal theories [89]. These
theories were originally defined in terms of Type IIB string theory compact-
ified on a K3 manifold [119] and later appeared in the context of the world-
volume theory of M5-branes [108, 120]. We will discuss this relation with
M5-branes in a little bit more detail below.

The matter multiplet of (2,0) theory consists of four chiral fermions, five
real scalars and, instead of a vector field, contains a two-form field Bµν , that
has a self-dual field strength

H ≡ dB = ?dB . (2.22)

In the case of an SU(N) gauge group these theories play an important role in
the dynamics of M5-branes. It is well known that the dynamics of the D-branes
is determined by the open strings ending on them. A similar picture takes
place for M5-branes. However, instead of strings there are M2-branes ending
on M5-branes and thus defining their dynamics. The solution of this kind has
been constructed in the case of a single M5-brane and is known to result in
the self-dual string living on the world-volume of the brane [59]. In the case
of parallel M5-branes there should exist similar string states corresponding to
the M2-branes stretched between the M5-branes. Not very much is known
about these string states, but the (2,0) theories are believed to arise from the
dynamics of these strings.

Another thing that makes these theories interesting is the wide variety of
its compactifications. One of the simplest and most famous examples is a T 2

compactification leading to 4D N = 4 super Yang-Mills. From this point of
view we can find a simple explanation for S-duality in D = 4 as a consequence
of the symmetry under the exchange of the two radii of the torus. Other im-
portant results arising from (2,0) compactifications are, for example, the AGT
correspondence [45] or the recently developed 3d/3d correspondence [25].

However, though (2,0) theories are extremely important, they are not very
well understood due to several reasons. First of all, the presence of the self-
dual field Bµν makes the construction of a Lorentz-invariant Lagrangian tricky.
In fact, there is no known Lagrangian description in the case of the non-
Abelian case.

What also makes it difficult to study the (2,0) theories is the absence of
any free parameter. These theories are believed to be fixed points of the six-
dimensional renormalization group, which forbids them to have any dimen-
sionful parameters. At the same time the fixed points are isolated which means
that dimensionless parameters are excluded as well. The absence of free pa-
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rameters makes it impossible to study the perturbative regime, assuming there
was a proper Lagrangian description of the theory.

The only useful tool for their study that exists at the moment is the duality
between them and M-theory on the AdS7×S4 background conjectured in [79].
In the planar limit this reduces to supergravity on the same background, which
makes the calculations doable. One of the most important results obtained for
(2,0) theories from their supergravity duals is the N3 behavior of their free
energy and conformal anomaly [57, 70].

In this thesis we will examine the validity of that by considering (2,0) the-
ory compactifications. In particular we will discuss an S1 compactification
which leads to 5D maximally supersymmetric Yang-Mills theory. Recently
it was proposed [77, 35] that 5D maximally supersymmetric Yang-Mills cap-
tures all degrees of freedom of the six-dimensional theories. In order to sup-
port this statement the authors of [77] considered a system of two slightly sep-
arated M5-branes, corresponding to an SU(2) gauge group. The idea was to
consider the BPS spectrum of 5D super Yang-Mills and to compare it with the
Kaluza-Klein spectrum of charged self-dual strings. Comparing the spectra it
was found that the spectrum of 5D dyonic instanton particles [78] is in perfect
agreement with the spectrum of the self-dual strings wrapped along the com-
pactification direction x5. At the same time the spectrum of self-dual strings
stretched along the non-compact directions matches the spectrum of the 5D ’t
Hooft-Polyakov monopoles. This match leads to the following identification
between the radius of compactification and the 5D coupling, 1

R6 =
g2

Y M
8π2 . (2.23)

To understand how this equation arises, we should first recall that dyonic
instantons in five dimensions are particles, which have mass Minst =

8π2|q|
g2

Y M
,

where q is the winding number of the instanton. It also carries a conserved
charge

J0
5 =− 1

4g2
Y M

tr
(

ε
i jklFi jFkl

)
, (2.24)

where i, j,k, l = 0,1,2,3. Now the relation (2.23) can be seen in several ways.
For example, one can identify the masses of the Kaluza-Klein modes M6 =
n/R6 with the masses of the instanton particles. This will lead to the following
equation

M6 ≡
n

R6
=

8π2|q|
g2

Y M
≡Minst . (2.25)

As both n and q are quantized we arrive at the desired relation (2.23).

1Notice that our identification (2.23) differs from the one proposed in [77]. This happens be-
cause our coefficient in front of Yang-Mills action (2.10) differs from the standard one by factor
of two.
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Alternatively one can identify the conserved current J0
5 with the momentum

P5 in the compactified direction. This identification can be obtained either
from the corresponding component of the stress energy tensor

T05 ∼ H i j
0 H5i j = ε

0i jklFklFi j (2.26)

or by comparison of the supersymmetry algebra in five dimensions with the
dimensionally reduced general six-dimensional supersymmetry algebra [77].
This identification will lead to the same relation (2.23) between the 5D cou-
pling and radius of the compactification.

The BPS spectrum matching led the authors of [77, 35] to conjecture that
5D maximally supersymmetric Yang-Mills theory captures all degrees of free-
dom of 6D (2,0), suggesting that these two theories are the same. However,
there is also an important renormalization issue, which makes the picture more
complicated. As can be seen from the action (2.10) the Yang-Mills coupling
squared has the dimension of length, i.e.

[
g2

Y M
]
= [r]. Thus, simple power

coupling suggest that the theory is nonrenormalizable. At the same time the
(2,0) theory is believed to be UV finite , suggesting that the 5D theory is also
UV finite in order for the conjecture in [77, 35] to hold. However, we now
know that 5D maximally supersymmetric Yang-Mills is not finite. This was
shown in [15], where the authors computed the six-loop four-point correlation
function in the planar limit showing that it is divergent. This means that the
relation between the five and six dimensional theories is not as straightforward
and we can not claim that these two theories are equivalent.

Even the (2,0) theory is only a UV completion of 5D maximally super-
symmetric Yang-Mills, the study of the latter can still give us clues about the
(2,0) theories. Moreover, due to the matching analysis we can propose that
the identification of the two theories works at least for the supersymmetric
observables.

2.4 Chern-Simons terms
Now we can consider one of the most interesting ways of extending SU(N)
super Yang-Mills theory. Since we are considering an odd-dimensional space-
time, we can include Chern-Simons term in our action.

Let’s start with the description of the non-supersymmetric version of the 5D
Chern-Simons action. In general, in a space-time with dimension (2n−1), the
action of the Chern-Simons theory can be constructed using the Chern-Simons
form Ω2n−1, defined as

dΩ2n−1 = Tr [Fn] , (2.27)

where F = dA− iA∧A is a gauge field strength two-form and its powers Fn

are defined by wedge products. In three space-time dimensions this form gives
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rise to the famous 3D Chern-Simons action

SCS3 =
k

4π

∫
d3xε

µνρ tr
(

Aµ∂νAρ −
2i
3

AµAνAρ

)
, (2.28)

where k is the Chern-Simons level and plays the role of the coupling. It can be
shown that, in order for this action to be gauge invariant, k should take only
integer values.

Three dimensional Chern-Simons theory is topological, meaning that the
observables of this theory are defined only by the global properties of the space
which the theory lives on. This theory, as well as it’s supersymmetric exten-
sions, is well studied from many points of view. For a review the interested
reader is referred to the book [82] and references therein.

In the 5D Chern-Simons theory the action is given by

SCS5 =
k

24π2

∫
d5xε

µνραβ tr
(
Aµ∂νAρ∂αAβ−

3i
2

AµAνAρ∂αAβ −
3
5

AµAνAρAαAβ

)
. (2.29)

Here Aµ is the gauge field, with the gauge group taken to be U(N)2. Field Aµ

transforms under the gauge transformation g ∈ U(N) as

Aµ → g−1Aµg− ig−1
∂µg . (2.30)

Under this transformation SCS5 gets an additional term SCS5→ SCS5 +δS given
by

δS = k
i

240π2

∫
d5xε

µνραβ tr
(
g−1

∂µgg−1
∂νgg−1

∂ρgg−1
∂αgg−1

∂β g
)
+

k
48π2

∫
d5xε

µνραβ
∂ν tr

(
∂µgg−1AρAαAβ

)
(2.31)

The last term in the expression above a total derivative and we take it to be
zero, assuming that ∂M =∅ , where M is the manifold which our theory lives
on. However the first term in (2.31) is much more interesting and requires
more care. Let’s rewrite it in the form δS = 2πikQ(g), where

Q(g)≡ i
120π

∫
d5xε

µνραβ tr
(
g−1

∂µgg−1
∂νgg−1

∂ρgg−1
∂αgg−1

∂β g
)
,

(2.32)
Let’s now consider two gauge transformations g(x) and g′(x) that differs in-
finitesimally, i.e.

g′(x)−g(x) = iε(x)g(x) , (2.33)

2The only groups admitting Chern-Simons term in five dimensions are U(N) and SU(N). For
definiteness we assume U(N), however all arguments presented in this section can of course be
extended to SU(N)
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with small ε(x). For these two gauge transformations we obtain the following
difference between Q(g′) and Q(g)

Q(g′)−Q(g) =

− 1
32π2

∫
d5xε

µνραβ tr
(
g−1

∂µgg−1
∂νgg−1

∂ρgg−1
∂αgg−1

∂β ε
)
=

− 1
32π2

∫
d5xε

µνραβ tr∂β

(
g−1

∂µgg−1
∂νgg−1

∂ρgg−1
∂αgg−1

ε
)
,

(2.34)

which results in a total derivative, thus giving us zero. Hence, we conclude that
for any two gauge transformations g′ and g that can be continuously deformed
into each other, we obtain Q(g) = Q(g′). Thus Q(g) depends only on the
homotopy class of g(x), which is

g : S5→ SU(N) . (2.35)

These mappings can be characterized by the values of the homotopy group
[90]

π5 (SU(N))∼= π5 (U(N))∼= Z , for N ≥ 3 . (2.36)

Moreover Q(g) explicitly gives the wrapping number n ≡ π5 (U(N)) of the
map g(x) [19]. Therefore Q(g) takes only integer values. Returning to the
Chern-Simons action this leads to

δSCS5 = 2πkn , n ∈ Z . (2.37)

Hence, we see that the Chern-Simons action is not invariant under the gauge
transformations itself. In fact, for gauge transformations that can not be con-
nected to the identity continuously, the action receives a constant shift. How-
ever, observables in the field theory are related to the partition function

ZCS5 ≡
∫

DA e−iSCS5 , (2.38)

rather than the action itself. Just as in the case of three-dimensional Chern-
Simons theory [30, 29] gauge invariance of the partition function

k ∈ Z . (2.39)

This condition of level quantization plays an important role in Chern-Simons
physics. In particular it protects the level k from renormalization as it cannot
be varied continuously. On the other hand it is does not prevent the level from
getting constant integer shifts from loop corrections.

Though 5D and 3D Chern-Simons theories share some interesting proper-
ties, such as quantization of the level for example, there are also some differ-
ences. The most striking is the presence of local degrees of freedom in the
higher dimensional case. As we have mentioned above, in three dimensions
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Chern-Simons theory is a topological theory, meaning that observables in this
theory depend only on the global properties of the space the theory lives in.
As a result, the theory should not have any propogating degrees of freedom. A
more precise way to understand this is to consider the equations of motion for
our theory. In the case of 3D Chern-Simons theory the variation of the action
(2.28) leads to the equations of motion

Fµν = 0 . (2.40)

So in three dimensions the space of solutions is simply given by all flat connec-
tions modulo gauge transformations, leading to the absence of local degrees
of freedom.

However, in the case of five (and, generally any higher odd number) dimen-
sions the equations of motion become more complicated

ε
ρµναβ FµνFαβ = 0 , (2.41)

and their solutions admit local degrees of freedom. In particular, Hamiltonian
analysis leads to the following number of degrees of freedom (d.o.f.) [9, 10]

#d.o.f.= 2N−2−N , (2.42)

where N is the rank of the U(N) gauge group. As we see for any N ≥ 3 there is
a nonzero number. This is quite interesting result. Indeed action of the theory
does not depend on the metrics and thus theory is topological. Usually, but
not necessarily, topological theories don’t have local degrees of freedom. This
peculiar fact makes more detailed study of 5D Chern-Simons attractive.

The supersymmetric version of the 5D Chern-Simons was derived in [63],
where the action was found to be

SSCS5 = SCS5(A−σκ)−
k

8π2

∫
tr(Ψ∧Ψ∧κ ∧F(A−σκ)) ,

(2.43)

where A is the gauge field one-form, F is the field strength two-form and Ψ

is the fermionic one-form, Ψµ =−2ξ Γµλ . Finally, κ is a contact form. This
is the form that is defined3 in such a way that κ ∧ dκ ∧ dκ is non-vanishing
everywhere. Hence, κ ∧dκ ∧dκ can serve as the volume element on the five-
manifold our theory is defined on.

There are several reasons why the inclusion of a Chern-Simons term can be
interesting to study. First of all, pure U(N) and SU(N) Chern-Simons theories
are superconformal fixed points in five dimensions [105, 60], which in general
can be seen as infinite coupling limits of certain super Yang-Mills theories.

3Notice that contact form is not necessarily definable on arbitrary manifold. Differentiable
manifolds admitting such forms are called contact manifolds.
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In general, these fixed points can be divided into three classes: super Yang-
Mills theories with the exceptional gauge groups, super Yang-Mills theory
with USp(N) gauge group and, finally, SU(N) or U(N) Chern-Simons theory.

Another reason to include Chern-Simons terms is that they can be gener-
ated by integrating out massive hypermultiplets in the super Yang-Mills theory
[105, 60], provided that the hypermultiplets transform in complex representa-
tions of the gauge group. If we consider the masses of the hypermultiplets as
the UV cut-off, this leads to the generation of the Chern-Simons term in the
one-loop correction to the classical theory. Hence inclusion of this term can
be important in some cases if we wish to have a complete description of the
theory.

Finally Chern-Simons theory can be important in the relationship between
5D super Yang-Mills and 6D (2,0) theories. In particular, one can argue [18,
16, 17] that the 5D Chern-Simons term can be generated by the anomaly terms
in the six-dimensional theory.
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3. Supersymmetric Localization

In this chapter we discuss supersymmetric localization, which is the main tool
used in this thesis for obtaining exact results in 5D super Yang-Mills and
Chern-Simons theories. We start with a brief description of the main idea
behind localization. After this we consider particular results of localization
for the vector- and hypermultiplets of 5D super Yang-Mills theory. At the end
of this chapter we summarize results of localiztion in five dimensions, which
we use extensively in the following chapters of the thesis.

3.1 The basic idea of localization
A primary goal of any quantum field theory is to calculate expectation values
for different observables. These observables can be local, such as correlation
functions, or can be non-local operators, such as Wilson or ’t Hooft loops. In
order to calculate the expectation value of some observable in a quantum field
theory one should evaluate the path integral

〈O〉=
∫

Dφ Oe−S , (3.1)

where φ are the fields in the theory, O is an observable we wish to study
and S is the action for the theory. Thus the observable expectation value is
given by an infinite-dimensional path integral. These objects are quite hard to
work with and are usually computed perturbatively using an expansion in the
coupling constant. However, this approach is limited only to weak coupling
and more general techniques are required to study field theories in different
regimes. One such technique is supersymmetric localization.

The main idea behind localization is that in some situations integrals can
equal their semiclassical approximations exactly. In the case of quantum field
theory this idea is usually formulated as follows [83]. Let’s assume there
is a quantum field theory with action S(φ), where φ represents the fields of
this theory. The action of the theory is also assumed to be invariant under
some Grassmann-odd symmetry δ , i.e. δS = 0. Finally, we suppose that the
symmetry transformation δ squares to some Grassmann-even symmetry LB
of the theory, i.e.

δ
2 = LB , LBS = 0 . (3.2)
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In physical theories the natural choice for the Grassmann-odd symmetry is
supersymmetry while the Grassmann-even symmetry is taken to be a combi-
nation of the Lorentz and gauge symmetries. Thus the localization method can
work for supersymmetric gauge theories.

Now let’s consider the following deformation of the expectation value (3.1)
of an observable O(φ)

O(t) =
∫

Dφ Oe−S−t δV , (3.3)

where V is an Grassmann-odd operator invariant under the LB symmetry, i.e.
δ 2V = 0. Now computing the derivative we can easily see that O(t) doesn’t
depend on t provided that the observable O is also invariant under the symme-
try transformation δ

d
dt
〈O〉=−

∫
Dφ OδV e−S−t δV =−

∫
Dφδ

(
OV e−S−t δV

)
= 0 , (3.4)

where in the last step we treat the integral as a total derivative. In order for this
integral to be zero we need two conditions to be satisfied. First, the measure
of the path integral should be invariant under the symmetry δ , or equivalently,
δ should not be an anomalous symmetry. Second, this equation can be spoiled
by the boundary terms, but in our case such terms do not appear.

Assuming these conditions are satisfied, then 〈O〉 = 0 is constant in t. So
instead of computing (3.1) we can compute (3.3) for any value of t. Now we
notice that in the limit t → ∞ we have a dramatic simplification. Provided
that δV has a positive definite bosonic part δVB, in this limit the integral (3.3)
localizes to the submanifold of field space satisfying

δ I|bos. = 0 , (3.5)

which is called localization locus. In this case the expectation value of the
observable can be rewritten as

〈O〉=
∫

Locus

Dφ O(φ)exp
(
−tδV −S− logZ1−loop− t−1 logZ2−loop− . . .

)
,(3.6)

where integral is evaluated over the localization locus and Zn−loop stands for
n-loop contribution of fields fluctuating around the locus into the partition
function. As seen from this expression in the limit t → ∞ higher loop terms
are infinitely suppressed and one-loop determinant becomes exact. Notice that
the full infinite dimensional path integral (3.3) is reduced to the integral over
the localization locus. In many interesting cases the last one appears to be a
finite dimensional integral, leading to the reformulation of the theory in terms
of the matrix model.

The idea of reduction of the integration space came from mathematics [6,
14] and was first applied to physics in the context of supersymmteric quantum
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mechanics in the 1980’s [116]. The original quantum field theory application
of localization appeared in work on topological field theory (see for example
[118, 117]). Later in the 2000’s the method was extended to N = 2 four-
dimensional super Yang-Mills theory in order to derive Seiberg-Witten solu-
tion [91]. Finally, in the late 2000’s the method was formulated in the form we
have presented it here for Lorentz invariant gauge theories possessing enough
supersymmetry. This was done first in [93] for the case of N = 2 super Yang-
Mills theory with adjoint hypermultiplet on S4. Later these results were gen-
eralized to Chern-Simons-matter theories on S3 in [64] and N = (2,2) gauge
theories on S2 [34]. Finally in [63, 62, 58] the method was extended to five-
dimensional gauge theories on S5 and later [95, 111] on more complicated
five-manifolds.

In the following sections we briefly review results of the localization of 5D
N = 1 super Yang-Mills theory on S5 with arbitrary matter content and show
which matrix model corresponds to this gauge theory. In our considerations
we closely follow [58] and [62].

3.2 Vector Multiplet
Before describing details of localization for the action derived in Section 2.1
let’s discuss the issue of positive definiteness of this action. As it can be seen
from the kinetic terms for the scalar and auxiliary fields σ and D in the La-
grangian (2.10), in order for the Yang-Mills action to be positive definite the
integration contour for both of these fields in the path integral should be ro-
tated by i

σ →−iσ , DIJ →−iDIJ . (3.7)
After this short remark, we can localize the vector multiplet with the fol-

lowing choice of the function V [58]

Vvec. =
∫

tr
[
(δλ )†

λ

]
=
∫

tr
[

1
2

ε
IJ

ξIΓ
µν

λJFµν − iε IJ
ξIΓ

µ
λJDµσ − iε IJ

ξKλJ (DLI +2σtLI)ε
KL
]
.

(3.8)
It can be shown (for details see [58]) that this function indeed satisfies δ 2Vvec.=
0 and thus can be used for localization. δVvec. contains both bosonic terms and
terms bilinear in fermion fields. Due to the condition (3.5) defining the local-
ization locus we are interested only in the bosonic part which equals to

δV |bos. =
∫

tr
[

1
4

(
Fµν −

1
2

εµνραβ vρFαβ

)(
Fµν − 1

2
ε

µνραβ vρFαβ

)
+

1
2
(
vµFµν

)
(vαFαν)+DµσDµ

σ +
1
2
(DIJ +2σ tIJ)

(
DIJ +2σ tIJ)] ,

(3.9)
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where vµ = ε IJξIΓ
µξJ is the Reeb vector. Provided that σ and D are purely

imaginary fields, the expression above is positive definite and we can write
down the equations for the localization locus

Fµν =
1
2

εµνραβ vρFαβ , vµFµν = 0 , Dµσ = 0 , DIJ +2σtIJ = 0 .
(3.10)

The first equation implies the second. The first equation describes so called
contact instantons [55, 63]. These instantons live on the CP2 base of the Hopf
fibration1, while the second equation implies that the vector field Aµ is zero
component along the S1 fiber. In the following we concentrate on the sector
with zero instanton number and will not discuss other sectors in detail. If we
deal only with zero topological number we must consider only flat connec-
tions, so that fields Aµ vanish up to gauge transformations. This reduces the
localization locus to

Aµ = 0 , σ = σ0 = const , DIJ =−2tIJσ0 . (3.11)

The classical action of the vector multiplet on this localization locus then
equals

S0
vec. =

∫
d5x
√

gtIJtIJtr
[
σ

2
0
]
=

8π3r
g2

Y M
tr
(
φ

2) (3.12)

where we have introduced a dimensionless scalar field φ ≡ σr.
The calculation of the one-loop determinant is less straightforward and can

be performed in two ways. One way is to write down terms quadratic in the
fields and then diagonalize the accompanying differential operator using a ba-
sis of spherical harmonics. Then the one-loop determinants can be expressed
as products its eigenvalues. However, this method is uncomplicated only for
the case of three-dimensional gauge theories [64, 82]. For higher dimensions
this method becomes quite tedious.

Another way of calculating determinants was introduced for 4D theory in
[93] and generalized to 5D in [63]. It uses an analogy with localization of
finite-dimensional integrals in mathematics. This technique reduces the cal-
culation of the one-loop determinant to an evaluation of the superdeterminant
of the operator iLv− i[σ , ] with Lv being the Lie derivative along the Reeb
vector. The superdeterminant can then be calculated using an index theo-
rem. Though this method employs more sophisticated mathematical concepts
it makes calculations much simpler.

One-loop determinants for five-dimensional theories on S5 were evaluated
in both ways. In particular it was first evaluated in [63, 62] using index theo-
rems. Later the same calculations were performed using spherical harmonics
in [66]. Both led to the same expression for the one-loop determinant

Zvector
1−loop(φ) = ∏

µ

∏
t 6=0

(t−〈iφ ,β 〉)(1+
3
2 t+ 1

2 t2) , (3.13)

1Here we mean that five-sphere S5 is considered as Hopf fibration over CP2.
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where β are the roots of the Lie algebra of the corresponding gauge group.
The last result we can extract from the localization of the vector multiplet is

the classical action of the supersymmetric Chern-Simons term (2.43). Notice
that this term does not contain entries quadratic in the fields and thus will not
contribute to the one-loop determinants. The only contribution from this term
is the following classical action on the localization locus (3.11)

S0
SCS5

= SCS5(−iσ0κ) =
k

24π2 tr
(
σ

3
0
)∫

d5 xκ ∧dκ ∧dκ

=
πk
3

tr
(
φ

3) , (3.14)

where in the last step we have used the fact that κ ∧ dκ ∧ dκ is a measure of
the volume.

3.3 Hypermultiplet
Finally, we can consider localization of the hypermultiplet action correspond-
ing to the Lagraingain (2.16). Here we again follow [58].

As can be seen from the hypermultiplet Lagrangian (2.16) and its massive
terms (2.19), in order to have a positive definite action we should rotate the
integration contour for the auxiliary fields FI′ as we did in (3.7) for the fields
of vector multiplet

FI′ → iFI′ , M→ iM , (3.15)

where we have also rotated the masses of the hypers to imaginary values. This
rotation can be understood directly from the way we have introduced these
masses. Indeed, the mass terms (2.19) in the Lagrangian have been derived
by introducing an extra vector multiplet and assigning it expectation values
(2.18). Hence we should consider masses M on the same footing with the
scalar σ of vector multiplet, which was rotated to imaginary axis in (3.7).

For localization of the hypermultiplet we choose the following regulator V

Vhyper =
∫

(δψ)†
ψ . (3.16)

Then using the explicit expression (2.12) for the supersymmetry transforma-
tion of the ψ field we find that the bosonic part of δVhyper is given by

δVhyper
∣∣
bos =

∫ 1
2

ε
IJ (vµDµ q̄I−3t K

I q̄K
)(

vνDνqJ−3t K
J qK

)
+

1
8

ε
KL
(

Dµ q̄K− vµ (vνDν q̄K)+2wµν I
K Dν q̄I

)
×
(
DµqL− vµ (vνDνqL)+2w J

µνI DνqJ
)

+
1
2

ε
IJ q̄I (σ +m)2 qJ +

1
2

ε
I′J′F̄I′FJ′ ,

(3.17)
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where the Wick rotations (3.7) and (3.15) have been taken into account. We
have also introduced the following notation wµν

IJ ≡ ξIΓ
µνξJ . We then see that

each term in this sum is positive definite as desired. Hence we arrive at the
following equations for the localization locus

vµDµqJ−3t L
K qL = 0 ,

DµqK− vµ (vνDνqK)+2w J
µνK DνqJ = 0 ,

(σ +M)qJ = 0 , FJ′ = 0 .

(3.18)

These equations have simple solutions on the Coulomb branch, which is our
main interest,

qJ = 0 , FI′ = 0 . (3.19)

Since the hypermultiplet fields are trivial on the localization locus, they do
not contribute to the classical action. The one-loop determinant was evaluated
for this locus using index theorems in [62] and spherical harmonics in [66].
Both calculations resulted in the following expression

Zhyper
1−loop(φ) = ∏

µ

∏
t

(
t−〈iφ ,µ〉− im+

3
2

)−(1+ 3
2 t+ 1

2 t2)

, (3.20)

where again φ =σr. We have also introduced a similar notation for the dimen-
sionless mass parameter m≡Mr. Notice that in order for localization locus to
work, only real masses m ∈ R should be considered. Finally, the µ in above
expression stands for the weights of the representation R the hypermultiplet
transforms under.

3.4 Summary of Localization
Let us very briefly summarize the localization of 5D super Yang-Mills theory
on S5. We started by considering the partition function with a Lagrangian
given by the sum of (2.10), (2.16) and (2.19). Supersymmetric localization
resulted in the locus

σ = σ0 = const , DIJ =−2tIJσ0 , Aµ = 0 , qJ = 0 , FI′ = 0 , (3.21)

so that the only nonzero fields in the locus are the constant scalar and auxiliary
fields. Hence, our path integral will be reduced to a finite-dimensional matrix
integral over the locus σ0,

Z =
∫
[dφ ] e

− 8π3r
g2
Y M

Tr(φ2)− πk
3 Tr(φ3)

Zvect
1−loop(φ)Z

hyper
1−loop(φ)+O

(
e
− 16π3r

g2
Y M

)
,

(3.22)
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where φ = rσ0 with r being the radius of the five-sphere. The one-loop con-
tributions of the vector- and hypermultiplets are given by the infinite products
(3.13) and (3.20). We have also introduced a dimensionless mass m = rM. Fi-
nally the last term which we do not write down explicitly, corresponds to the
contributions from the nonzero instanton sectors. These terms are not consid-
ered in detail in this thesis due to reasons that will be discussed in the following
chapters. The interested reader is referred to [66, 68] for further information.
Notice that the partition function in (3.22) can be applied to a theory with
arbitrary matter content, i.e. we can always consider different number of hy-
permultiplets in different representations. However, in this thesis we mainly
focus on the case of one adjoint hypermultiplet with either a U(N) or SU(N)
gauge group and only briefly discuss other possible cases.
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4. Matrix Models Technique

In this chapter we briefly review basic methods commonly used to construct
solutions of matrix models. The interested reader can find more advanced
tools, details of calculations presented in this chapter, and numerous applica-
tions of matrix models in reviews [31, 32, 33, 81] and references therein.

4.1 The partition function of matrix model
The technique presented in this chapter was first introduced in [22] for the
matrix models described by the partition function

Z =
∫

DMe−S[M] , (4.1)

where S[M] is the action of the matrix model. Throughout this chapter we
consider the action to have the following polynomial form

S[M]≡ 1
g2V (M) =

1
g2 ∑

k=2
tkTr

(
Mk
)
, (4.2)

where M is N×N Hermitian matrix, DM =
N
∏
i=1

dMii ∏
i< j

d (ReMi j)d (ImMi j) is

a measure of the matrix integral and g2 is the coupling constant.
The matrix model action (4.2) contains only traces of powers of M and thus

possesses a "gauge" symmetry

M→M′ =U MU−1 , (4.3)

where U is an N ×N unitary matrix. Thus, the partition function (4.1) has
redundant degrees of freedom (d.o.f.) which can be read off. In particular,
by applying the unitary transformation (4.3) one can always diagonalize the
matrix M by finding an appropriate unitary matrix U0 such that

Λ≡ diag(φ1 , . . . , φN) =U0 MU−1
0 . (4.4)

The matrix Λ contains only N d.o.f. instead of the N2 found in M. We can then
"gauge fix" the matrix integral (4.1) in a manner similar to the Faddeev-Popov
procedure in quantum field theory. To do so we should insert the identity
written in the form

1 =
∫

DΛDU δ
(N2)

(
U MU−1 −Λ

)
∆

2 (Λ) , (4.5)
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into the partition function (4.1). Here ∆2 (Λ) is the Jacobian of the "gauge"
transformation (4.3) and will be defined later. Then (4.1) becomes

Z = VolU(N)
∫ N

∏
i=1

dφi ∆
2 ({φ})e

−∑
i

S(φi)
, (4.6)

where VolU(N) is the volume of the group. Since the integral is U(N) inde-
pendent, VolU(N) is an overall constant and can be omitted.

The Jacobian ∆2(φ) is found as follows. As the dominant contribution to the
integral in (4.5) comes from matrices U close to the matrix U0 diagonalizing
M, one can change integration variables to U = (1 + T )U0, where T is an
antihermitian matrix with small entries. After some manipulations it can be
shown that the δ -function takes the form

δ
(N2)

(
U MU−1−Λ

)
= δ

(N2)
(
Λ
′−Λ+

[
T, Λ

′])
= δ

(N)
(
Λ−Λ

′)
δ
(N2−N)

(
Ti j
(
φ
′
i −φ

′
j
))

,
(4.7)

where in the last step we used that Λ−Λ′ is diagonal and [T, Λ′] has only non-
diagonal terms. We then define the Jacobian ∆2 using the expressions (4.5)
and (4.7)

1 =
∫

DΛDT ∆
2 (Λ) δ

(N)
(
Λ−Λ

′)
δ
(N2−N)

(
Ti j
(
φ
′
i −φ

′
j
))

= ∆
2(φ ′)

∫
∏
i< j

d (ReTi j)d (ImTi j)δ
(N2−N)

(
Ti j(φ

′
j−φ

′
i )
)
,

(4.8)

which finally leads to

∆(φ) = ∏
i< j

(φ j−φi) = detφ j−1
i . (4.9)

This expression is often referred to as the Vandermonde determinant. Finally,
we end up with the following simple form for the partition function

Z =
∫

∏
i

dφie−Se f f (φ) ,

Se f f .(φ) =
1
g2 ∑

i
V (φi)−2 ∑

i< j
log(φi−φ j) ,

V (φi) = ∑
i

tkφ
k
i .

(4.10)

In general, it is hard to work out this matrix integral. Instead of doing it exactly
we will restrict our attention to the limit

N→ ∞ , λ = g2N→ fixed . (4.11)
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Notice that the contribution from each sum in the effective action is of order
O(N). Hence the whole effective action is of order O(N2) in the limit (4.11).
Thus the partition function can be approximated by the value of the integrand
at the saddle point, which extremizes the effective action

∂Se f f

∂φk
=

1
g2V ′(φk)−2 ∑

j 6=i

1
φk−φ j

= 0 , (4.12)

The limit (4.11) is called the ’t Hooft or planar limit. It was first intro-
duced by ’t Hooft in the context of QCD with a large number of colors [109].
An important property of this limit is that all physical observables (for exam-
ple, partition functions) can be expanded in series in 1/N. Each term in this
expansion corresponds to a sum of diagrams with the same topology. There
are also many simplifications happening in this limit so that some rough pre-
dictions about complicated theories like QCD can be made [80]. In the end
of the 1990’s, planar limit has become extremely important again due to the
AdS/CFT duality [79, 2]. This duality makes a correspondence between a
certain class of gauge theories in Minkowski flat space-time on one side and
string theory on Anti-de Sitter (AdS) space on the other. The full quantum
string theory on the AdS background is not fully solved. However, in the ’t
Hooft limit the picture simplifies a lot because then only classical string the-
ory (no string loops), which is much easier to work with, is needed to describe
the gauge theory.

Turning back to the matrix model saddle-point equation (4.12), we can say
that it describes the genus-zero contribution to the free energy. In order to
obtain higher-genus corrections a complicated technique such as, for exam-
ple, orthogonal polynomials should be applied [33]. However here we restrict
ourselves to the saddle-point technique.

As we deal with large matrices, it is natural to introduce a continuous eigen-
value density function

ρ(φ)≡ 1
N ∑

i
δ (φ −φi) , (4.13)

where the φi’s solve (4.12). We assume that the eigenvalue density has finite
support consisting of one or more intervals. This density ρ(φ) is subject to the
normalization condition, that can be easily obtained from its definition∫

dφρ(φ) = 1 , (4.14)

where the integral is taken over all intervals Ci over the density support. The
same is presumed for all follow up derivations unless a different integration
domain is specified. Using the eigenvalue density we can rewrite the saddle-
point equation (4.12) as a singular integral equation with Cauchy kernel

1
2g2V ′(φ) =

∫
−dφ

′ ρ(φ
′)

φ −φ ′
, (4.15)
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Before we start solving this equation let us make one remark. Notice that
the discrete equations of motion (4.12) can be considered as an equilibrium
condition for a system of N particles on a line repelling each other with a
logarithmic potential and placed in an external central potential V (φ). Then
we should expect these eigenvalues to condense around the extremal points
of this potential V . In particular, if the potential has k extremal points we
can expect the eigenvalues to be situated on disjoint intervals Ci , i = 1, ..,k.
In the following two sections we will consider cases of single- and many-
cut solutions for a generic potential together with some simple examples of
particular potentials.

4.2 One-cut solution
To start, let’s assume that the eigenvalues are all located on a single interval
C = [a, b]. In the following discussion we will refer to this configuration as
a one-cut solution. The standard way to solve it is to introduce the resolvent
defined in the following way

ω(φ)≡
∫
R

dψ ρ(ψ)
1

φ −ψ
. (4.16)

There are several properties of the resolvent that can help us define it. First,
notice that the resolvent is an analytic function in the entire φ complex plane
except along the interval C . Across this interval the resolvent jumps by an
amount that is easily calculated using the Sokhotskyi-Plemelj formula

ω(φ ± i0) =
∫

dψ
ρ(ψ)

φ −ψ± i0
=
∫
−dψ

ρ(ψ)

φ −ψ
∓ iπρ(ψ) , (4.17)

so that we obtain the following relations for the resolvent between the two
sides of the cut along C

ω(φ + i0)+ω(φ − i0) =
1
λ

V ′(φ) , (4.18)

ω(φ + i0)−ω(φ − i0) = −2π iρ(φ) , (4.19)

Another condition that can help us fix the resolvent comes from its asymptotic
behavior which follows from the normalization condition (4.14)

ω(φ)→ 1
φ

when φ → ∞ . (4.20)

Due to (4.18) and (4.19) it is natural to assume the following form for the
resolvent

ω(φ) =
1

2λ

(
V ′(φ)−P(φ)

√
(φ −a)(φ −b)

)
, (4.21)
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resulting in a very simple expression for the eigenvalue density

ρ(φ) =
1

2πλ
P(φ)

√
(b−φ)(φ −a) . (4.22)

In this expressions we have introduced the polynomial P(φ). If the central po-
tential V (φ) is a polynomial of degree k, then P(φ) has degree k−2, i.e. there
are k− 1 coefficients that should be determined in this polynomial. Together
with the two positions a and b of the cut endpoints we have k+1 coefficients to
determine. At this point the asymptotic behavior (4.20) of the resolvent should
be applied. In particular, we want all terms of the expansion at φ → ∞ up to
the 1/φ term to be canceled. This will give us all k+1 relations to determine
all unknown coefficients.

Example: Quartic Matrix Model. Now we can consider a particular ex-
ample of the quartic matrix model with potential

V (φ) =
1
2

mφ
2 +

1
4

λφ
4 , (4.23)

where we assume that m can be both positive and negative while coupling the
λ is assumed to be positive λ > 0. The corresponding resolvent, according to
(4.21), then takes the form

ω(φ) =
1
2

mφ +
1
2

λ φ
3− (c2φ

2 + c1φ + c0)
√

φ 2−a2 . (4.24)

In order to have the appropriate asymptotic behavior we fix the coefficients
and the endpoints of the cut to

c0 =
1
4

λa2 +
1
2

m , c1 = 0 , c2 =
λ

2
,

a2 =
2

3λ

(√
m2 +12λ −m

)
.

(4.25)

Finally, eigenvalue density for the one-cut solution can be obtained from the
resolvent (4.24) using (4.19)

ρ(φ) =
λ

2π

(
φ

2 +
1
2

a2 +
m
λ

)√
a2−φ 2 . (4.26)

Notice that this solution has a local minimum around the origin, which can
be seen in Fig.4.1(a). If we continue m down to negative values then at some
point when m =−2

√
λ , the minimum touches the origin (see Fig.4.1(c)). De-

creasing m further it becomes impossible to maintain a single-cut solution.

4.3 Many-cuts solution
Now we can consider a more general solution with n cuts, where n is less
than or equal to the number of critical points of V (φ). The eigenvalue density
support then consists of a union of n disjoint intervals Ci = [ai, bi] , i = 1, ..,n.
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To find this n-cut solution one introduces a resolvent the same way as for
the one-cut solution in (4.16). This resolvent will have discontinuities along
every cut in the eigenvalue density support, which results in the same boundary
conditions (4.18) and (4.19) as before. The asymptotic behavior (4.20) of the
resolvent is preserved as well. Then the natural way to generalize the ansatz
(4.21) is

ω(φ) =
1

2λ

(
V ′(φ)−P(φ)

√
n

∏
i=1

(φ −ai)(φ −bi)

)
, (4.27)

where P(φ) is a polynomial of degree k− n− 1, where n is the number of
cuts. So in order to completely determine the coefficients of this polynomial
together with the 2n positions of the branch points we need k+ n conditions.
However, the asymptotic behavior (4.20) of the resolvent ω(φ) fixes only k+1
coefficients, leaving n− 1 more coefficients that should be determined from
some other conditions. These conditions come from fixing the filling fractions
fi defined as follows

fi ≡
Ni

N
=
∫
Ci

dφ ρ(φ) , i = 1, ..,n . (4.28)

The filling fractions show how many eigenvalues belong to each interval in
the support. We note that filling fractions are often difficult to calculate as the
integrals in (4.28) typically result in elliptic functions. However, symmetries
can help find a solution as we show next for the example of a quartic potential.

Example: A Quartic Matrix Model. Referring back to the quartic matrix
model in (4.23), we note that for m < 0 there are two critical points for the
potential at φ = ±

√
−m/λ . Thus we can look for a two-cut solution. In

particular, according to (4.27) we expect a resolvent of the form

ω(φ) =
1
2

mφ +
1
2

λ φ
3− (c1|φ |+ c0)

×
√

(φ 2−a1)(φ −a2)(φ −b1)(φ −b2) .

(4.29)

In order to avoid problems determining the filling fractions we assume the
solution is symmetric w.r.t. φ →−φ , which is natural due to the symmetry
properties of the potential. Then the two cuts are symmetric with respect to
the origin, so that a2 = −a1 = −a and b2 = −b1 = −b and the asymptotic
behavior of the resolvent will completely determine coefficients c0 and c1 as
well as the branch point positions

c0 = 0, c1 =
λ

2
, a2 =

1√
λ

(
2− m√

λ

)
, b2 =

1√
λ

(
−2− m√

λ

)
. (4.30)

Finally, the eigenvalue density is

ρ(φ) =
λ

2π
|φ |
√

(a2−φ 2)(φ 2−b2) . (4.31)
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This solution is valid only when b2 > 0 or equivalently m < −2
√

λ . At the
point m = −2

√
λ the endpoints b and −b of the two cuts coalesce and we

obtain the one-cut solution in (4.26).

4.4 Phase Transitions
Another subject we consider in this thesis is phase transitions that take place in
the planar limit of matrix models. These phase transitions have been obtained
in different contexts: in the triangulation analysis of 2D gravity [27, 3, 65, 20],
in lattice gauge theory [51] and in 2D Yang-Mills theory [97]. Recently similar
phase transitions were found in matrix models obtained by localizing different
supersymmetric gauge theories. We will return to a detailed analysis of these
transitions later.

These phase transitions have many common properties. First, they appear
when the theory crosses between solutions with a different number of cuts,
or equivalently when new branch points emerge or coalesce with each other.
Second, the phase transitions are generally third order. This is quite unusual,
since ordinary phase transitions in physical systems are usually first order,
second order or crossover transitions. The softening observed in matrix model
transitions is related to the effects of the large-N limit.

The best way to understand these properties is to consider a particular ex-
ample of such a phase transition. One of the simplest models where a third
order phase transition takes place is matrix model with a quartic potential con-
sidered above.

Indeed we have seen that one can start with positive parameter m where
one-cut solution (4.26) is valid. If m is decreased down to negative values, the
central potential of the matrix model becomes a double-well potential which
becomes deeper and deeper as m becomes more and more negative. At some
point the potential will become deep enough to repel eigenvalues from the
origin and separate the one cut into two resulting in the two-cut solution in
(4.31). The evolution of this solution is shown on the Fig.4.1, with the critical
point at m = mc =−2

√
λ .

In order to show that the transition between the one- and two-cut solutions is
indeed a third order phase transition we evaluate the free energy of the model.
By definition the free energy is given by

F ≡− logZ =
N2

λ

∫
dφρ(φ)V (φ)− N2

2

∫ ∫
dφdφ

′ log
(
φ −φ

′)2
, (4.32)

where we have used the continuous limit of the matrix model partition function
(4.10). If the eigenvalue distribution ρ(φ) is known it is straightforward to
evaluate the integrals in (4.32) using standard tools of complex analysis.
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(a) m > 0: one-cut solution.
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(b) 0 > m > mc: one-cut solution.
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(c) m = mc: critical one-cut solution.
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(d) m < mc: two-cut solution.

Figure 4.1. Solutions for the matrix model with quartic potential for λ = 5 and various
values of m, corresponding to different phases. Critical point is at mc = −2

√
λ ≈

−4.47

In the case of the quartic potential (4.23) this calculation leads to the fol-
lowing free energy for the one-cut solution (4.26)

F(1) =
3
8
− 1

384
a2 m

(
a2 m−40

)
− log

a2

4
, (4.33)
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where a is the branch point position in (4.25). The same calculation for the
two-cut solution (4.31) results in

F(2) =
3
8
− m2

4λ
+

1
4

logλ . (4.34)

Now in order to determine the order of the phase transition we should evaluate
the derivatives of the free energies with respect to the parameters of theory
above and below the transition point. If the nth derivative of the free energy
has a discontinuity at the critical point, then the phase transition is of order n.
In particular for the case of the matrix model with quartic potential one finds

∂m

(
F(2)−F(1)

)∣∣∣
m=mc

= ∂
2
m

(
F(2)−F(1)

)∣∣∣
m=mc

= 0 ,

∂
3
m

(
F(2)−F(1)

)∣∣∣
m=mc

=− 1
4λ 3/2 ,

(4.35)

implying that the phase transition is third order.
At this point we have finished our review of matrix models methods and

move on to a particular model (3.22) obtained localizing of 5D super Yang-
Mills theory.
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Part II:
Developments





5. General properties of the matrix model

In this chapter we determine general properties of the matrix model (3.22)
which results from localizing of 5D super Yang-Mills. In particular before
we start solving the matrix model it is instructive to discuss such issues as
convergence of the partition function, renormalization of couplings and the
decompactification limit of the matrix model. This chapter summarizes the
results of paper II.

Suppose we consider 5D super Yang-Mills with gauge group G and hyper-
multiplet of mass M in representation R of this group. Then, as we have seen in
chapter 3, localization reduces the full path integral to the finite-dimensional
matrix integral, which we also refer to as the partition function of the matrix
model

Z =
∫
[dφ ] e

− 8π3r
g2
Y M

Tr(φ2)− πk
3 Tr(φ3)

Zvect
1−loop(φ)Z

hyper
1−loop(φ)+O

(
e
− 16π3r

g2
Y M

)
, (5.1)

where the one-loop contributions are given by the infinite products

Zvect
1−loop(φ) = ∏

β

∏
t 6=0

(t−〈β , iφ〉)(1+
3
2 t+ 1

2 t2) , (5.2)

and

Zhyper
1−loop(φ) = ∏

µ

∏
t

(
t−〈iφ ,µ〉− im+

3
2

)−(1+ 3
2 t+ 1

2 t2)

. (5.3)

Here m = Mr is the dimensionless mass of the hypermultiplet, β are the roots
of G and µ are the weights of representation R. The partition function (5.1)
also depends on the Yang-Mills coupling gY M, the Chern-Simons level k and
radius r of the five-sphere.

As previously mentioned, we are interested in the planar limit of the ma-
trix model (5.1) due to both technical reasons and its physical significance. In
this limit the last term, which corresponds to the contribution of the instan-
tons of the gauge theory, is suppressed. Indeed, the argument of the exponent
equals −N/λ up to a constant of order one, which is approaches infinity in
the limit of infinite N and fixed λ . Hence, from now on we omit all instanton
contributions.
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5.1 Renormalization of coupling constants
Let us start with the regularization of the partition function (5.1). It contains
one-loop contributions (5.2) and (5.3) which are both equivalent to the diver-
gent infinite product

P∼
∞

∏
t=1

(t + x)(1+
3
2 t+ 1

2 t2) (t− x)(1−
3
2 t+ 1

2 t2) . (5.4)

where the divergent part is given by the expression

logP =
∞

∑
t=1

(
−3x− x2

2

)
+ convergent part . (5.5)

There is also an x-independent divergent part which we omitted. The simplest
way to regularize P is to cut off the sum at t0 = πΛ0r, where Λ0 plays the
role of the UV cut-off in our theory. Then the divergent part of each product
contributes logP ∼ −πΛ0r

(
x2

2 +3x
)

, resulting in the regularized partition
function

log(Zvect
1−loop(φ)Z

hyper
1−loop(φ)) = −πΛr

2 ∑
β

(〈β , iφ〉)2 +
πΛr

2 ∑
µ

(〈iφ ,µ〉)2 + . . .

= πΛr (C2(adj)−C2(R))Tr(φ 2)+ . . . , (5.6)

where the ellipsis stands for the convergent parts and C2(R) is the quadratic
Casimir operator for representation R, defined by Tr(TATB) = C2(R)δAB. We
have also omitted the linear terms 〈β , iφ〉 and 〈iφ ,µ〉 1. One can see from the
expressions above that the divergent contributions are proportional to Tr(φ 2),
suggesting that it can be absorbed into the redefinition of the Yang-Mills cou-
pling constant

1
g2

e f f
=

1
g2

Y M
− Λ

8π2

(
C2(adj)−∑

I
C2(R)

)
, (5.7)

where the sum in the second term is over all hypermultiplets of the theory.
This same expression can be also obtained in flat space using perturbation the-
ory [43]. Note also that in the case of one adjoint hypermultiplet the divergent
parts from the vector and matter multiplets cancel. Hence the effective cou-
pling equals the bare one, i.e. ge f f = gY M. It is worth mentioning that in the
absence of hypermultiplets (pure N = 1 super Yang-Mills), renormalization
of the coupling (5.7) can be derived using the decoupling limit of the massive
adjoint hypermultiplet. The decoupling limit means that one should include
the mass of the hypermultiplet and consider the limit in which this mass is

1The linear terms are often zero. For example 〈β , iφ〉 can always be omitted due to the symme-
tries of the root system and the terms linear in 〈iφ ,µ〉 vanish for semi-simple groups.
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considerably larger than the typical scale of the model. In this case the mass
of the hypermultiplet plays the role of the UV cut-off Λ. The decoupling limit
analysis is carried out in detail in paper II.

After renormalizing the coupling constant one can rewrite the regularized
partition function as

Z =
∫

Cartan

dφe
− 8π3r

g2
Y M

Tr(φ2)− πk
3 Tr(φ3)

detAd

(
S3(iφ)

)
det−1

R

(
S3

(
iφ + im+

3
2

))
,(5.8)

where S3(x) is the triple sine function that can be written in the form of infinite
product

S3(x) = 2πe−ζ ′(−2)xe
x2
4 −

3
2 x

∞

∏
t=1

[(
1+

x
t

)(1+ 3
2 t+ 1

2 t2)

(
1− x

t

)(1− 3
2 t+ 1

2 t2)
e

x2
2 −3x

]
,

(5.9)

This is not the definition of the triple sine function but rather one of its rep-
resentations. For the definition, properties and relations for this function see
[73].

Also note that the integration in (5.8) is over the Cartan subalgebra rather
than the complete algebra. The reason for this is φ can always be diagonalized
with a unitary gauge transformation, so one performs a procedure similar to
the diagonalization described in chapter 42. For a general group this procedure
reduces the full integral to the integral over the Cartan subalgebra and results
in a Vandermonde term of the form ∏+〈β , iφ〉2. In (5.8) the Vandermonde
factor is canceled by a similar factor coming from the vector multiplet’s one-
loop contribution.

It is also useful to write (5.8) in the form

Z =
∫

Cartan

dφ e−F ,

F =
8π3r
g2

Y M
Tr(φ 2)+

πk
3

Tr(φ 3)−∑
β

logS3(〈iφ ,β 〉)

+∑
µ

logS3

(
〈iφ ,µ〉+ im+

3
2

)
, (5.10)

where we have introduced the prepotential F . This form is especially conve-
nient for the saddle-point method.

2Here this unitary transformation is actually the gauge transformation of the localized field
theory and thus should be fixed
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5.2 Convergence of the Matrix Integral
We want our matrix integral to be convergent. To find the conditions for con-
vergence we can check the limit of large φ and demand the prepotential F to
be positive-definite.

In order to define this limit, we use the following asymptotic formula for
the triple sine function with |Imz| → ∞

logS3(z)∼−sgn(Imz)πi
(

1
6

z3− 3
4

z2 + z+O(1)
)
, (5.11)

which directly leads to

F =
8π3r
g2

e f f
Tr(φ 2)+

πk
3

Tr(φ 3)+
π

6

(
∑
β

|〈φ ,β 〉|3−∑
µ

|〈φ ,µ〉|3
)

−π

2
m∑

µ

sgn(〈φ ,µ〉)(〈φ ,µ〉)2−π ∑
β

|〈φ ,β 〉|

−π

2

(
m2 +

1
4

)
∑
µ

|〈φ ,µ〉|+ . . . , (5.12)

where the ellipsis stands for the terms subleading in large φ . This expression
is dominated by the cubic terms in the limit of large φ and thus they deter-
mine the convexity of the prepotential F . However, we should notice that
there are some exclusions, where the cubic terms are canceled. An example
is the case of a single adjoint hypermultiplet or the case of a ive-dimensional
superconformal fixed point with a USp(N) gauge group [61].

Let’s for instance study the case of the SU(N) theory with N f fundamental
hypermultiplets and zero Chern-Simons level (k = 0). The leading terms in
the prepotential for this theory are given by

F =
π

6

(
∑
j 6=i

∑
i
|φi−φ j|3−N f ∑

i
|φi|3

)
+ . . . . (5.13)

In order for F to be a convex function the inequality N f < 2N should be
satisfied. In turn, the effective coupling g2

e f f is allowed to be negative as it
doesn’t spoil the convergence of the matrix integral (5.10).

In general, for different gauge groups and hypermultiplet content the ex-
pression (5.12) should be analyzed separately. However we can see that the
asymptotic expression (5.12) exactly matches the flat space prepotential ob-
served in [60]. The same paper also provides a detailed convex analysis for a
large variety of theories.
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5.3 Decompactification limit
Here we study the behavior of the prepotential F in the decompactification
limit, i.e. in the limit where the radius of the five-sphere is taken to infinity.

In order to consider the decompactification limit one should first restore
the radius dependence in φ and m before taking the limit of infinite radius r.
Hence, we replace these with

φ → rφ , m→ rm , r→ ∞ . (5.14)

Substituting this into the prepotential (5.10) one finds

1
2πr3 F =

4π2

g2
e f f

tr
(
φ

2)+ k
6

tr
(
φ

3)+ trAd

(
1
12
|φ |3− 1

2r2 |φ |
)

−∑
I

trRI

(
1

12
|φ +m|3 + 1

16r2 |φ +m|
)
+ . . . ,

(5.15)

where the ellipsis indicates terms subleading in 1/r. Up to constants that can
be absorbed into the redefinition of the couplings (5.15) reproduces the quan-
tum prepotential in the flat-space limit [60] provided the 1/r2 terms are omit-
ted.

Formally, the 1/r2 terms vanish in the decompactification limit. However
we will keep them in the prepotential as these terms will be useful in the later
discussions of finite r effects in the large radius limit.

In this chapter we described general properties of the matrix model (5.1)
with arbitrary gauge group and multiplet content. In the following chapters
the focus will be on particular examples of theories with unitary, i.e. SU(N)
or U(N), gauge groups and mainly with a single massive hypermultiplet in the
adjoint representation. However, cases with other hypermultiplet content will
be briefly discussed as well.
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6. Planar limit of N = 1∗ super Yang-Mills

The main goal of this chapter is to derive the N3 behavior of the free energy in
5D super Yang-Mills theory. To derive this behavior we will discuss N = 1
super Yang-Mills theory with a single massive hypermultiplet in the adjoint
representation. For brevity we will sometimes refer to this theory as N = 1∗

super Yang-Mills. The gauge group is taken to be SU(N) or U(N). In the pla-
nar limit it doesn’t matter which one we take. We also drop the Chern-Simons
term assuming that the level is k = 0. We will also evaluate the expectation
value of the circular Wilson loop in 5D super Yang-Mills and discuss how it is
related to the corresponding observable in the (2,0) theory.

6.1 Saddle point
Our matrix model (5.10) is very complicated due to the form of the one-loop
contributions (5.2) and (5.3). Unfortunately it is not possible to use methods
such as, for example, orthogonal polynomials, to obtain an exact result. How-
ever the planar limit (4.11) provides a good approximation. This allows us to
neglect instanton contributions, as previously discussed. But more important
for us, large-N limit, because this is the limit where AdS/CFT calculations are
valid for (2,0) theories.

As discussed in chapter 4, in the large N-limit the matrix integral can be
approximated by the value of the integrand at the saddle point. This saddle
point can be derived directly minimizing the prepotential (5.10) and using the
following expression for the logarithmic derivative of the triple sine function

S′3(x)
S3(x)

=
π

2
(x−1)(x−2)cot(πx) , (6.1)

which can be found in [76, 72] together with many other useful relations. This
equation can also be obtained directly from (5.9). Using (6.1) together with
the explicit expressions for the SU(N) roots and the symmetry properties of
the root system, one arrives at the following saddle point equation

8π3N
λ

φi = π ∑
j 6=i

[(
2− (φi−φ j)

2)coth(π(φi−φ j))

+
1
2

(
1
4
+(φi−φ j−m)2

)
tanh(π(φi−φ j−m))

+
1
2

(
1
4
+(φi−φ j +m)2

)
tanh(π(φi−φ j +m))

]
, (6.2)
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where

λ ≡ g2
Y MN

r
, (6.3)

is the dimensionless ’t Hooft coupling. Introducing the eigenvalue density as
in (4.13) we can write down the continuous limit of (6.2)

8π3

λ
φ =

∫
−dψ ρ(ψ)

[(
2− (φ −ψ)2)coth(π(φ −ψ))

+
1
2

(
1
4
+(φ −ψ−m)2

)
tanh(π(φ −ψ−m))

+
1
2

(
1
4
+(φ −ψ +m)2

)
tanh(π(φ −ψ +m))

]
. (6.4)

Thus the saddle point for the matrix model (5.1) is given by the solution to this
singular integral equation. However this equation differs significantly from
(4.15). Unfortunately, the standard resolvent technique used to solve (4.15)
does not apply here. There is no good method to solve this equation explicitly
as only the solutions to singular integral equations with Cauchy, i.e (x− y)−1

and Hilbert, i.e. coth(x− y), kernels are known.
Instead in papers I and II we were able to find reasonable approximations

to equations of motion (6.4) in the different limits of λ . Then we were able
to solve these approximate equations. To check the validity of these approx-
imations we compared their solutions with numerical solutions of the actual
equations (6.4). In the following sections we briefly describe these solutions
and compare the strong coupling results with results using the AdS/CFT cor-
respondence applied to (2,0) theory.

6.2 Solutions
To get the right intuition about the interaction of the eigenvalues let’s con-
sider the kernel (6.4). This kernel has a singularity at φ = ψ coming from
2π coth(π(φ −ψ)) term and leads to a repulsion between the eigenvalues at
short distances. As we increase the separation between eigenvalues the seem-
ingly dominant attractive (φ −ψ)2 coming from the vector multiplet cancels
with a similar term coming from the hypermultiplet, leaving a repulsive po-
tential. As a consequence one ends up with a repulsive force between the
eigenvalues at large distances as well.

6.2.1 Weak Coupling
We start with the weak coupling limit λ � 1. In this case the central potential
is very steep around the origin. Thus all eigenvalues tend to condense near
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φ = 0. Hence it is reasonable to assume that the separation between any two
eigenvalues satisfies |φ −ψ| � 1 in this regime. With this assumptions the
full saddle point equation (6.4) is approximately

16π3

λ
φ ≈ 2

∫
−dψ

ρ(ψ)

φ −ψ
. (6.5)

This is equation (4.12) with central potential V (φ) = 8π3 φ 2. Following the
standard technique described in chapter 4 results in the Wigner semicircle dis-
tribution for the eigenvalues

ρ(φ) =
2

πφ 2
0

√
φ 2

0 −φ 2 φ0 =

√
λ

2π3 , (6.6)

The corresponding free energy can then be calculated by substituting the eigen-
value density (6.6) and the quadratic central potential V (φ) into (4.32)1. Com-
puting all integrals involved in this expression results in the usual free energy
for the Gaussian matrix model

F =− logZ ≈−N2 log
√

λ . (6.7)

6.2.2 Strong Coupling
Net we examine what happens at strong ’t Hooft coupling λ � 1. This regime
is much more interesting. As is typical for a weakly coupled gauge theory, the
free energy scales as N2. In order to have the N3 behavior found for the (2,0)
theories one must go to strong coupling.

In the case of large ’t Hooft coupling λ � 1 the central potential of the
matrix model becomes very shallow. Thus one expects the repulsion of the
eigenvalues to push them away from each other to large separations. Hence
we can assume |φ −ψ| � 1 in the kernel of (6.4). Then equation (6.4) can be
approximated by

16π3

λ
φ = π

(
9
4
+m2

)∫
dψ ρ(ψ)sign(φ −ψ) . (6.8)

Notice that this integral equation is not singular and can be solved by differ-
entiating both sides w.r.t. φ leading to a constant distribution2

ρ(φ) =
32π2

(9+4m2)λ
, |φ | ≤ φm , φm =

(
9+4m2

)
λ

64π2

= 0 , |φ |> φm , (6.9)

1We omit an extra constant in the expansion of the one-loop contributions, which can be found
in paper III
2Notice that in papers I and II the same eigenvalue density was obtained in slightly different
ways.
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where the endpoint position φm is determined from the normalization condi-
tion (4.14).

In order to find the free energy one can use the asymptotic expression (5.11)
for the triple sine function in the prepotential (5.10). The resulting expression
for the free energy then looks like

F ≡− logZ =− 8π3N2

λ

∫
dφ ρ(φ)φ

2

+
π N2

2

(
9
4
+m2

)∫ ∫
ρ(φ)ρ(ψ) |φ −ψ| ,

(6.10)

After substituting for the eigenvalue density (6.9) one can finally obtain the
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Figure 6.1. Density of eigenvalues ρ(φ) for the solution of saddle point equations
(6.2) with m = 1

2 and N = 200. Orange dots shows results of numerical simulation
while dashed lines correspond to solutions (6.6) (left) and (6.9) (right).

free energy for N = 1∗ super Yang-Mills

F =−g2
Y M N3

96πr

(
9
4
+m2

)2

, (6.11)

demonstrating N3 behavior for the free energy at strong coupling. In paper I
we have shown that if one or more hypermultiplets are chosen to be in the fun-
damental representation then the free energy scales as N2 at strong coupling.

We have also compared our analytical results in (6.6) and (6.9) with the nu-
merical solutions for the full equations of motion (6.2). Results of this com-
parison are shown for particular values of the parameters in Fig. 6.1. In these
graphs the orange dots stand for results of the numerical solution while the
dashed lines shows our analytical results obtained after the approximations de-
scribed previously. As one can see the numerical and analytical results match
very well, suggesting that our approximations are reasonable.
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6.3 Wilson Loops
As discussed in chapter 3, localization works only for supersymmetric observ-
ables. Hence there are strict limitations on what can be evaluated using this
method. However some interesting possibilities are still left. The most im-
portant is the Wilson loop. The main motivation for the original localization
paper [93] was the study of circular Wilson loops in four-dimensional N = 4
super Yang-Mills. In particular localization was used to prove the conjec-
ture proposed by Erickson, Semenoff and Zarembo in [41] for large-N and by
Drukker and Gross in [36] for any N. This conjecture claims that the expec-
tation value of the circular Wilson loop can be evaluated from the expectation
value in the Gaussian matrix model

〈W 〉N =4 ∼ 〈TreM〉gaussian , (6.12)

In order to prove this conjecture Pestun shown that localization of the partition
function results in the Gaussian matrix model. Then the Wilson loop reduces
to the operator eM and thus the conjecture (6.12) is proven.

Let us now show how eM arises in the matrix model. Here we derive this for
the case of the 5D theory, but the story is the same in all other dimensions as
well. We want to consider the expectation value of the supersymmetric Wilson
loop given by

〈W (C)〉R =
1

dimR
〈TrR P exp

∮
C

dτ
(
iAµ(x) ẋµ +σ ẏ

)
〉 , (6.13)

where R is the representation of the gauge group in which Wilson loop trans-
forms and σ is the scalar of the vector multiplet. The path of the Wilson loop
xµ(τ) is parametrized by the parameter τ and y(τ) can be thought of as the
parametrization of the Wilson loop in the internal space. In order for the Wil-
son loop to preserve half of the supersymmetries the contour C should wrap
the equator of S5 and also the relation ẏ2 = |ẋ|2 should be satisfied.

As the Wilson loop preserves half of the supersymmetry its expectation
value can be localized following the prescriptions in chapter 3. Furthermore,
the localization locus (3.21) and the one-loop determinants remain the same
are not effected by Wilson loop linear in fields as well. Thus the only con-
tribution of the Wilson loop to the matrix integral comes from its classical
contribution at the locus. We concentrate on the case of a Wilson loop in the
fundamental representation, which then, has the following expectation value

〈W 〉 ∼ 1
N

∫
∏

i
dφi ∑

i
e2πφi e−F , (6.14)

where F is the prepotential given in (5.10). In the planar limit term ∑
i

e2πφi

has negligible back-reaction on the saddle point position. Hence, one can use
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the (6.6) and (6.9) for weak and strong coupling respectively. The Wilson loop
expectation value can then be approximated by

〈W 〉=
∫

dφ ρ(φ)e2πφ , (6.15)

where ρ(φ) is the eigenvalue density corresponding to the saddle point of the
localized partition function.

In particular, in the case of weak coupling λ � 1, using (6.6), one obtains

〈W 〉 ≈
√

4π

λ
I1

(√
λ

π

)
≈ exp

(
λ

8π

)
, (6.16)

where I1 is the modified Bessel function of the first kind.
At strong coupling λ � 1, using the distribution (6.9), one obtains

〈W 〉 ≈ 32π2

(9+4m2)λ

φm∫
−φm

e2πφ dφ ∼ exp
[

λ

8π

(
9
4
+m2

)]
. (6.17)

In these expressions we omit the prefactors in front of the exponent, because
only the argument of the exponent is relevant for us. Interestingly, the only
difference between the expressions for weak and strong coupling is the fac-
tor of

(9
4 +m2

)
. This differs from the 4D case where the strong and weak

coupling results have different λ -behavior. For example, see the calculations
for the circular Wilson loop expectation values in four-dimensional N = 2
theories on S4 [98, 23].

6.4 Comparison with supergravity calculations
As mentioned in chapter 2 we want to compare our results for the matrix
model calculations with the values of corresponding observables in 6D (2,0)
theories. As discussed in chapter 2 the only well established way to find ex-
pectation values of observables in the (2,0) theories is through the AdS/CFT
correspondence.

In genral the AdS/CFT correspondence conjectures a duality between a
conformal field theory in d-dimensional flat space and a certain string theory in
d +1-dimensional anti-de Sitter space. This correspondence was first conjec-
tured [79] in the context of four-dimensional N = 4 super Yang-Mills theory,
which is dual to type IIB superstring theory on AdS5×S5 background. Since
then similar dualities were conjectured for many other supersymmetric gauge
theory. For example, in three dimensions this duality takes place between
ABJM theory with Chern-Simons level k and M-theory on AdS4×S7/Zk back-
ground [1].

55



We are especially interested in the duality between 6D (2,0) theories and
M-theory on AdS7×S4 background. This correspondence was also proposed
in original paper by Maldacena [79]. According to the prescription of this
duality the radii of the AdS-space and the sphere are given by [2]

RAdS = 2RS4 ≡ l = 2 lpl (πN)1/3 , (6.18)

where lpl is the Planck length.
Calculations in frame of M-theory are not possible. Hence one would like

to take the limit in which M-theory reduces to supergravity theory. The super-
gravity regime corresponds to the case where the radius of AdS space is much
larger then Planck length. Then from (6.18) it is clear that this regime is valid
when the dual (2,0) theory has a large number of colors N. In this case we can
compute the free energy and Wilson surface and then compare it to the matrix
model results in the previous section.

In particular, we want to compare results for the (2,0) theory compactified
on S5×S1 with the analogous results for N = 1∗ super Yang-Mills theory on
S5. The same space should be the boundary of the AdS-space in the setting of
holography. This leads to the following Euclidian AdS7 metric

ds2 = `2(cosh2
ρ dτ

2 +dρ
2 + sinh2

ρ dΩ
2
5) , (6.19)

where dΩ2
5 is the metric of the unit five-sphere and ρ corresponds to the bulk

direction with the boundary at ρ → ∞. The Euclidian time direction is com-
pactified such that

τ ≡ τ +
2πR6

r
, (6.20)

where R6 and r are the radii of S1 and S5 respectively.
According to the AdS/CFT correspondence dictionary the free energy of

the boundary theory corresponds to supergravity action in the bulk of AdS
space. Full action of AdS supergravity should include three terms

IAdS = Ibulk + Isur f .+ Ic.t. , (6.21)

where the bulk action is

Ibulk =−
1

16πGN
Vol
(
S4)∫ d7x

√
g(R−2Λ) , (6.22)

with Newton constant GN = 16π7l9
pl [79]. Isur f is the surface contribution

Isur f =−
1

8πGN

∫
∂AdS

d6x
√

γ K , (6.23)

where γ is the metric induced by g on the AdS boundary and K is the intrinsic
curvature of this boundary.
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The bulk and surface contributions have divergent parts and need to be reg-
ulated. The regularization is done by introducing counterterms, which depend
only on the induced metric on the boundary (γ) and cancel all divergent parts
in Ibulk and Isur f [8, 39, 28, 7]. In (6.21) these counterterms are contained in
Ic.t..

In order to calculate (6.22) one should introduce a cut-off ρ0 for large ρ

which corresponds to the UV cut-off in the dual gauge theory. If one con-
siders the ε-expansion in the boundary theory it is reasonable to make the
identification ε = e−ρ0 . Evaluation of the integral in (6.22) results in the bulk
action of the following form

Ibulk =
4πR6

3r

(
1

64
ε
−6− 3

32
ε
−4 +

15
64

ε
−2− 5

16
+O(ε2)

)
, (6.24)

As expected, the bulk action contains divergent terms with negative powers
of ε . The surface term Isur f will contribute to the divergent terms but not to
the finite part of the action so we ignore it. The counterterms should cancel
all divergences coming from the bulk and surface terms. In general the coun-
terterms can contribute to the finite part of bulk action, but here we use the
minimal subtraction regularization. In this scheme counterterms only cancel
the divergent pieces in the action. Thus, one obtains [39]

IAdS =−
5πR6

12r
N3 , (6.25)

which should be compared with the strong coupling free energy of the 5D
theory (6.11).

Another observable we can evaluate is the expectation value of a circular
Wilson loop. In the (2,0) theories the Wilson loop operator becomes a surface
operator. Indeed, the analog of expression (6.13) in 6D theory should contain
the two-form field Bµν in the exponential. To contract the indices of this field
we need to integrate it over some surface. In order to have a Wilson loop wrap-
ping the equator after compactifying to five dimensions, this surface wraps the
compactification circle S1 and the S5 equator.

The expectation value of Wilson surfaces in (2,0) theories was evaluated
using the AdS/CFT picture in [12]. According to the AdS7/CFT6 dictionary,
a Wilson surface is related to the extremized world-volume of an M2-brane
with tension T (2) = 1

(2π)2l3
pl

by exponentiating its negative action,

〈W 〉 ∼ e−T (2) ∫ dV . (6.26)

One direction of the M2-brane wraps the S5 equator, another direction wraps
the compactification circle S1 and the third direction falls into the bulk of the
AdS7 space. The calculation of the volume for this M2-brane configuration
using minimal subtraction results in the following expression for the Wilson
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surface expectation value

〈W 〉 ∼ exp
(

2πNR6

r

)
. (6.27)

Now we are ready to compare results obtained from the matrix model and
supergravity calculations. Lets remember that the original conjecture pro-
posed in [77, 35] states the equivalence of 5D maximally supersymmetric
Yang-Mills and compactified (2,0) theories. Though this conjecture is not true
due to the existence of the UV divergences in 5D super Yang-Mills, one can
still expect supersymmetric observables of these two theories to match. As the
original conjecture was stated for the maximally supersymmetric Yang-Mills
it would be natural first to consider the supersymmetry enhancement point
m = i/2, obtained in chapter 23. Then the comparison of the expectation val-
ues of the Wilson loop on S5 (6.17) and the Wilson surface in the (2,0) theory
(6.27) leads to the identification between the radius of compactification and
the Yang-Mills coupling

R6 =
g2

Y M
8π2 , (6.28)

which reproduces the usual identification (2.23) proposed in [77, 35]. How-
ever in this case there is the mismatch of 4/5 between the free energy (6.11)
and the supergravity action (6.25). The same mismatch was observed in [67].

Interestingly we can fix this mismatch by relaxing the identification in (6.28)
and finding the value of the mass at which both comparisons of the free en-
ergy and Wilson loops can work. The comparison of the free energy with the
supergravity action leads to the relation

R6 =
g2

Y M
40π2

(
9
4
+m2

)2

. (6.29)

At the same time the comparison of the Wilson loop on S5 with the Wilson
surface of (2,0) theory leads to different relation

R6 =
g2

Y M
16π2

(
9
4
+m2

)
. (6.30)

Now we can see that in order for these two relations to be consistent one needs
to fix mass of the hypermultiplet at m = 1/2 so that

R6 =
5
2

g2
Y M

16π2 , m =
1
2
. (6.31)

3Notice that extra factor of i appears due to the Wick rotation (3.15) performed in chapter 3. We
should also notice that it is not completely clear if localization can be performed at this point as
m should be real according to prescriptions in chapter 3.
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Hence we can conclude that in order to match the prefactors of the large-
N behavior of observables in 5D and 6D theories one needs to move away
from the supersymmetry enhancement point to the point with the mass of the
hypermultiplet m= 1/2 and modify the usual identification between the radius
of compactifiction and 5D Yang-Mills coupling.

Regarding the last one we should notice that it is not clear if our result
for the identification between compactification radius and coupling constant
should be exactly the same as in the original conjecture. The latter one was
formulated for the theories on the flat space with Minkowski metric, while
the theories we consider are defined on spheres and have massive hypermulti-
plets. Hence it is also possible that in our setting the relation between the two
theories can be slightly reformulated.

To summarize, we have shown that 5D supersymmetric Yang-Mills theory
with an adjoint hypermultiplet at strong coupling has the same N3 behavior as
the free energy of the 6D (2,0) theories. We also calculated the expectation
values of the circular Wilson loops in both theories and found that they match
exactly at the supersymmetry enhancement point provided the usual identi-
fication (2.23) between the compactification radius and the 5D Yang-Mills
coupling is satisfied. However in this case there is mismatch of 4/5 between
the free energy of the 5D and 6D theories. We have also found that both free
energies and Wilson loops can be exactly matched if the mass of the hyper-
multiplets is m = 1/2 and the identification between compactification radius
and 5D Yang-Mills coupling is modified according to (6.31).

We should also notice that there are problems with mapping the (2,0) the-
ory onto the S1×S5 background, which we blindly performed in this section.
To be more precise the (2,0) theory on flat space can be conformally mapped
onto R× S5. Here R is time-like and requires a Euclidian rotation in order
to be compactified. However this rotation results in the Euclidian version of
(1,1) theory rather than (2,0) (see paper II). This issue and its effect on the
relation between 5D super Yang-Mills theory on S5 and (2,0) theories should
be better understood in the future.
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7. Supersymmetric Chern-Simons theory

In the previous chapter we considered 5D N = 1 super Yang-Mills with an
adjoint hypermultiplet with Chern-Simons level k = 0. The aim of this chapter
is to generalize this theory by including a nontrivial Chern-Simons term. We
will also consider the case of infinite Yang-Mills coupling g2

Y M → ∞, which
will be referred to as pure Chern-Simons theory, since the Yang-Mills term
does not contribute in this limit. This case is of special interest as the pure
supersymmetric Chern-Simons theory is a conformal fixed point. Hence, one
could look for holographic duals. Here we explore the possibility of their
existence.

We also describe the theory with both Chern-Simons and Yang-Mills terms
included. We examine the interplay between these terms and show that this
gives rise to a phase transition at certain values of the couplings.

Finally we show that when a Chern-Simons term is included there is a dis-
tinction between SU(N) and U(N) gauge groups, even in the large-N limit.
In the following we argue why the choice between the SU(N) or U(N) gauge
group matters.

7.1 Saddle point equation
We again assume that the matrix integral (5.1) is dominated by a saddle point.
The saddle-point can then be found by minimizing the prepotential F in (5.10)
and making use of the expression for the triple sine function’s derivative (6.1).
The saddle point equation is similar to the equations of motion in (6.2), with
only the l.h.s. being different

πN
λ̃

(
φ

2
i +2κφi−µ

)
= π ∑

j 6=i

[(
2− (φi−φ j)

2)coth(π(φi−φ j))

+
1
2

(
1
4
+(φi−φ j−m)2

)
tanh(π(φi−φ j−m))

+
1
2

(
1
4
+(φi−φ j +m)2

)
tanh(π(φi−φ j +m))

]
,

(7.1)

where

λ̃ ≡ N
k
, κ ≡ 8π

2 λ̃

λ
. (7.2)
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Here we have introduced the analog of ’t Hooft coupling λ̃ for the case of
the Chern-Simons theory analogously to ABJM theory [1]. The parameter
κ measures the relevance of the Yang-Mills term. Finally, µ is a Lagrange
multiplier, which is included in order to enforce the tracelessness condition
for the SU(N) gauge group. For a U(N) gauge group we can just set µ = 0.

For technical reasons it is easier to keep the equations of motion in the
discrete form (7.1), introducing the continuous limit only when it necessary.
Equation (7.1) has the same kernel as pure Yang-Mills theory since the one-
loop determinants are not altered by the Chern-Simons term. As a result,
all properties of the eigenvalue interactions remain unchanged from those de-
scribed in chapter 6. Hence, we use the same strategy for solving (7.1) where
we first make an approximation based on the general properties of the kernels
and then solve the approximate equations. Afterwards we will compare these
results with numerical solutions of the full equations of motion (7.1).

7.2 Weak Coupling
In this section by weak coupling we mean that at least one of the inequalities
λ � 1 or λ̃ � 1 is satisfied. At weak coupling the cubic central potential of
the matrix model (5.1) is very steep and thus, forces the eigenvalues to con-
dense at one of the critical points balanced by the singularity of the kernel
which leads to eigenvalue repulsion. These balanced forces lead to an eigen-
value distribution that forms a short cut around one of the critical points. It
is then reasonable to assume that at weak coupling the separation between
eigenvalues is small, i.e. |φi−φ j| � 1. This leads to the equations of motion

πN
λ̃

(
φ

2
i +2κφi−µ

)
≈ 2 ∑

j 6=i

1
φi−φ j

. (7.3)

It is worth noting that the weak coupling matrix model also arises in the
context of 2D quantum gravity whose many aspects have been well-studied.
[33, 32]. We will repeat some of the results for 2D gravity.

The equations (7.3) are of the same form as equation (4.12). Thus, in order
to solve these equations we can use the resolvent technique which leads to the
density of eigenvalues

ρ(φ) =
1

2λ̃

√
−B+

4λ̃

π
φ̃ − (φ̃ 2−κ2−µ)2 , (7.4)

where we have introduced φ̃ ≡ φ +κ . In general, this solution has two cuts, or,
equivalently, four branch points. The parameter B controls the filling fractions
on these two cuts.

If the Yang-Mills coupling is much smaller than the Chern-Simons then the
effect of the latter one is small and there is only a single cut along the real axis
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in the φ̃ plane. The one-cut solution has

B =−(κ2 +µ−b2)(κ2 +µ +3b2) , (7.5)

where b satisfies the equation

b(κ2 +µ−b2) =
λ̃

π
, (7.6)

and the eigenvalue density becomes

ρ(φ) =
1

2λ̃
(φ̃ +b)

√
2λ̃

bπ
− (φ̃ −b)2 . (7.7)

This solution should be considered separately for an SU(N) or U(N) gauge
groups. For the U(N) case one sets µ = 0 in all the above expressions. For
SU(N) the situation is more complicated due to the tracelessness constraint
forcing the eigenvalue sum to zero. For the density (7.7) this constraint leads
to the relations

4b2(κ−b) =
λ̃

π
, µ = (κ−3b)(b−κ) , (7.8)

while the eigenvalue density is still described by (7.7) This solution describes
a phase of the theory dominated by the Yang-Mills term.

Now we examine the opposite situation of the pure Chern-Simons theory
where the Yang-Mills term is ignored. In this case we set the Yang-Mills cou-
pling to infinity, so that κ = 0. The general solution (7.4) is still valid. How-
ever, turning off the Yang-Mills term leads to several interesting effects. For
U(N) the eigenvalue density still takes the form (7.7) for the one-cut solution,
but now, according to (7.6), b should satisfy

b3 =− λ̃

π
. (7.9)

This equation has three roots corresponding to the three different one-cut so-
lutions shown in Fig.7.1(a).

For SU(N) it is not possible to find one-cut solution. However there exists
an interesting analog to the one-cut solution. Let’s consider the general solu-
tion (7.4) with B = 0 and µ = 0. In this case the branch point of one cut hits
the side of another so that the eigenvalue density equals to

ρ(φ) =
φ 2

2λ̃

√
4λ̃

πφ 3 −1 . (7.10)

This eigenvalue density describes a solution composed of three cuts. Each
cut emerges from the origin and goes to the branch point located at φ ∗ =
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(4λ̃/π)1/3 ωn where n = 0,1,2 and ω ≡ e2πi/3. Thus, this solution has a
Z3 symmetry with respect to the origin (see Fig.7.1(b)). This Z3 symmetry
emerges form the Z3 symmetry of the saddle point equation (7.3), which can
be directly checked by the discreet rotations of eigenvalues φi → e2πni/3φi , n=
1,2,3, preserving the Z3 symmetry of the pure Chern-Simons theory Since the
eigenvalues sum up to zero for the Z3 symmetric solution , i.e. 〈φ〉 = 0 this
solution is valid for both U(N) and SU(N).
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(a) Eigenvalues of the three single-cut so-
lutions for N = 51, λ̃ = 0.1
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(b) Eigenvalues of the Z3 solution for
N = 123, λ̃ = 0.02

Figure 7.1. Eigenvalues for the pure CS model at weak coupling. The blue regions
are the integration regions in the complex plane where Re(φ 3) > 0 so that the path
integral converges.
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Figure 7.2. Example of strong coupling solution λ̃ = 750, N = 87.

To determine which solution is favored, one should evaluate the correspond-
ing free energies. For either solution one can just use (4.32) and substitute in
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the cubic potential V (φ) = πkφ 3/3. Details of these calculations can be found
in paper III1. The result is

F = N2

(
1
2
− 1

3
log

λ̃

π

)
(7.11)

for the Z3 solution and

F = N2

(
1
2
− 1

3
log

λ̃

π
+

1
2

log2

)
, . (7.12)

for the one-cut solution. The free energy of theory scales as N2 for both solu-
tions. However, the Z3 solution has lower free energy, and thus it is energeti-
cally favored.

Later in this chapter we will investigate the crossover between the Yang-
Mills and the Chern-Simons regimes.

7.3 Strong Coupling
Now let’s consider the strong coupling regime where λ , λ̃ � 1. For the equa-
tions of motion (7.1) we make approximations similar to those made in section
6.2.2. With the Chern-Simons term the eigenvalues can lie on the complex
plane. But the kernels in (7.1) have poles along the imaginary axis which can
affect the solutions once the eigenvalue separation is of order one. We will
largely ignore this effect and make approximations based on the separations
of the real parts of the eigenvalues. Later we show numerical evidence that
this approximation is valid at leading order.

We know that the kernels in (7.1) are repulsive for all separations and the
central potential is shallow when the Yang-Mills and Chern-Simons couplings
are both large. Hence the eigenvalues tend to repel each other to large dis-
tances. Assuming the separation is not along the imaginary axis we then have
separations between the eigenvalues along the real axis, i.e. |Re(φi−φ j)| � 1.
Under this assumption (7.1) becomes

N
π

λ̃
(φ 2

i +2κφi +µ) =

(
9
4
+m2

)
π ∑

j 6=i
sign(Re(φi−φ j)) . (7.13)

If we assume that Re(φi) are all ordered, we get the following equation for φi

φ
2
i +2κφi +µ = χ

2i−N
N

, (7.14)

1In calculations of paper III we also add constant term C = N2
(

1
8 log2+ logπ +

7ζ (3)
16π2

)
to the

free energy. This term comes from the subleading contribution in small separations expansion
of one-loop determinants in our matrix model (5.1).
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where χ is defined as

χ ≡
(

9
4
+m2

)
λ̃ . (7.15)

In order to obtain eigenvalue density ρ(φ), we should consider the continuous
limit of (7.14) in the following way

x≡ i
N
,

1
N ∑

i
→
∫

dx , ρ(φ) =
dx
dφ

, (7.16)

which is consistent with the usual definition (4.13) of the eigenvalue density.
Using this continuous limit it is straightforward to find the following expres-
sion from (7.14)

ρ(φ) =
1
χ
(φ +κ) . (7.17)

Up to here all considerations were independent of the choice between U(N)
and SU(N). Hence the eigenvalue density itself does not depend on this
choice. However position of the cut does, as we will see below.

For U(N) we set µ = 0 and find that the cut goes between the endpoints φ−
and φ+, where

φ± =−κ +
√

κ2±χ . (7.18)

For SU(N) we keep the Lagrange multiplier µ and impose a tracelessness
condition 〈φ〉= 0. Then finding the positions of the support endpoints can be
reduced to solving the following system of equations

φ
2
++2κφ+−µ = χ

φ
2
−+2κφ−−µ = −χ

1
3(φ

3
+−φ

3
−)+

1
2 κ(φ 2

+−φ
2
−) = 0 , (7.19)

Finding φ± and µ from these equations one can determine the position of the
cut. It is interesting to note that for both SU(N) and U(N) equations (7.18) and
(7.19), which determine the positions of the endpoints have subtle behavior at
certain points. For example, it is easy to see from (7.18) that in the U(N) case
for κ2 > χ all eigenvalues lie along the real axis. However, if we decrease
κ and go to the phase dominated by the Chern-Simons term, one endpoint of
the cut will move into the complex plane. In the last section of this chapter
we will return to this transition and discuss its details, as well as details of a
similar transition that takes place in the SU(N) case.

Now let’s consider what happens if the Yang-Mills term is turned off (κ =
0), corresponding to pure Chern-Simons theory. In this case we still assume
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our approximations are applicable, so that equations (7.14) and (7.17) hold as
well. At strong coupling it is natural to expect of solutions to evolve from the
weak coupling solutions (7.4) and (7.10), described in the previous section.
However, we note that the kernels in (7.1) admit a Z3 symmetry only in the
weak coupling approximation (7.3). This symmetry breaks down when the
coupling is increased.

Let us consider the U(N) case, corresponding to µ = 0. In this case the
eigenvalues can be separated into two parts. Indeed, from equation (7.14) it is
clear that for i≥ N/2 the eigenvalues φi are real, so that the cut goes between
the origin and the endpoint φ+ =

√
χ . The rest of the eigenvalues, i.e. i<N/2,

become purely imaginary. Hence, half of the cut goes along imaginary axis.
In fact, there are three possible ways that the cut can go along the imaginary
axis. For the first two possibilities all imaginary eigenvalues have the same
sign, corresponding to the cut either going up from the origin to φ− = i

√
χ

or the cut going down from the origin to φ− = −i
√

χ . Both situations give
rise to one-cut solutions in the weak coupling that have complex free energy.
The third possible configuration has one-fourth of the eigenvalues lying along
the positive imaginary axis and one-fourth along the negative imaginary axis.
Hence, we end up with three cuts emerging from the origin. This solution con-
nects to the Z3-symmetric solution and so we call it Z3-solution, even though
the symmetry is no longer there at strong coupling. As we will see further, the
contributions from the two conjugated cuts along the imaginary axis cancel
each other in the free energy, so that the resulting free energy is real.

All of these solutions have part of their eigenvalues lying on the imaginary
axis. However, this is inconsistent with approximations we made to obtain
equations (7.13). In order to make the solutions consistent with these ap-
proximations we should assume that the positions of the eigenvalues satisfy
|Im(φi− φ j)| � |Re(φi− φ j)| � 1, i.e. the cuts do not go exactly along the
imaginary axis but instead diverge slightly from it. In the limit of infinite cou-
pling constant λ̃→∞ the ratio of the real and imaginary parts of the eigenvalue
separations should go to zero. In Fig.7.2 we show the eigenvalue positions for
the numerical solution of (7.1) with the coupling constant at λ̃ = 750. As we
see, in general, this picture supports all statements made so far about the so-
lution. In particular, approximately half of the eigenvalues lies on the positive
real half-axis, while another half goes up into the imaginary plane at an angle
with the real axis that is close to π/2. Moreover, it was checked for many
different parameters m and λ̃ , that both endpoints of the cut fit the values
φ+ =

√
χ and φ− = i

√
χ very well.

In Fig. 7.2 the distribution of the eigenvalues along the imaginary axis is
not very smooth, contrary to the distribution along real axis which forms an
almost perfect line. This is due to the following reasons. First, the kernels in
(7.1) contain coth and tanh functions, both having poles along the imaginary
axis. These poles significantly decrease the precision of numerical methods.
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However there is a more fundamental reason for this chaotic distribution.
Let’s consider the one-cut solution for small coupling constant λ̃ . When λ̃ is
increased the cut starts growing according to its λ̃ 1/3 dependence. However, at
a particular value of the coupling we expect this cut to break into two cuts. In
order to support this statement we have considered the special case when the
mass of the adjoint hypermultiplet is set to m =±i/2 (see appendix C of paper
III). This is the supersymmetry enhancement point. At this point equations of
motion reduce to

πN
λ̃

φ
2
i = 2π ∑

j 6=i
coth(π(φi−φ j)) , (7.20)

which in the continuous limit corresponds to a singular integral equation with
a Hilbert action and can be solved analytically using the resolvent technique.
Analyzing this solution we have found that at the critical point λ̃c ≈ 0.976 the
eigenvalue density goes to zero in the middle of the cut (see Fig. 7.3) signaling
a phase transition at this point, in analogy with the phase transition described
in chapter 4. We also argue that new breaks appear in the cut along the imag-
inary axis every time we increase

√
2λ̃ by 2. For a general value of mass we

expect the same thing to happen when
√

χ is increased by 2. Each break of
the cut signals a phase transition. Thus, to go from weak to strong coupling
a theory should undergo a chain of equidistant phase transitions. Hence, at
strong coupling, the chaotic behavior in Fig.7.2 is the aftermath of crossing
many phase transition points.

Now let’s discuss the SU(N) case. If we set κ = 0, the equations (7.19) lead
straightforwardly to the following values for the cut endpoints and Lagrange
multiplier

µ =± i√
3

χ , φ+ =

√
2

31/4 χ
1/2 e±iπ/12 , φ− =−

√
2

31/4 χ
1/2 e±7iπ/12 . (7.21)

However, these endpoints can not be connected by any cut as they belong to
different branches. Hence, it is natural to conclude, that there is no analog of
the one-cut solutions considered above for the SU(N) case. At the same time
numerical analysis shows the presence of a one-cut solution that goes along
the imaginary axis and gives 〈φ〉= 0.

Finally, we compute the free energy of the solutions we have found for the
U(N) case. Under the approximation used to obtain (7.13), the free energy
can be rewritten in the following form

F ≡− logZ ≈ ∑
i

πk
3

φ
3
i −

(9+4m2)π

4 ∑
i< j
|Re(φi−φ j)| . (7.22)
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Figure 7.3. Cut behavior for different λ̃

For the Z3 solution this becomes

F ≈ ∑
i>N/2

πk
3

φ
3
i −

(9+4m2)π

4
N
2 ∑

i>N/2
φi

− (9+4m2)π

4 ∑
N/2<i< j

(φ j−φi) ,

(7.23)

with the contributions from two complex branches canceling each other. Per-
forming the summation in the expression we find

F ≈−(9+4m2)3/2π

60
N2

λ̃
1/2 , (7.24)

If we consider the free energy for solutions that have eigenvalues only along
the positive or negative imaginary axis, the free energy gets an imaginary part
in addition to the real one. This real part still equals (7.24). These analytical
results reproduce the corresponding numerical simulations done in paper III.

Notice that if we substitute λ̃ = N/k into the expression (7.24) we obtain
F ∼ N5/2. This reproduces the strong coupling free energy behavior obtained
for five-dimensional superconformal theories in [61]. These theories are of a
special interest due to the existence of holographic dual in AdS6 space. Thus,
our result gives a hint at the possible existence of a holographic dual to 5D su-
persymmetric Chern-Simons theory, which is also a conformal theory. How-
ever, we should notice that the chain of phase transitions on the way from weak
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to strong coupling can make the search for a gravity dual more complicated or
even impossible.

7.4 Yang-Mills – Chern-Simons phase transitions
Both in strong and weak coupling we considered two phases of the theory in
the presence of Yang-Mills and Chern-Simons terms. One phase is dominated
by the Yang-Mills term when the κ parameter is large enough. The other
phase appears when κ is small enough and the theory is dominated by the
Chern-Simons term. In this section we discuss how this transition develops in
weak and strong coupling of the U(N) and SU(N) theories.

7.4.1 Weak coupling
We have found that in the weak coupling regime the eigenvalue distribution
takes the form (7.7) and the parameter b is found from (7.6). When λ is sig-
nificantly smaller then λ̃ this solution has its cut along the real axis. However,
if we start increasing λ , at some value of κ the left branch point will coincide
with the zero of the density function in (7.7) at φ̃ =−b. If we increase λ fur-
ther this branch point moves off the real axis into the complex plane (either up
or down), or, alternatively, one cut splits into three. What happens at the criti-
cal point depends on which configuration is energetically more favorable and
on the choice of the gauge group. For example, in the case of SU(N) the cut
is forced to split into three in order to satisfy tracelessness condition 〈φ〉= 0.

For both the U(N) and SU(N) cases these transitions take place at b =(
λ̃/2π

)1/3
according to the eigenvalue distribution (7.7). Making use of

equation (7.6) and assuming µ = 0 we get the following critical point for the
U(N) case

κc ≡
√

3

(
λ̃

2π

)1/3

⇒ λ =
2√
3
(2π)7/3

λ̃
2/3 . (7.25)

Similarly, using relation (7.8) one finds a critical point for the SU(N) theory
at

κc =
3
2
(λ̃/2π)1/3 ⇒ λ =

4
3
(2π)7/3

λ̃
2/3 . (7.26)

Now let’s describe the details of the transition between the phases, cor-
responding to κ > κc and κ < κc. In particular, we wish to determine if the
transition between these two phases is a phase transition, and, if so, what is the
order of this phase transition. To answer these questions one should examine
the free energy in the vicinity of the transition point. The general expression
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for the free energy of matrix model (5.1) in the large-N and weak coupling
limits can be evaluated directly from the prepotential (5.10) using the approx-
imations described above 2

F = N2
(

1
2L

∫
dφ ρ(φ)(1

3 φ
3 +κφ

2− 2
3 κ

3)

−1
2

∫
dφdφ

′
ρ(φ)ρ(φ ′) log(φ −φ

′)2
)
,

(7.27)

where we have introduced the parameter L ≡ (λ̃/2π) and the integrals are
taken along the cuts.

Let’s start with U(N) case. Near the critical point (7.25) we can parametrize
the eigenvalue density (7.4) with the small parameters ε and δ

κ
2 = 3L2/3− ε , B =−12L4/3 +4L2/3

ε +L1/3
δ . (7.28)

Using these expressions one can expand the free energy (7.27) a series in ε

and δ as

F = N2
(
−3

4
− 1

3
logL+

3
4

L−2/3
ε− 1

8
L−4/3

ε
2− 1

40
L−5/3

ε δ + . . .

)
,(7.29)

where the ellipsis stands for the subleading terms in ε and δ . This expression
is valid on both sides of the transition. In order to distinguish between the
one-cut and the split cut solutions, one should determine the relation between
δ and ε in both cases.

For one-cut solution (7.7) below the critical point (ε < 0), this relation can
be found directly from (7.5) and (7.6). In particular, in paper III we obtained
δ ≈ 8(−ε/3)3/2, and so the free-energy becomes

F = N2
(

regular terms+
1

15
√

3
L−5/3 (−ε)5/2 + . . .

)
. (7.30)

This shows that the third derivative of F diverges at the critical point ε = 0
and thus the phase transition is third order.

Now let’s continue into the region above the phase transition (ε > 0). As
we discussed before there are two possible solutions in this phase. Either there
is a one-cut solution with the left endpoint moving into the complex plane or
the cut splits into three cuts. For the first case all derivatives remain the same
and the free energy can be obtained from (7.30) by analytical continuation of
ε to the positive real axis.

2Here we shift the free energy in two ways. First we subtract a constant term C =

N2
(

1
8 log2+ logπ +

7ζ (3)
16π2

)
in the same way as in section 7.2 (see the corresponding footnote

there). Second we add the term − 2
3 κ3, which depends on the coupling constants but is regular

and thus can not change the order of the transition.
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For the second solution, which connects to the Z3-symmetric solution at
infinite Yang-Mills coupling, the derivation is more complicated. In total there
are four branch points for this particular solution. At the critical point three of
these points coincide at φ̃ =−L1/3. As we increase ε and move away from the
critical point, the branch points spread apart and the eigenvalue density near
the point φ̃ =−L1/3 can be written as

ρ(δφ)≈ 1
4πL5/6

√
4(δφ)3 +4ε(δφ)−δ , (7.31)

where δφ = φ̃ + L1/3 is assumed to be small. In order to find the relation
between δ and ε one should impose the condition that

∫
ρ(δφ) is positive

definite. The integral in this expression is taken between the branch points.
The positions of these points are determined by δ and ε , hence, by imposing
positive definiteness on the integral over the distribution one can find a relation
between them. This calculation was performed in paper III and led to

δ ≈ (1.40907)ε
3/2 . (7.32)

This result was obtained numerically, as the integral
∫

ρ(δφ) contains com-
plete elliptic integrals of the first and second kind. Substituting this into (7.29)
we obtain for the split-cut free energy

F = N2
(

regular terms− (0.035223)L−5/3
ε

5/2 + . . .
)
, (7.33)

where the regular terms are the same as in (7.30). Notice that this free energy
is lower than the one for the single cut solution in (7.30). Indeed while the
regular terms are the same, the coefficient of the ε5/2 term is imaginary for the
one-cut solution, and negative real for the split-cut solution. Hence the last one
is energetically favorable. This result is not surprising, as the Z3-symmetric
solution has lower free energy compared to the one-cut solution at the pure
Chern-Simons point. As the coefficients are different in (7.30) and (7.33),
there is a discontinuity in the third derivatives for this solution as well.

We continue with the SU(N) case. The analysis is similar, but also includes
the Lagrange multiplier µ . To get the one-cut solution below the phase transi-
tion we set κ = κc− ε ′, where κc is given by (7.26) and ε ′ is a small positive
real number. Then from (7.8) one obtains the ε ′-expansion of b and the free
energy

F = N2

(
regular terms+

4
√

2
15
√

3
L−5/6(−ε

′)5/2

)
. (7.34)

Hence, this also has a third order phase transition at the critical point, given
by κc in (7.26).
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7.4.2 Strong coupling
In the strong coupling limit, when both λ � 1 and λ̃ � 1, we have found the
solutions (7.17). In the case of U(N) the endpoints of the cut are given by
(7.18). As discussed in section 7.3 this solution has a special point at

κ = κc =
√

χ , (7.35)

where χ is given by (7.15). For κ > κc all the eigenvalues are real, while for
κ < κc some of them are shifted from the real axis onto the complex plane.
The free energy at strong coupling using the assumption |Re(φi−φ j)| � 1 can
be well approximated by

F ≈ N2
(

π

λ̃

∫
φ+

φ−
dφ
(1

3 φ
3 +κφ

2− 2
3 κ

3)
ρ(φ)

−(9+4m2)π

8

∫
φ+

φ−
dφdφ

′|φ −φ
′|ρ(φ)ρ(φ ′)

)
.

(7.36)

Using the eigenvalue density (7.17) together with the endpoint positions φ±
from (7.18) one finds

F ≈ N2
(

regular terms+
8π

15(9+4m2) λ̃ 2
(−ε)5/2

)
, (7.37)

where ε = κ2
c − κ2 is a parameter defining how far the theory is from the

critical point and κc is given by (7.35). Hence, once again we obtain a third
order phase transition at the critical point.

The last situation we discuss is the SU(N) case at strong coupling. The
solution described in section 7.3 has an eigenvalue density given by (7.17)
and cut endpoints given by (7.19). After some manipulations it can be shown
that the system of equations defining the endpoints together with the Lagrange
multiplier µ has a critical point at

κ = κc =
2
√

2
3

χ
1/2 . (7.38)

To explore the behavior of the theory around the critical point one should again
introduce a small parameter ε ′ defined as ε ′ = κc−κ . Then one should first
find the ε ′-expansion of µ from the relations (7.19) and then evaluate the free
energy from (7.36). This calculation, as shown in paper III, results in

F ≈ N2
(

regular terms+
4π

5
√

6
κ

1/2
c λ̃

−1(−ε
′)5/2

)
. (7.39)

Hence, the transition stays third order at strong coupling for the SU(N) theory
as well.

To summarize, we have found that the matrix model (5.1) experiences a
phase transition when both the Yang-Mills and Chern-Simons terms are present.
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Table 7.1. Critical values of κ for different regimes of the matrix model (5.1).

U(N) SU(N)

strong χ1/2 2
√

2
3 χ1/2

weak
√

3
(

λ̃

2π

)1/3
3
2

(
λ̃

2π

)1/3

The transition happens when the cut along the real line, when the theory is
dominated by the Yang-Mills term, starts either moving onto the complex
plane or, alternatively splits into three branches at one of the endpoints. This
critical point is characterized by the parameter κ defined in (7.2). The value of
κc depends on whether the gauge group is SU(N) or U(N) if the theory is in
the strong or weak coupling regime. The critical values for the different cases
are summarized in table 7.1. All transitions are found to be third order phase
transitions. As we have discussed in chapter 4, third order phase transitions
are typical for matrix models. However, phase transitions in matrix models
are usually accompanied by a break or a merger of the cuts, while in our case
this does not necessarily take place.

7.5 Wilson loops
Finally, we discuss the behavior of Wilson loops in pure Chern-Simons the-
ory. It is especially interesting, since the Chern-Simons term in the action
is odd under charge conjugation and, thus in principle, Wilson loops in the
fundamental and anti-fundamental representations can differ.

As discussed in chapter 6, after localizing the expectation value of the 1
2 -

BPS Wilson loop wrapping the equator of the five-sphere reduces to the matrix
model expectation value

〈W 〉± =
∫

dφρ(φ)e±2πφ , (7.40)

where ρ(φ) is eigenvalue distribution at the saddle point of the matrix integral
(5.1), and the +(−) sign refers to the fundamental (anti-fundamental) repre-
sentation.

One can now evaluate (7.40) for the density distributions discussed pre-
viously in this chapter. In particular, if we consider the Z3-symmetric weak
coupling solution (7.10) , (7.40) results in

〈W 〉±Z3
= 1F3

(
1
2

;
1
3
,
2
3
,2;±32π2λ̃

27

)
. (7.41)
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This expression is real and in the limit λ̃ � 1 its log is approximately

log〈W 〉±Z3
≈±4π2λ̃

3
(7.42)

Already we see that the log of the Wilson loop has a different sign for funda-
mental and anti-fundamental representations.

We have also seen that in the U(N) case the matrix model has one-cut so-
lutions (7.7) with b given by one of the roots of (7.9). For example, the real
root b corresponds to the one-cut solution crossing the real axis in Fig.7.1(a).
In this case expectation value of the Wilson loop is

〈W 〉±1−cut =
e−a

a

(
a 0F1

(
2,−a2

2

)
+ J2

(√
2a
))

(7.43)

where 0F1 is the confluent hypergeometric function and a =±(8π2λ̃ )1/3. This
expression is real and for λ̃ � 1 its log behaves as

log〈W 〉±1−cut ≈∓
3
2
(π2

λ̃ )1/3 . (7.44)

In order to obtain the Wilson loop expectation values for the two other one-cut
solutions one rotates φ → φe±2πi/3, or equivalently the same rotation on a in
(7.43), which for λ̃ � 1 leads to

log〈W 〉±n ≈∓
3
2
(π2

λ̃ )1/3e2πin/3 , (7.45)

where n = 1,2 corresponds to the two rotated solutions. For the rotated solu-
tions the log of the Wilson loop expectation value is complex. For the solution
crossing the real axis the log has a sign opposite to the Z3-symmetric solution
(7.42). Also note that the λ̃ -dependence of the logs in (7.44) and (7.45) differs
from the behavior in (7.42). The last one is linear in λ̃ which is more natural
for a Wilson loop at weak coupling where perturbation theory is valid, while
the one-cut solutions have the stranger λ̃ 1/3 behavior.

Finally, we test the Wilson loop expectation value in the strong coupling
limit λ̃ � 1 of pure Chern-Simons theory. As discussed in section 7.3 the so-
lution in this regime exists only for the U(N) case. The corresponding eigen-
value distribution is given by (7.17) with κ = 0. The cut goes along the real
axis from the origin to φ+ = χ1/2 and along the imaginary axis from the ori-
gin to either φ− = iχ1/2 or φ− = −iχ1/2. Alternatively, the Z3 solution has
two conjugate cuts going along the imaginary axis from the origin to both
φ− =±iχ1/2 points.

For all three solutions the real part of the Wilson loop expectation value in
the fundamental representation is found to be

Re
(
〈W 〉+strong

)
≈ 1

2π
χ
−1/2 .e2πχ1/2

, (7.46)
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In the cases when the imaginary components of the eigenvalues are all of the
same sign the Wilson loop has an imaginary part which is of order χ and can be
neglected. For the Z3-solution the imaginary contributions from the conjugate
branches cancel each other and the Wilson loop ends up being real and equal
to (7.46). Then the log of the Wilson loop is approximately

log
(
〈W 〉+strong

)
≈ 2π χ

1/2 = 2π .

√
λ̃

(
9
4
+m2

)
(7.47)

However, the situation is different for the loop in the anti-fundamental rep-
resentation where there is no exponentially large factor and the leading order
behavior of the Wilson loop’s real part is given instead by sin2πχ which does
not have a well defined large-λ̃ limit.

The behavior of the Wilson loop expectation value at the critical points was
also examined in paper III. Here it was shown that Wilson loops in both the
fundamental and anti-fundamental representations have a discontinuity in their
second derivatives, which is in good correspondence with a third order phase
transition.

7.6 A comment on the choice of contour and solution
The last remark we make concerns the contour of integration in the matrix
model (5.1) and the choice between the different competing solutions found
in the different regimes of this matrix model.

In chapter 5 we discussed the convergence of the matrix integral and, in
particular, wrote down the asymptotic behavior of the prepotential F for large
vales of φ . As noticed there, in the case of an adjoint hypermultiplet the lead-
ing cubic terms coming from the one-loop determinants cancel. When the
Chern-Simons term is relevant, it then determines the behavior of the matrix
model integrand at large φ . Hence, in order for the matrix integral to con-
verge an integration contour should go through any pair of the three shaded
wedges in Fig.7.1, where the cubic term has positive definite contribution.
Thus we have a choice between three possible contours of integration for each
eigenvalue that determine the cut configuration. If we want our solution to be
continuously connected to the pure Yang-Mills solution described in chapter
6, the contour should go at least through the wedge that covers the positive real
half-axis. This already excludes the one-cut solution that crosses the real axis
and leaves us with two remaining contours. Now if the integrals for all eigen-
values go through the same two wedges then we should choose the one-cut
solution whose end points are in these wedges. However, another possibility
is to choose integration contours where half the eigenvalues are integrated over
a contour that goes from the positive real wedge to the upper allowed wedge,
while the other half are on contours that go to the lower allowed wedge. In
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this case one choses the Z3-symmetric solution. The latter choice is preferable
since , as we have seen, Z3-solutions always result in lower energies then one-
cut solutions. Finally, for one-cut solutions there are problems with the free
energy as well as the Wilson loop expectation values, both of which have imag-
inary parts. This means the theory has some instabilities for these solutions.
At the same time observables for Z3-solutions are always real as it should be
in the ordinary field theory. This suggests that physically Z3-solutions are the
ones that really describe 5D supersymmetric Chern-Simons theory.
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8. Phase transitions in massive theories

In this chapter we show how phase transitions arise in the decompactification
limit of theories with massive hypermultiplets. These phase transitions hap-
pen for different matter content and different theories. They were obtained in
three-dimensional supersymmetric U(N) Chern-Simons theory with N f mas-
sive fundamental hypermultiplets [11, 102] and in four-dimensional SU(N)
N = 2 super Yang-Mills theory with 2N massive fundamental hypermulti-
plets [100, 99]. In this chapter we show how phase transitions similar to the
ones mentioned above appear in 5D N = 1 super Yang-Mills with N f funda-
mental hypermultiplets.

Different suppersymmetric theories with one massive adjoint hypermulti-
plet have an even more interesting phase structure. In this case the theory
experiences an infinite chain of third-order phase transitions while going from
weak to strong coupling in the decompactification limit. Such a phase struc-
ture was observed for mass-deformed ABJM theory [4] as well as for 4D
N = 2∗ super Yang-Mills theory [121, 103, 99]. As we discuss in this chapter,
a similar story takes place in the decompactification limit of the matrix model
(5.1) with one massive adjoint hypermultiplet.

In the following we use the results of section 5.3, where we considered the
decompactification limit of the matrix model (5.1). In particular, to derive the
equations of motion and the free energy for the different theories we will use
the asymptotic form (5.15) of the prepotential F with the particular hyper-
multiplet content for each case.

8.1 Fundamental hypermultiplets
we start with N = 1 super Yang-Mills with N f hypermultiplets transforming
under the fundamental representation of an SU(N) gauge group. Everywhere
in this chapter we turn off the Chern-Simons term by setting k = 0. As dis-
cussed in chapter 5, convex analysis shows that this theory makes sense only
when N f < 2N, which we assume to be satisfied in this section.

Before discussing the solutions of the matrix model, we note that the renor-
malization of the Yang-Mills coupling (5.7) takes the following form

1
g2

e f f
=

1
g2

0
− Λ0N

8π2

(
1− 1

2
ζ

)
, (8.1)
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where ζ ≡ N f /N is the Veneziano parameter. According to this formula the
coupling constant g2

e f f can be negative, leading to a repulsive central potential
for the matrix model (5.1). For convenience we redefine the UV cut-off Λ0 so
that the effective coupling constant can be written in the following form

1
g2

e f f
=−ΛN

8π2 . (8.2)

As usual, we take the large-N limit, where the matrix integral (5.10) is dom-
inated by its saddle point. The decompactification limit of the saddle point
equation can be obtained by minimizing the asymptotic expression (5.15) for
the prepotential F . This leads to the following result

−2Λφ =
1
4

ζ (φ +m)2sign(φ +m)+
1
4

ζ (φ −m)2sign(φ −m)−∫
dψρ(ψ)(φ −ψ)2sign(φ −ψ) ,

(8.3)

where the eigenvalue density ρ(φ) is introduced in the usual way according to
(4.13). We assume that the eigenvalue distribution has finite support [−a,a].
In analogy with the three- and four-dimensional results described in [11, 102]
and [100, 99] respectively, we expect the following picture: The matrix model
should have two phases. One phase corresponds to the regime for which the
inequality a < m is satisfied and corresponds to small Λ (equivalently we can
say that this is the strongly coupled phase of the theory). If we increase Λ, at
some point we have a > m, corresponding to the second phase of the theory.
This phase will contain a pair of sharp peaks at φ = ±m, created by terms
corresponding to the massive hypermultiplets in (8.3).

The best way to solve the integral equation (8.3) is to take three derivatives
of this equation, thus reducing it to an algebraic equation

−2Λ =
1
2

ζ (φ +m)sign(φ +m)+
1
2

ζ (φ −m)sign(φ −m)

−2
∫

dψρ(ψ)(φ −ψ)sign(φ −ψ) , (8.4)

0 =
1
2

ζ sign(φ +m)+
1
2

ζ sign(φ −m)−2
∫

dψρ(ψ)sign(φ −ψ) , (8.5)

0 = ζ (δ (φ +m)+δ (φ −m))−4ρ(φ) . (8.6)

We start with m> a (phase I). In this case the terms with masses in (8.5) cancel
each other and we are left with the simple relation

0 =

a∫
−a

dψρ(ψ)sign(φ −ψ) =

φ∫
−a

dψρ(ψ)−
a∫

φ

dψρ(ψ) , (8.7)
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which can be satisfied only if the eigenvalue density is highly peaked near the
endpoints of the distribution at φ =±a. The natural ansatz is then1

ρ
(I)(φ) =

1
2
(δ (φ −a)+δ (φ +a)) , (8.8)

where the overall coefficient is fixed by the normalization condition (4.14). In
order to determine the endpoint a of the support, one should substitute (8.8)
into the original equation (8.3). This leads to

a(I) = Λ+
1
2

ζ m . (8.9)

By construction, this solution works when a < m or, equivalently when Λ <
m
(
1− 1

2 ζ
)
. Thus the position of the critical point is at

Λc = m
(

1− 1
2

ζ

)
. (8.10)

As we see from (8.9) the length of the cut increases with increasing Λ. There-
fore, if one increases Λ, at some point the theory enters phase II, correspond-
ing to m < a. To find the ansatz appropriate for this regime let’s use the third
derivative equation (8.6). In phase I the δ -functions do not contribute to this
equation and it is equivalent to ρ(φ) = 0, which is satisfied by (8.8) up to the
isolated points φ =±a. However, in phase II these delta functions contribute
to the eigenvalue distribution and a reasonable ansatz should include them on
top of the solution (8.8), giving

ρ
(II)(φ) =

1
4
[(2−ζ )δ (φ +a) +ζ δ (φ +m)

+ζ δ (φ −m)+(2−ζ )δ (φ −a)] ,
(8.11)

where the coefficients in front of δ (φ±m) are chosen to satisfy equation (8.6)
and the coefficients in front of δ (φ ± a) are obtained from the normalization
condition (4.14).

Substituting the ansatz (8.11) into (8.3) one can determine the position of
the support endpoint a

a(II) =

(
1− 1

2
ζ

)−1

Λ . (8.12)

The solution (8.11) is valid, by construction, when m < a, which is equivalent
to Λ > Λc. Thus all values of Λ cover two phases, and unlike 3D Chern-
Simons with N f fundamental hypermultiplets, without any intermediate phase
[11].

1Note that (8.8) does not satisfy (8.6) at the isolated points on boundaries of the eigenvalue
distribution. Further in this section, where the effects of finite r are discussed, we give an
explanation of the validity of this solution.
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The validity of the solutions (8.8) and (8.11) can be checked numerically.
In Fig. 8.1 we show the numerical solution to the full equations of motion with
finite r using orange dots. On the same plots the vertical dashed lines repre-
sent the position of δ -functions in the analytical solutions described in this
section. As one can see from these graphs, the analytical solution reproduces
the numerical one with very good precision.

The derivation of the solutions (8.8) and (8.11) in the form presented here
is not very rigorous. However there is a good way to justify these solutions.
To do this we consider a large but finite radius for the five-sphere and include
terms subleading in the large-r expansion in (8.3). This leads to a repulsion
of the eigenvalues at small separations, which washes out δ -functions and
turns them into the peaks of order 1/r width. The analytical form of these
peaks can be found explicitly. Then the δ -functions with their coefficients
can be obtained in the limit r→ ∞. Calculation described above was done in
appendix C of paper IV and, in the decompactification limit, leads to solutions
(8.8) and (8.11).

We now determine if the transition between phases I and II is a phase tran-
sition and, if so, what is its order. To answer this we evaluate the free energy
of the matrix model (5.10) in the decompactification limit, which according to
(5.15) takes the form

1
2πr3N2 F =−1

2
Λ

∫
dφρ(φ)φ 2 +

1
12

∫ ∫
dφdψρ(φ)ρ(ψ)|φ −ψ|3−

ζ

24

∫
dφρ(φ)

(
|φ +m|3 + |φ −m|3

)(8.13)

Substituting the eigenvalue distributions (8.8) and (8.11) and evaluating inte-
grals one can get

F(I) =−πr3N2

24
(
8Λ

3 +12mζ Λ
2 +6m2

ζ
2
Λ+m3

ζ (4+ζ
2)
)
,

F(II) =−πr3N2

6

(
4

2−ζ
Λ

3 +3m2
ζ Λ+m3

ζ
2
)
,

(8.14)

where F(I) and F(II) are the free energies in phases I and II. It is then easy to
check that the free energy has a discontinuity in its third derivative w.r.t. Λ

∂Λ

(
F(II)−F(I)

)∣∣∣
Λ=Λc

= ∂
2
Λ

(
F(II)−F(I)

)∣∣∣
Λ=Λc

= 0 , (8.15)

∂
3
Λ

(
F(II)−F(I)

)∣∣∣
Λ=Λc

= 2πr3N2 ζ

ζ −2
. (8.16)

Hence at the critical point Λc =
(
1− 1

2 ζ
)

m, the theory experiences a third or-
der phase transition when the decompactification and large-N limits are taken
simultaneously. As discussed in chapter 4 third-order phase transitions are
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typical in matrix models. However the picture here is slightly different from
the one presented in chapter 4. There the phase transitions were created by
merging or breaking the cuts. Here there is no strict concept of a cut as the
support of eigenvalue density is a set of isolated points. Similar third-order
phase transitions were observed in 3D Chern-Simons-Matter theory [11, 102]
and 4D N = 2 SYM with 2N massive fundamental hypermultiplets [99].
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Figure 8.1. Eigenvalue density ρ(φ) calculated with the following values of param-
eters: r = 10, m = 7, ζ = 1

2 , N = 100 corresponding to Λc ≈ 5.27. The orange dots
show the results for the numerical solution, while the dashed lines show the positions
of δ -functions in the analytical solutions (8.8) and (8.11).
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)
Figure 8.2. Free energy of N = 1 SYM with one adjoint hypermultiplet. The or-
ange dots show the results for the numerical solution, while the dashed lines on (a)
and (b) represent the positions of δ -functions in the analytical solutions (8.32). The
parameters of the theory are taken to be r = 20, m = 7.5, N = 200.

The numerical and analytical analysis in paper IV shows that for finite ra-
dius r the phase transition washes out and becomes a smooth crossover. The
phase transition takes place only in the decompactification limit.
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One can also evaluate Wilson loop expectation values using (6.15) and the
eigenvalue distributions (8.8) and (8.11). The calculation shows a discontin-
uous second derivative of the Wilson loop expectation value w.r.t. Λ at the
critical point Λc =

(
1− 1

2 ζ
)

m,

∂Λ

(
〈W 〉(II)−〈W 〉(I)

)∣∣∣
Λ=Λc

= 0 ,

∂
2
Λ

(
〈W 〉(II)−〈W 〉(I)

)∣∣∣
Λ=Λc

=
ζ

2−ζ
4π

2r2 cosh(2πrm) ,
(8.17)

which is consistent with a third-order phase transition.

8.2 One adjoint hypermultiplet
In this section we discuss the more interesting case of phase transitions tak-
ing place in 5D N = 1 super Yang-Mills with a massive adjoint hypermulti-
plet. Similar investigations of the 3D mass-deformed ABJM model [4] and 4D
N = 2∗ super Yang-Mills [103, 99] revealed an interesting phase structure in
these theories. In particular, it was found that in the decompactification limit
both theories undergo an infinite chain of phase transitions on the way from
weak to strong coupling. These phase transitions are third-order for ABJM
and fourth-order for 4D N = 2∗ super Yang-Mills theory.

In the case of one adjoint hypermultiplet (5.7) shows that the coupling con-
stant g2

e f f does not get any renormalized. This happens because the divergent
parts of the one-loop contributions from the vector- and hypermultiplets can-
cel each other. Therefore, from here on we will just use the bare coupling
constant, denoting it as g2

Y M .
As usual, in the in large-N limit the matrix integral (5.10) is dominated by

the solution of the saddle point equation (6.2). In the decompactification limit
this equation takes the form

16π2

t
φ =

∫
dψρ(ψ)

[
−(φ −ψ)2sign(φ −ψ)

+
1
2
(φ −ψ +m)2sign(φ −ψ +m)+

1
2
(φ −ψ−m)2sign(φ −ψ−m)

]
,

(8.18)

which can also be obtained by minimizing the prepotential (5.10). Here we
have also introduced ’t Hooft coupling t = g2

Y MN. Notice that this ’t Hooft
coupling is dimensionful and differs from the ’t Hooft coupling (6.3) used in
previous chapters. Equations (8.18) can be solved with an approach similar to
the one used in previous section for fundamental hypermultiplets. Namely, we
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take three derivatives of the equation of motion (8.18) resulting in

16π2

t
=

∫
dψρ(ψ) [−2|φ −ψ|+ |φ −ψ +m|+ |φ −ψ−m|] ,(8.19)

0 =
∫

dψρ(ψ) [−2sign(φ −ψ)+ sign(φ −ψ +m)

+ sign(φ −ψ−m)] , (8.20)
0 = −4ρ(φ)+2ρ(φ +m)+2ρ(φ −m) . (8.21)

Let’s sketch how one solves these equations for different values of the param-
eters. We assume that the eigenvalue distribution has finite support [−a,a]
and first assume that 2a < m is satisfied. Then (8.20) becomes (8.7) and can
be solved with (8.8). Substituting (8.8) into (8.18) results in the δ -functions
positioned at

a(0) = m− 8π2

t
. (8.22)

By construction this is valid only if 2a(0) < m. Using (8.22) this inequality can
be reformulated into the condition for the ’t Hooft coupling t < 16π2

m .
Now assume that the coupling is increased and the system passes the point

t = 16π2

m , so that m < 2a < 2m. Then we expect a situation analogous to 4D
N = 2∗ super Yang-Mills, and even more so with the ABJM theory. The
solution below the transition contains two sharp peaks at the endpoints of the
distribution. As the system passes the transition point and the length of the dis-
tribution support becomes larger than the mass of the hypermuliplet (2a > m),
the kernel in (8.18) develops special points where sign functions in the sec-
ond line change sign assuming there are peaks at the ends of the distribution.
These special points are found at φ =±(m−a). To proceed we split the sup-
port [−a,a] into three intervals

ρA(φ), m−a < φ < a ,

ρ
(1)(φ) = ρB(φ), −m+a < φ < m−a ,

ρC(φ), −a < φ <−m+a ,

(8.23)

with the symmetry conditions ρB(φ) = ρB(−φ) , ρA(φ) = ρC(−φ). Now the
equations of motion can be solved in general form in each of these three re-
gions. In particular in region A (8.21) reads

−4ρA(φ)+2ρC(φ −m) = 0 , (8.24)

where we used that φ +m > a and (φ −m) ∈C. Using the symmetries of the
eigenvalue distribution one then obtains

2ρA(φ) = ρA(m−φ) , (8.25)
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which can be satisfied only if ρA(φ) = 0 everywhere on the interval A, ex-
cept its endpoints. It is then natural to assume that the eigenvalue distribution
consists of two sharp peaks around φ = a and φ = m− a, which can be ap-
proximated by the following density

ρA(φ) = c0δ (φ −a)+ c1δ (φ −m+a) . (8.26)

In region B (8.20) can be written as

a∫
−a

dψρ(ψ)sign(φ −ψ) =

φ∫
a−m

dψρB(ψ)−
m−a∫
φ

dψρB(ψ) = 0 , (8.27)

which leads to the eigenvalue distribution sharply peaked at the endpoints φ =
±(m−a) of the interval B.

Hence, using the symmetry properties we arrive at the ansatz

ρ
(1)(φ) = c0δ (φ −a)+ c1δ (φ −m+a)

+ c1δ (φ +m−a)+ c0δ (φ +a) .
(8.28)

The coefficients c1 and c2 by substituting the ansatz back into (8.18), which
results in

16π2

t
= 2a(−2c0 + c1)+2c0(a+m)+2c1(2m−a)

+(−2c1 + c0)(|φ −a+m|+ |φ +a−m|) .
(8.29)

This equation is satisfied if c0 = 2c1. Combined with the normalization con-
dition (4.14) this gives

c0 =
1
3
, c1 =

1
6
. (8.30)

Substituting these values of c0 and c1 back into (8.29) we find that the endpoint
lies at

a(1) = 2m− 24π2

t
. (8.31)

By construction this solution is valid when m < 2a(1) < 2m. Using (8.31) one
can rewrite this inequality as the condition for the ’t Hooft coupling, 16π2

m <

t < 24π2

m .

We can continue with this logic for t > 24π2

m . Consider the parameters sat-
isfying 2m < 2a < 3m. The previous solution contains two pairs of peaks -
one pair of primary peaks on the boundaries of the distribution and one pair
of resonances at φ = ±(m− a). Now it is reasonable to expect that this res-
onance peaks will, in turn, create secondary resonances at φ = ±(2m− a)
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because of the cusps in the kernel in (8.18). Hence we expect to find a solu-
tion containing six δ -functions located at φ = ±a ,±(m− a) ,±(2m− a). If
the ’t Hooft coupling is increased further so that 2a > 3m, these secondary res-
onances will create another pair of resonances and so on. Each time the length
of the eigenvalue support is increased by m, a new pair of resonances will
emerge. Thus if we want to consider the most general solution we should as-
sume that the parameters of the theory are chosen so that mn < 2a < m(n+1)
where n ∈ Z. Then the peaks at the endpoints φ = ±a will create resonances
at φ = ±(a−m). These resonances will in turn create secondary resonances
at φ = ±(a− 2m) and so on up to the last resonance pair that can fit inside
the distribution support, located at φ = ±(a− nm). Then the ansatz for the
eigenvalue density would be

ρ(φ) =
n

∑
k=0

ck (δ (φ −a+mk)+δ (φ +a−mk)) , (8.32)

In order to fix the coefficients ck we break the support [−a,a] into (2n+ 1)
intervals. Then substituting (8.32) into (8.18) one gets n relations for the (n+
1) coefficients ck. The remaining relation is obtained from the normalization
condition (4.14). Details of these derivations can be found in paper IV. The
final result is given by

ck =
n+1− k

(n+1)(n+2)
, (8.33)

while the position of the support endpoint is

a(n) = (n+1)m− 4π2

t
(n+1)(n+2) . (8.34)

The ’t Hooft coupling is in the range

8π2

m
(n+1)< t <

8π2

m
(n+2) , (8.35)

so that the nth transition point is located at

t(n)c =
8π2

m
(n+1) . (8.36)

These derivations lack rigor, because the solutions contain delta functions
located at isolated points at which the kernels in (8.18) suffer discontinuities.
In paper IV we make this more precise by following the same method used
for massive fundamental matter. Namely, we consider the equations of motion
(6.2) for the case of finite but large r and also include the first terms sublead-
ing in r. These subleading terms will turn on a repulsive interaction between
the eigenvalues at small separations and will wash out the δ -functions, turning
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them into peaks of ∼ 1/r width. Then we can split the support into the same
intervals as before and solve the corresponding equations of motion, allowing
us to find the analytical form of these peaks. In the end we take the decom-
pactification limit r→ ∞ and see that these peaks shrink to δ -functions while
their coefficients coincide with (8.33). In appendix D of paper IV we did this
calculation for the cases of n = 0 (no resonances) and n = 1, reproducing the
solutions (8.8) and (8.28) correspondingly.

In Fig. 8.2 the numerical solutions for large but finite r are shown with
the dots, while the positions of the δ -functions in (8.32) are shown with the
dashed lines. As we see from this figure the analytical results reproduce the
numerical ones very well.

Finally, let’s address the question about the order of the phase transitions
taking place at the critical points t(n)c . To answer this question we evaluate
the free energy and its derivatives at these critical points. The free energy in
the decompactification limit can be read directly from (5.10) by choosing the
appropriate representation of the hypermultiplet

F̃ ≡ 1
2πr3N2 F =

4π2

t

∫
dφρ(φ)φ 2 +

1
12

∫ ∫
dφdψρ(φ)ρ(ψ)

[
|φ −ψ|3−

1
2
|φ −ψ +m|3− 1

2
|φ −ψ−m|3

]
,

(8.37)

After substituting eigenvalue density (8.32) with coefficients from (8.33) and
evaluating all integrals one obtains

F̃(n) =
1

12t3

[
256π

6(1+n)2(2+n)2−64π
4mt(1+n)(2+n)(3+2n)+

24π
2t2m2(1+n)(2+n)−m3t3(3+2n)

]
.

(8.38)

Taking derivatives shows that the third derivative of the free energy is discon-
tinuous at the critical points t(n)c in (8.36), with the discontinuity given by

∂t

(
F̃(n+1)− F̃(n)

)∣∣∣
t=t(n+1)

c
= ∂

2
t

(
F̃(n+1)− F̃(n)

)∣∣∣
t=t(n+1)

c
= 0 ,(8.39)

∂
3
t

(
F̃(n+1)− F̃(n)

)∣∣∣
t=t(n+1)

c
= − m6

512π6(2+n)3 . (8.40)

Hence at every critical point t(n)c the theory goes through a third order phase
transition. From the (8.40) above we can also see that as the ’t Hooft coupling
t increases, or equivalently, the phase number n increases, the phase transi-
tions become weaker and turn into crossover transitions in the limit of infinite
coupling constant.

Another observable that can test the order of the phase transition is the
Wilson loop expectation value, which in the planar limit localizes to the simple
integral (6.15). Doing this integration with the eigenvalue distribution (8.32)
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we obtain discontinuities in the second derivatives at the critical points t(n)c for
these observables

∂t

(
〈W 〉(n+1)−〈W 〉(n)

)∣∣∣
t=t(n+1)

c
= 0 ,

∂
2
t

(
〈W 〉(n+1)−〈W 〉(n)

)∣∣∣
t=t(n+1)

c
=

m4 sinh(πm(2+n))
16π2(2+n)2 sinh(πm)

,
(8.41)

which is consistent with third-order phase transitions at these critical points.
In the decompactification limit of mass-deformed ABJM theory, where

there is also an infinite number of third order phase transitions. These tran-
sitions also become weaker with increasing coupling. A chain of phase transi-
tions was also found in 4D N = 2∗ super Yang-Mills theory. However these
phase transitions appear to be fourth order.

It is interesting to understand what happens in the limit of large ’t Hooft
coupling, where 2a� m, or, equivalently, when the solution contains a large
number of resonance pairs. With n pairs t is in the range 8π2

m (n+ 1) < t <
8π2

m (n+ 2), so that for large n we have the approximation n ≈ mt
8π2 . The end-

point of the support is then given by

a≈ mn− 4π2

t
n2 =

m2t
16π2 , (8.42)

and the δ -functions in the eigenvalue distribution (8.32) average to the con-
stant distribution,

ρ(φ) =
8π2

m2t
, |φ | ≤ a ,

= 0 , |φ |> a ,
(8.43)

Now let’s return to the strong coupling solution (6.9) presented in chapter 6.
After using the following relations to restore the r-dependence

m→ mr , λ → t
r
, φ → rφ , ρ(φ)→ 1

r
ρ(φ) , (8.44)

and taking the decompactification limit r→ ∞, one can reproduce the eigen-
value density (8.43). Hence, we conclude that at very strong coupling the
solutions obtained in this chapter average to the usual strong coupling solu-
tion discussed in chapter 6. Thus these two solutions are consistent with each
other. Similar results were obtained for the mass-deformed ABJM theory in
[4] and for four-dimensional N = 2∗ theory in [103].
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9. Summary

Recently there has been much progress in obtaining exact results for super-
symmetric gauge theories and a substantial part of this progress is due to su-
persymmetric localization [93]. Localization allows one to reduce the full path
integral, corresponding to the expectation value of some supersymmetric ob-
servable, to a matrix integral. Although it is not guaranteed that the resulting
matrix integral will be easily solvable, it is still much easier to work with than
the original path integral.

In particular, in this thesis we concentrated on results for five-dimensional
gauge theories. One of the motivations to study these theories is their inter-
esting relation with 6D (2,0) theories [77, 35]. The latter are assumed to be
low energy limits of world-volume theories of M5-branes. A better under-
standing of these theories can play an important role in string theory. Another
motivation for the study of 5D gauge theories comes from the existence of a
corresponding Chern-Simons theory. This theory is particularly interesting as
it is a conformal fixed point in five dimensions and can, in principle, admit a
holographic dual. We discussed some properties of the 5D theories, as well as
details of their relation with 6D theories, in chapter 2.

To work with these supersymmetric gauge theories we used results of lo-
calization performed in [63, 62, 58, 66]. Localization reduces the partition
function of 5D super Yang-Mills theory with a Chern-Simons term to the ma-
trix integral in (3.22)

In this summary we will briefly review the main results presented in this
thesis and discuss possible future directions.

9.1 Correspondence between 5D and 6D theories
One of the most important results obtained in this thesis is related to the rela-
tion between 5D maximally supersymmetric Yang-Mills theory and 6D (2,0)
theories. The latter does not have a Lagrangian description, making it difficult
to work with. The most useful tool for their study is the AdS7/CFT6 dual-
ity. Using this duality the N3 behavior of the free energy and anomalies was
derived in the large-N limit [70, 57].

Our main goal was to reproduce this N3 behavior in 5D super Yang-Mills
theory. In papers I and II we solved the matrix model obtained by localizing
N = 1 super Yang-Mills with one adjoint multiplet on S5. Some details of
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this solution were given in chapter 6. We showed that the free energy has the
N3 behavior in the planar limit.

We also calculated the expectation value of the circular Wilson loop in 5D
super Yang-Mills and the Wilson surface in (2,0) theory. The second was
evaluated using the AdS/CFT correspondence. A comparison of these two
results at the supersymmetry enhancement point m = i/2 led to the identifi-
cation between the radius of compactification of the (2,0) theory and the 5D
Yang-Mills coupling proposed in [77],

R6 =
g2

Y M
8π2 . (9.1)

However in this case there is 4/5 mismatch between the free energies of 5D
super Yang-Mills and the (2,0) theory. This mismatch is puzzling and remains
unsolved. It would be interesting to study this problem in the future.

We have also found that it is possible to match both free energy and Wil-
son loop if we move away from the supersymmetry enhancement point. In
particular we should fix mass of the hypermultiplet at m = 1/2 and modify
identification between the radius of compactification of (2,0) theory and 5D
Yang-Mills coupling, so that

R6 =
5
2

g2
Y M

16π2 . (9.2)

In the future it would be interesting to find other supersymmetric observ-
ables for which a comparison could be made. One possibility is the ’t Hooft
operator which is the magnetic dual of the Wilson loop operator. In five dimen-
sions the ’t Hooft operators are some surface operators corresponding to the
world-surface of monopole strings. Presumably they can be supersymmetrized
and localized, similar to the ’t Hooft loops in four dimensions [47, 50]. In
the (2,0) theory there is no difference between ’t Hooft and Wilson opera-
tors as the theory is self-dual and both are surface operators. Hence the 5D
’t Hooft loop should correspond to a 6D Wilson surface that does not wrap
the compactification direction. If we can do the calculations for both 5D and
6D theories we we would have an additional check on the identification of
parameters.

9.2 Supersymmetric Chern-Simons-Matter theories
Another theory considered in this thesis was 5D supersymmetric Chern-Simons
with an adjoint hypermultiplet. This theory is particularly interesting because
it is a conformal fixed point in five dimensions suggesting the possibility of an
AdS6 dual.

We studied the large-N behavior of the Chern-Simons matrix model , which
includes a cubic term in its potential. The only groups that admits this term are
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SU(N) and U(N). We also introduced the analog of the ’t Hooft coupling λ̃ =
N/k, where k is the Chern-Simons level. The main results are the following
• There is a sharp difference between the behavior of the U(N) and SU(N)

theories due to the cubic term in the action. In particular at strong cou-
pling the free energy of the U(N) theory exhibits N5/2 behavior, while
SU(N) does not.
• There is a chain of phase transitions going from weak to strong cou-

pling in the pure Chern-Simons theory, with a new phase every time√
λ̃
(9

4 +m2
)

increases by 2. The existence of these phase transitions
complicates the search for a supergravity dual and perhaps prevents its
existence.
• There is a distinction between Wilson loops in the fundamental and anti-

fundamental representations. From one point of view this result is ex-
pected due to the odd parity of Chern-Simons action under charge con-
jugation. It would be interesting to understand the nature of this result
from field theory point of view in the future.
• There is a third-order phase transition between the Yang-Mills phase and

the Chern-Simons phase. The critical valuesat weak and strong coupling
are given in 7.1.

9.3 Phase transitions in massive theories
In paper IV, inspired by the series of recent works [121, 103, 99, 4, 11, 102]
we investigated the behavior in the decompactification limit N = 1 super
Yang-Mills with massive hypermultiplets in different representations of the
gauge group. Taking the large-N and decompactification limits simultaneously
we obtained the following results.
• For the case of fundamental hypermultiplets there is a phase transition

when the points φ =±m move inside eigenvalue density support [−a,a].
Two resonances arise at these points signifying the emergence of a new
phase. The crossover to the new phase is third-order.
• For the case of adjoint hypermultiplet there is a more interesting phase

structure. Here there are a series of third-order phase transitions at crit-
ical values of the ’t Hooft coupling. At each of these critical values a
pair of resonances moves on to the eigenvalue distribution. In the strong
coupling limit these distribution spikes become dense and reproduce the
smooth strong coupling distribution.

The results of paper IV presented in chapter 8 are similar to decompacti-
fication results for three- and four-dimensional theories. Hence these phase
transitions are common to all supersymmetric theories with massive matter
multiplets. In the future it would be interesting to understand these phase
transitions from the field theory point of view. We would also like to test
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the mass-deformed 5D USp(N) super Yang-Mills for the existence of simi-
lar phase transitions. This study can be especially interesting because of the
existing holographic dual of the undeformed theory.
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Summary in Swedish

Gaugeteorier spelar en viktig roll i den moderna teoretiska fysiken. Alla inter-
aktioner i naturen kan beskrivas i termer av olika gaugeteorier. Till exempel
Standardmodellen för partikelfysik inkluderar gaugeteorier av starka kraftens
interaktioner, motsvarande SU(3) gauge grupp, och elektrosvag växelverkan,
motsvarande SU(2)×U(1) gauge grupp. De spelar en viktig roll inte bara i
partikelfysik utan även i många andra grenar av fysiken.

Ett av de mest utmanande problemen med gaugeteorier är beskrivningen
av deras dynamik när interaktionen mellan partiklar i teorin är stark. Svagt
samverkande teorier kan behandlas med metoder från störningsteori, medan
det inte finns några väl utvecklade metoder för starkt kopplade teorier. För
att lösa detta problem betraktar man teorier som medger sådana metoder. Till
exempel kan man undersöka gaugeteorier som besitter supersymmetri.

Supersymmetri är en symmetri som relaterar två slags partiklar som finns
i naturen: bosoner och fermioner. Det uppstår naturligt i strängteorin där
det eliminerar vissa grundläggande problem av denna teori och tillåter en att
beskriva materiepartiklarna. Supersymmetri kan också bota flera problem i
standardmodellen. Alla dessa fina egenskaper tyder på att supersymmetri kan
existera i naturen. Ett antal experiment pågår vid LHC som bland annat syftar
till att få bevis för supersymmetri i naturen.

Supersymmetri som alla andra symmetrier sätter extra begränsningar för
teorin. Därför kan det i princip förenkla teorier tillräckligt för att göra dem
lösbara i ett eller annat sätt. En av de metoder som hjälper till att få exakta
resultat i supersymmetriska gaugeteorier är lokalisering.

Den huvudsakliga idén med lokalisering är att man kan reducera en oändligt-
dimensionell integreral i kvantfältteori till ändligt-dimensionell matris-integral,
vilket kallas en matrismodell. I denna avhandling undersöker vi några resultat
i matrismodellen som erhålls från lokalisering av 5D supersymmetrisk Yang-
Mills teori. Examensarbetet innehåller resultat från fyra artiklar.

I artikel I och II finner vi lösningar på matrismodeller som erhållits från
lokalisering av SU(N) 5D calN = 1 super Yang-Mills teori med hypermulti-
plet i adjoint representation av gaugegruppen. Med hjälp av dessa lösningar
får vi uttryck för den fria energin och väntevärdet för en Wilsonloop. Detta
resultat ger oss möjlighet att kontrollera de senaste hypoteserna om dualitet
mellan 5D super Yang-Mills och 6D (2,0) superconformal teori. Denna 6D
teori är viktigt på grund av dess relation med fysiken av M5-branes.

I artikel III utför vi en detaljerad studie av egenskaperna hos matrismod-
ellen som erhållits från lokalisering av U(N) 5D supersymmetriska Chern-
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Simons-materia teori. Denna teori är viktigt eftersom det är det enklaste ex-
emplet på högre dimensionell Chern-Simons. Det är dessutom ett av de få
5D konformala teorier. Resultaten som presenteras i denna avhandling ty-
der på förekomsten av holografiska duala teorier för 5D supersymmetriska
Chern-Simons teori. Men man bör lägga märke till att vi också fann en serie
fasövergångar som denna teori genomgår på väg från svag till stark koppling.
Förekomst av dessa fasövergångar kan göra sökandet efter holografiskt duala
teorier komplicerad eller till och med omöjligt.

Slutligen i artikel IV använder vi samma matrismodell som i artikel I och
II. Vi beskriver möjliga fas strukturer i 5D calN = 1 super Yang-Mills med
olika hypermultiplar. Som vi visar, en teori med hypermultiplet i fundamentala
representationen upplever en tredjedel ordnings fasövergång, om vi varierar
kopplingskonstanten mellan stark och svag koppling. Slutligen, för fallet med
adjoint hypermultiplet går teorin igenom en oändlig kedja av tredje ordningens
fasövergångar på väg från svag till stark koppling.
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