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A report is given on the implementation of a frozen magnon technique in the FLAPW code
FLEUR, showing that the procedure reduced computational costs compared with a previously
implemented method, while delivering accurate results. Furthermore a generalisation was made
of the well known one lattice formula that connects the total energy differences of spin-spirals
to the adiabatic magnon excitation energies to multiple lattice systems.

The implemented method was applied to B2 structured FeCo to investigate the changes of the
Curie temperature with a tetragonal distortion and it was found that the FeCo films grown on
Rh have characteristics that makes it a good candidate for HAMR storage media. The method
was also applied to a selection of spin-gapless semiconductors in order to investigate their
magnetic properties. It was found that all of the studied materials have a Curie temperature well
above room temperature and excellent agreement with experimental results was obtained for
the material Mn2CoAl that has been synthesised.

Finally, the implemented frozen magnon method was adjusted to include constraining fields
to restrict the directions of the magnetic moments. It was shown that this procedure significantly
improved the agreement between the dispersion for all considered spin-spiral configuration and
introduced significant adjustments of the exchange parameters. However for other materials,
such as bcc-Fe, such corrections yield worse results and, motivated by the need for a consistent
method, we considered a self consistent spin-spiral based method to extract the exchange
parameters from the inverse transverse static magnetic susceptibility. Preliminary results show
that the newly implemented method gives results close to the corrected frozen magnon method
for FeCo and results close to the uncorrected frozen magnon method for bcc Fe and thus provides
a consistent improvement over the two previously used methods.
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1. Introduction

This thesis is a combination of method development, implementation and ap-

plications in the frozen magnon tradition. Motivated by the possibilities of

significant technological development and the fun of doing science, the goal

of the work presented here is to accurately describe magnetic material prop-

erties using the powerful tools available from density functional theory. The

frozen magnon method was implemented in an all-electron full potential code

in order to enable the accurate study of systems with any number of magnetic

sub-lattices. The first main application considered in this thesis was the study

Figure 1.1. Perpendicular recording technique versus HAMR recording method. (Fig-

ure from Seagate & http://www.dailytech.com.)

of tetragonally distorted FeCo films as a candidate material for heat assisted

magnetic recording (HAMR) storage media. The basic idea is that in order to

increase the capacity of storage devices there is a need to find materials suit-

able for encoding spatially smaller and less volatile bits of information. The

smaller and more compact the bits become (thus the higher the storage den-

sity) the more challenging it is to read and write to the material. One solution

is to locally heat the storage media with a laser to make the bits less rigid for

the manipulation by magnetic fields (see Fig. 7.1). This technology is not yet

commercially available, but HAMR has enabled Seagate, a major commercial

producer of storage media, to reach unprecedented capacity in prototypes and

it encourages them to go even further towards the 1 TB on inch2. We suggest

tetragonally distorted FeCo as grown on a Rh substrate as a possible candidate
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based on theoretical estimations of the critical temperature of the material and

it’s significant magnetic anisotropy.

In the second application, the focus is on the emerging field of spintronics

for investigating a class of materials, namely the spin gapless semiconduc-

tors, where the conductivity of the material depends on the spin-polarisation

of the charge carriers. Most of the materials in this study was only considered

theoretically up-to-date and we provide additional information on magnetic

properties in order to enable the experimentalists to do informed decisions on

what materials to synthesise.

In the last part of this thesis, the impact of a central approximation used

in the field, the magnetic force theorem, was addressed and the implemented

frozen magnon method was adjusted to correct for the errors introduced by

the approximation. Furthermore, an implementation of a different spin-spirals

based method that entirely avoided this approximation was implemented with

the expectation that it would give more consistently accurate results. Compar-

isons were made between the different methods and to date the newly imple-

mented method that is based on the evaluation of the susceptibility seems to

deliver improved results.
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2. Ab initio Calculations

Since the rapid development of quantum theory at the beginning of the last

century, it soon became apparent to physicists that while the theory was in

principle in place to calculate material properties of solids, due to the com-

plexity of the many body problem it was still impossible to do calculations

from first principle without any approximations.

Motivated by the considerable larger mass of the ions relative to the elec-

trons, the Born-Oppenheimer approximation might be assumed for solid state

calculations in order to reduce their complexity. In this approximation the ions

are considered as fixed points and hence the number of free-variables is greatly

reduced. Within this approximation the many body Schrödinger equation for

a system of N electrons and M ions takes the following form.{
−

N

∑
i=1

h̄2

2m
∇2 + ∑

i, j=1,i�= j

e2

|ri− r j| +
N

∑
i=1

M

∑
μ=1

e2Zμ

|ri− τμ |

}
= EΨ (2.1)

Due to the Pauli principle the wave function has to be antisymmetric, which

leads to solutions in the form of sums of Slater determinants. But even with

the Born-Oppenheimer approximation further approximations have to be done

in order to treat systems larger than a few electrons. With the development of

density functional theory (DFT), a theoretical framework was provided for ef-

fective independent particles approaches that enabled the theoretical treatment

of realistic solids.

2.1 Density Functional Theory

The central idea of DFT is to consider the electron density ρ(r) instead of the

full many-body wave functions Ψ(r1, . . . ,rN) in order to reduce the number of

free variables.

ρ(r) =

〈
Ψ|

N

∑
i=1

δ (r− ri)|Ψ
〉

(2.2)

This was motivated by two central theorems for systems with non-degenerate

ground states proven by Hohenberg and Kohn[1] and later generalised by

Levy.[2]
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1. For any system of interacting particles in an external potential, the external

potential is uniquely determined by the ground state density up to a constant

shift. As a corollary, all properties of the system are determined by the ground

state density since the Hamiltonian and the many body wave functions for all

possible states of the system are determined.

2. There exist a universal functional for the energy in terms of the density

E(ρ) that is valid for any external potential and for any particular external

potential the exact ground state energy of the system is the global minimum

value of this functional. The density that minimises the energy functional is

the ground state density. This implies that once E(ρ) is known one can find

the appropriate ground state density and energy for any external potential.

E[ρ]≥ E[ρ0] (2.3)

The theorems of Hohenberg and Kohn gave a justification to consider the elec-

tron density instead of the more complex many body wave functions but this

provides little help in solving practical problems since the energy functional

E(ρ) is not known explicitly. However Kohn and Sham[3] provided an effec-

tive procedure to introduce approximate energy functionals.

They separated the energy functional into contributions coming from a fic-

titious system of non-interacting electrons with the same density as the system

under consideration and gathered any further contributions into a term to be

treated with suitable approximations.

E[ρ] = Ts[ρ]+U [ρ]+Exc[ρ] (2.4)

Here Ts is the kinetic energy of non-interacting electrons, U(ρ) is the Coulomb

energy formed by the Hartree energy and the external potential. i.e. the inter-

actions between the electrons and the ions and any present external electro-

magnetic fields. The non-interacting systems is assumed to be described by

a single Slater determinant of N single particle wave-functions ψν(r) called

Kohn-Sham orbitals. The electron density of the system is thus given by:

ρ(r) = 2
N

∑
ν=1

|ψν(r)|2 (2.5)

This gives the following explicit expression for the kinetic energy and Coulomb

energy disregarding any external electromagnetic field.

Ts[ρ] =−2
N

∑
ν=1

∫
ψ∗ν(r)

h̄2

2m
∇2ψν(r)d3r (2.6)

U [ρ] = Eext [ρ]+EH [ρ] (2.7)

12



Eext [ρ] =−4πe2
M

∑
μ=1

∫ ρ(r)Zμ

|r− τμ |d
3r (2.8)

EH [ρ] = 4π
e2

2

∫ ρ(r)ρ(r′)
|r− r′| d3rd3r′ (2.9)

The exchange correlation energy Exc[ρ] is defined by subtracting the above

expressions from the total energy functional Eq. (2.4). It contains contribu-

tions arising from corrections of the kinetic energy due to electron-electron

interactions, exchange energy and further contributions of electron-electron

interaction due the deviations from a single Slater determinant state, called

correlation energy. In principle, also the exchange energy may treated ex-

actly, but it has been shown that approximate expressions have worked well

due to cancelation of errors for many applications [4]. Minimising the energy

functional with respect to the Kohn-Sham orbitals leads to the Kohn-Sham

equation.

{
− h̄2

2m
∇2 +Ve f f − εν

}
ψν(r) = 0 (2.10)

All terms except the kinetic energy is collected in an effective potential

Ve f f .

Ve f f =Vext +VH +Vxc (2.11)

Vext =−4πe2
M

∑
μ=1

Zμ

|r− τμ | (2.12)

VH = 4πe2
∫ ρ(r′)
|r− r′|d

3r (2.13)

Vxc =
∂Exc[ρ(r)]

∂ρ(r)
(2.14)

Since the electron density appears in the effective potential an iterative pro-

cess is needed to solve the Kohn-Sham equations. The Kohn-Sham orbitals

provide a charge density which determines the effective potential which in

turn updates the Kohn-Sham equations. This process is repeated until self-

consistency is achieved. If the total energy of the electron-ion system is re-

quired, then the Madelung energy EM accounting for the ion-ion interaction

has to be added to the functional in Eq. (2.4).
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2.2 Spin-Density Functional Theory

Density functional theory has to be extended beyond its basic concepts in order

to enable the calculation of magnetic properties. Besides the electron density

ρ(r), the energy of the system is now considered to be a functional of the

magnetisation density m(r) as well. The basic variational principle in Eq. (2.3)

now becomes:

E[ρ(r),m(r)]≥ E[ρ0(r),m0(r)] (2.15)

The Kohn-Sham wave functions are replaced with two component Pauli wave

functions ψαi(r) capable of representing both the electron density and the

magnetisation density. The α index here represents the spin states.

ρ(r) =
N

∑
ν=1

∑
α=1,2

|ψν(r)|2 (2.16)

m(r) =
N

∑
ν=1

ψ∗ν(r)σψν(r) (2.17)

σ = σxx̂+σyŷ+σzẑ (2.18)

Here σx,σy and σz are the Pauli matrices. From the variational principle one

obtains the Kohn-Sham equations that are analogous to the Schrödinger-Pauli

equations.

{
− h̄2

2m
∇2 +Ve f f +σ ·Be f f (r)− εν

}
ψν(r) = 0 (2.19)

The effective magnetic field Be f f is composed by a contribution Bxc arising

from the exchange correlation energy and a contribution Bext from any external

field.

Be f f = Bxc +Bext (2.20)

Bxc =
∂Exc[ρ(r),m(r)]

∂m(r)
(2.21)

2.3 Energy Functionals

Even though the exact form of Exc[ρ(r),m(r)] in Eq. (2.4) is not known, var-

ious successful approximations have been applied. The most commonly used

is the local spin density approximation [LSDA] where the exchange correla-

tion energy at each point in space is the same as that of a homogenous gas with

14



the same charge- and magnetisation density. The exchange correlation energy

then takes the following explicit form:

Exc[ρ(r),m(r)] =
∫

ρ(r)εxc(n(r),m(r)) (2.22)

where εxc is a parametrised function that may be obtained from Quantum

Monte Carlo calculations[5] of a homogenous electron gas. The natural exten-

sion to the LDA functional is the generalised gradient approximation (GGA)

functional [6]where εxc additionally takes into account the gradient of the

charge density.

Exc[ρ(r),m(r), |∇ρ(r)|] =
∫

n(r)εxc(ρ(r),m(r), |∇ρ(r)|) (2.23)

Since the LSDA functional approximates the local exchange correlation po-

tential with that of a homogenous electron gas it can be assumed that the ap-

proximation works well for smoothly varying electron densities. However,

for systems with localised states the LSDA breaks down, failing to provide a

proper description of material properties. For some systems, adding gradient

corrections are not enough and procedures to deal with localised states has

been suggested over the years such as the self-interaction corrections (SIC)

scheme [7], LSDA+U [8, 9], dynamical mean field theory (DMFT) [10], hy-

brid functionals and self consistent GW calculations [11]. In the present work

we considered the LSDA+U functional as implemented in Fleur [12]. The

energy functional in the LSDA+U formalism is:

E[ρ(r),m(r), n̂] = ELDA[ρ(r),m(r)]+Eee[n̂]−Edc[n̂] (2.24)

Here n̂ is an occupation matrix of a selected set of atomic orbitals localised

at a specific ion site. In our case it is the 3-d orbitals of the transition metal

ions. The term Eee[n̂] is taken in accordance with the multi-band Hubbard

model.

Eee[n̂] =
1

2

σ ,σ ′

∑
m1m2m3m4

n̂σ
m1,m2

(
(m1,m3|V ee|m2,m4)− (m1,m3|V ee|m4,m2)δσ ,σ ′

)
n̂σ ′

m1,m2

(2.25)

The term Edc[n̂] in Eq. (2.24) is a double counting correction that is sup-

posed to take care of the fact that the interactions among the d-electrons in-

troduced by the electron-electron interaction term Eee[n̂] is already treated in

the LSDA functional. There are many different proposals on suitable double

counting schemes, however the atomic limit double counting scheme is most

widely used and is employed in this work. The double counting correction in

the atomic limit is given by:

15



Edc(n̂) =
U
2

n(n−1)− J
2

∑
σ

nσ (nσ −1) (2.26)

were in this context n is the number of electrons in the states where the

Hubbard U has been applied and nσ gives the number of such electrons in

the spin state σ . There are several ways in which to estimate the Hubbard U

and Hund’s J from ab-initio calculations such as constrained LSDA calcula-

tions [13], linear response theory and constrained random phase approxima-

tion [14], but in many cases U and J are determined through comparisons be-

tween some calculated property and experiments. Minimising Eq. (2.24) with

respect to the Kohn-Sham orbitals leads to a modified Kohn-Sham equation.

{
− h̄2

2m
∇2 +Ve f f +σ ·Be f f (r)− εi

}
ψi(r)+ ∑

m,m′
V σ

mm′
∂nσ

mm′
∂ψ∗σnu

= 0 (2.27)

The explicit form of V σ
mm′ and

∂nσ
mm′

∂ψ∗σnu
may be found in the work of S. Shick

et al.[12].

2.4 The Kohn-Sham Equations in a Periodic Potential

In a bulk solid neglecting defects and impurities we can assume a periodic po-

tential, i.e. we have Ve f f (r+R) where R is a Bravais lattice vector. Transla-

tional symmetry in the potential fulfils the condition of Bloch’s theorem which

proves that the Kohn-Sham orbital must also be periodic with respect to trans-

lations. [15]

ψν ,k(r+R) = eik·Rψν ,k(r) (2.28)

The Kohn-Sham equations can be solved separately for each k. So to obtain

quantities such as the total number of electrons, the sum of eigenvalues or the

charge density a summation has to be done over the k-points in the irreducible

Brillouin zone (IBZ). For an infinite solid the summation takes the form of an

integral as follows:
1

VIBZ

∫
IBZ

∑
ν ,εν<EF

fν(k)d3k (2.29)

However, due to computational reasons we can only solve the Kohn-Sham

equations for a finite number of k-points, which implies that the integrals have

to be discretized.

1

VIBZ

∫
IBZ

∑
ν ,εν<EF

fν(k)d3k −→ ∑
IBZ

∑
ν ,εν<EF

fν(k)w(k) (2.30)

16



In the special point method this is done by assigning a weight w(k) to every

k-point. The sum of the weights over all k-points up to the Fermi energy gives

the number of electrons per unit cell.

N = ∑
IBZ

∑
ν ,εν<EF

w(k) (2.31)

Hence by occupying the calculated bands starting from the lowest eigen-

values and summing the weights of the corresponding k-points eventually the

Fermi energy may be determined when the summation equals the number of

electrons in a unit cell. However in order to avoid strong oscillations in the

charge density and effective potential that can appear due to states being pro-

moted or demoted across the Fermi surface, the Fermi energy is determined in

each iteration by satisfying.

N = ∑
IBZ

∑
ν

w(k)
1

e(εν (k)−EF )/kBT +1
(2.32)

Here kB is the Boltzmann constant and T is a broadening temperature that

can be adjusted to give a smooth convergence. This procedure is called Fermi

smearing and has been used throughout this work. The temperature adjusted

weights w(k,εν(k)−EF) may be stored and used for all Brillouin integrations.

w(k,εν(k)−EF) = w(k)
1

e(εν (k)−EF )/kBT +1
(2.33)

2.5 The Eigenvalue Problem

The Kohn-Sham equation is solved by expanding the one-electron wave func-

tion in a set of basis functions. Since we assume translational symmetry, such

an expansion following Bloch’s theorem has the form:

ψν ,k(r) = ∑
μ

cνμkϕμ,k(r) (2.34)

The Kohn-Sham equation (2.10) with an expansion such as (2.34), give rise

to a generalised eigenvalue problem with Hamiltonian HKS
μμ ′(k) and overlap

Sμμ ′(k) elements.

∑
μ ′
[HKS

μμ ′(k)− ενkSμμ ′(k)]cνμ ′k = 0 (2.35)

HKS
μμ ′(k) =

∫
Ω

ϕμk(r)HKSϕμ ′k(r)d3r (2.36)

Sμμ ′(k) =
∫

Ω
ϕμk(r)ϕμ ′k(r)d3r (2.37)

17



A basis that is straightforward to implement is a set of plane waves since

they automatically form an orthogonal set and are diagonal in any power of

momentum making the calculation of the Hamiltonian elements simple. How-

ever, in order to describe the wave functions near the ions either a large basis

set has to be used or pseudo-potentials must be employed [16]. Noticing that

plane waves are solutions to a Hamiltonian with a constant potential while

the solution of a spherically symmetric potential are products of spherical har-

monics and radial functions, it seems natural to seek to improve the plane wave

basis set by combining them with spherical harmonics for the description of

the density near the ion cores.

2.6 The LAPW and APW+lo Methods

In the augmented plane wave method (APW) [17] the crystal cell is divided

into two kinds of regions: spherical regions around the ions, called muffin-tins

(MT ), and an interstitial region (IR). Inside the muffin-tins the potential is

set to be spherically symmetric while in the interstitial region the potential is

usually set to a constant. This divisions of space makes it possible to define

the augmented plane waves ϕG(k,r) that are combinations of plane wavess

and atomic orbitals for the solution of the Kohn-Sham scheme.

ϕG,σ (k,r) =

⎧⎪⎨
⎪⎩

ei(G+k)·rχσ ∈ IR

∑lm AμG
lm (k)ul(r)Ylm(r̂)χσ ∈MT

(2.38)

Here G is a reciprocal lattice vector, k is a Bloch vector, l and m are the

quantum numbers, ul(r) is the solution to the radial Schrödinger equations

and χσ a Pauli spinor.

{
− h̄2

2m
∂ 2

∂ r2
+

h̄2

2m
l(l +1)

r2
+V (r)−El

}
rul(r) = 0 (2.39)

The coefficients AμG
lm (k) are found by the requirement of continuity at the

border of the muffin-tin spheres. So the augmented plane wave basis functions

are plane waves in the interstitial region and sums of the eigenfunctions that

solve the radial Schrödinger equation for a spherical potential given a set of

quantum numbers l and m and energy parameter El . With a fixed energy pa-

rameter one may obtain a regular eigenvalue problem through the Kohn-Sham

scheme. However it has been shown that only by letting the energy parame-

ters vary according to the calculated band energies accurate calculations can

be done. [18] This leads to very computationally demanding calculations. The

computational demands associated with the APW basis set made it fruitful to

search for a way to circumvent the requirement that El has to be equal to the
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calculated band energies. This is achieved in the linearized augmented plane

wave method (LAPW)[19] where also the derivatives of the solutions of the

radial Schrödinger equation are considered. This procedure make sense since

the ul functions can be expanded in a Taylor series around the energy param-

eter El . By keeping only the first two terms in the expansion, an error of the

order (ε−El)
2 is introduced in the basis set and of the order (ε−El)

4 for the

band energies. [18]

ul(ε,r) = ul(El ,r)+ u̇l(El ,r) (2.40)

The advantages of the linearized augmented plane waves are that the energy

parameters can deviate from the band energies and total energies can be found

by solving a simple secular problem. Even though the energy parameters are

set to a constant value and the band energy naturally deviates from this value,

accurate calculations can be performed due to the high order of the error. The

explicit form of the basis functions is now the following.

ϕG,σ (k,r) =

⎧⎪⎨
⎪⎩

ei(G+k)·rχσ ∈ IR

∑lm(A
μG
lm (k)ul(r)Ylm(r̂)+BμG

lm (k)u̇l(r)Ylm(r̂))χσ ∈MT
(2.41)

The APW and LAPW methods were originally formulated using a shape

approximation on the electron potential. Inside the muffin tin the potential was

considered to be spherically symmetric and outside often a constant potential

was employed.

V (r) =

{
VI ∈ IR
∑lmV μ

lm(k)Ylm(r̂) ∈MT
(2.42)

This approximation is often reasonable in close packed systems but is less

accurate for open structures. In the full potential augmented plane wave method

(FLAPW)[20], no shape approximation is made and hence the potential of the

following form is used.

V (r) =

{
∑GVIei(G·r) ∈ IR
∑lmV μ

lm(k)Ylm(r̂) ∈MT
(2.43)

Since the basis functions in the LAPW amethod are non-orthogonal we are

left with a generalised eigenvalue problem to solve for each k-point. This

can however be reduced to a regular eigenvalue problem using a Cholesky

decomposition [21].

More recently the APW+lo basis were suggested [22] as an alternative to

the LAPW. Here the APW basis is complemented by local orbitals φσ lm that

takes the value of zero in the interstitial region. This basis was shown to
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increase the rate of convergence compared to a conventional LAPW basis.

Both the Elk code and Fleur code have the possibility of using either basis set

together with a potential without shape approximations.

φσ lm(k,r) =

{
0 ∈ IR
∑lm(A

μ
lm(k)ul(r)Ylm(r̂)+Bμ

lm(k)u̇l(r)Ylm(r̂))χσ ∈MT
(2.44)

2.7 Non-Collinear Magnetism

In this thesis we consider non-collinear magnetic structures and in particular

different spin-spiral configurations. In the context of non-collinear magnetism

it is useful to consider the density matrix ρ instead of the charge and magneti-

sation density. The density matrix is defined by:

ρ =
1

2
nI2 +σ ·m =

(
n+mz mx− imy

mx + imy n−mz

)
(2.45)

In the same way the potential can be written in the compact form:

V =V I2 +μBσ ·B =

(
V +μBBz μB(Bx− iBy)

μB(Bx + iBy) V −μBBz

)
(2.46)

The Kohn-Sham equation takes the following form:{
− h̄2

2m
∇2I2 +V

}
ψν = ενψν (2.47)

Since the kinetic energy is diagonal with respect to the spin direction the

only coupling terms between the spin up and spin down components of the

Pauli spinor ψi are the terms μB(Bx− iBy) and μB(Bx + iBy). For a local po-

tential such as the LSDA, it is always possible to find a local coordinate system

that eliminates the x and y-components, which means that the usual collinear

LSDA potential may be applied. This potential can later be rotated back to

the global coordinate system providing the final non-collinear potential. This

procedure is popularly called Kübler’s trick, after being introduced by Jürgen

Kübler [23].
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In the Fleur implementation, magnetic collinearity within the muffin-tins is

assumed and the magnetisation density changes direction only between the

ionic sites. The impact of the approximation can therefore be varied and

checked by a variation of the muffin-tin radius. For non-collinear structures

outside the spin-spiral formalism, the collinearity is enforced through a con-

straining field Bc such that the perpendicular component of the magnetisation

density becomes zero as integrated over the muffin-tin.∫
MT μ

m(r)d3r− êμ
∫

MT μ
êμ ·m(r)d3r = 0 (2.48)

Here êμ is the unit vector defining the local quantisation direction at the

ion μ . However this procedure is not implemented for spin-spiral structures,

which means that a small residual perpendicular component might be present

in Fleur calculations. This is an issue that I believe will be corrected in the

near future.

For the non-self consistent Fleur calculations, we rotate the muffin-tin po-

tential in accordance with the chosen directions of the moments. This proce-

dure results in a mismatch between the magnetisation in the muffin-tins and

the magnetisation in the interstitial region which can be solved by setting the

interstitial magnetisation density to zero.[24]

In the Elk code, we enforce the directions of the magnetic moments through

the application of constraining fields that acts as Lagrange parameters in a con-

strained energy functional. The constraining fields are determined iteratively

in the self-consistent calculations. The additional terms HB in the Hamiltonian

have the form:

HB ∼ σ ·Bc (2.49)

2.8 Spin-Spirals and the Generalised Bloch Theorem

In a spin-spiral magnetic structure, the magnetic moments are rotated period-

ically in the crystal. The direction and periodicity of the rotation is described

by a reciprocal lattice vector q. Here we chose the global z-axis as the rota-

tion axis, however this choice is arbitrary since we neglect spin orbit coupling.

The magnetic moment mnα at an ion site Rnα of the magnetic sub-lattice α
and cell n can be written:

mnα = mα(sin(θ)cos(q ·Rnα +φα),sin(θ)sin(q ·Rnα +φα),cos(θ)) (2.50)

Here φα is a phase factor that depends on the sub-lattice α and θ is the

cone-angle of the spin-spiral. The periodicity of the magnetic structure can

be utilised to reduce the computational burden through the generalisation of

Bloch’s theorem [25, 26]. To prove this point it is useful to introduce the
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translation operators Tn = {−q ·Rn|ε|Rn} that combine a regular translation

by a lattice vector Rn with a rotation U(−q ·Rn) of the spinors around the

z-axis with an angle −q ·Rn. Due to the periodicity of the magnetic structure

we have:

H(r+Rn) = U(q ·Rn)H(r)U−1(q ·Rn) (2.51)

It is straightforward to show that the generalised translation operators form

an abelian group of operators that commute with the Hamiltonian. The eigen-

states of the Hamiltonian must therefore fulfil [15]:

Tnψ(r,k) = eik·Rnψ(r,k) (2.52)

This condition on the eigenstates can be shown to be equivalent to the state-

ment that the eigenstates of the Hamiltonian must be of the form [27]:

ψ(r,k) = eik·r
(

e−iq·r/2 α(r,k)
e+iq·r/2 β (r,k)

)
(2.53)

where α(r,k) and β (r,k) are periodic functions. This results suggest that

the spinor components should be multiplied by a term e∓iq/2 where ’−’ sign

holds for spin-up and ’+’ sign for spin down. The real beauty of the theorem

becomes apparent when the the effective potential of the spin spiral system

is applied on the modified basis. It can easily be shown that the Hamiltonian

elements are similar to the non-collinear problem without the spiral, except

for the contribution from the kinetic energy. This means that we can use the

primitive crystallographic cell even for incommensurate spin spirals. To see

this consider the Hamiltonian matrix elements generated by the potential ṼG,σ
for a spin-spiral state in the basis ϕ̃G.

ϕ̃G,σ (k,r) = U(q ·Rn)ϕG,σ (k,r) (2.54)

ṼG,σ (k,r) = U(q ·Rn)VG,σ (k,r)U−1(q ·Rn) (2.55)

∫
Ω

ϕ̃∗G,σ (k,r)ṼG,σ (k,r)ϕ̃G,σ (k,r)dr =
∫

Ω
ϕ∗G,σ (k,r)VG,σ (k,r)ϕG,σ (k,r)dr

(2.56)
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3. Heisenberg Model Calculations

In the previous section a description was made of the ab-initio method we use

in order to obtain the total energies of spin-spiral configurations. In this section

it is shown how the total energy differences of spin-spiral configurations can

be used to obtain exchange parameters for the classical Heisenberg model.

Furthermore we generalise the well known one lattice equation that directly

relate difference in spin-spiral total energies to adiabatic magnon dispersion to

general multi-magnetic-lattice system.

The use of the magnetic force theorem (MFT) to get non-self consistent to-

tal energy differences is discussed. Even though several well developed proce-

dures exists for correcting the MFT is seems that consistent improvements are

difficult to obtain. For this reason we implemented a spin spiral based calcula-

tion procedure to obtain exchange parameters directly from the q-dependence

of constraining fields. Furthermore it is shown that conceptually this method

is similar to the method developed by Grotheer et. al. [28, 29]

Common to both methods is the application of the adiabatic approxima-

tion. In this approximation it is assumed that for the system under consider-

ation the fast spin degrees of freedom from single-electron spin fluctuations

are neglected and only the dynamics of the atomic moments on a time scale

defined by the inverse frequencies of typical long-wavelength magnons are

relevant [30].

3.1 Exchange Parameters from Total Energy
Calculations

Our point of departure is a classical Heisenberg model, where normalised di-

rection vectors of the magnetic moments emα are localised at ionic sites Rmα
defined by a lattice vector Rm and position vector τα of the magnetic Bravais

lattice within a unit cell.

Rmα = Rm + τα (3.1)

The Heisenberg Hamiltonian H is the sum over all exchange parameters

Jαβ
mn .

H =− 1

2N ∑
mnαβ

Jαβ
mn emα · enβ (3.2)
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N is the number of unit cells in the crystal and the direction vectors emα are

given by:

emα = sinθ cos(q ·Rmα)x+ sinθ sin(q ·Rmα)y+ cos(θ)z (3.3)

The Heisenberg model is only valid locally for each particular magnetic

configuration. In order to extract meaningful exchange parameters we are

therefore restricted to small perturbations of the reference state, typically the

ground state. [31]. It is thus necessary to only consider a small cone angle θ .

The exchange parameters may be obtained from the following spin spiral total

energy differences for each wave vector q:

2

sin2 θ
(Eαα [0,θ ]−Eαα [q,θ ])

= ∑
n

Jαα
0n (1− cos(q ·Rnα))

(3.4)

2

sin2 θ
(Eαβ [0,(θ)]−Eαβ [q,(θ)])

= 2∑
n

Jαβ
0n (1− cos(q · (R0α −Rnβ )))

+∑
n

Jαα
0n (1− cos(q ·Rnα))

+∑
n

Jββ
0n (1− cos(q ·Rnβ ))

(3.5)

In this formalism Eαβ [q,θ ] denotes the energy of a spin spiral with a wave

vector q, where a non-zero cone angle has been assigned only to the sub lat-

tices α and β . A least square fitting procedure is applied to solve the system

of equations. Further details on the method are supplied in paper I.

3.2 Magnons and Spin-Spiral Total Energies

The exchange parameters can related to magnon frequencies ωq through the

framework of classical spin dynamics. [32] We obtain ωq for collinear spin-

configurations as the eigenvalues of the spin-wave dynamical matrix.

Δαβ (q) = 2

(
δαβ ∑

γ

Jαγ(0)Mγ

|Mα ||Mγ | −
Jαβ (q)Mβ

|Mα ||Mβ |

)
(3.6)

Jαβ (q) = ∑
n

Jαβ
0n cos(q · (R0α −Rnβ )) (3.7)
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In the case of one magnetic sub-lattice, i.e. a simple ferromagnet this ex-

pression reduces to the following familiar form with quadratic dispersion close

to the Γ-point.

ωq = 2
J(0)− J(q)

M
(3.8)

Since the Fourier transformed exchange constants are directly related to

spin-spiral total energies [24] it is possible to calculate magnon energies with-

out explicit calculations of the real space exchange parameters. The spin-wave

dynamical matrix is formed with matrix elements given directly from energy

differences of spin-spiral total energies may be derived from (3.6) and the ex-

pression for the total energy of spin-spirals as given in paper I. The diagonal

and off-diagonal elements are respectively given by the following equations:

Δαα(q) =
2

|Mα |sin2 θ
×(

2Mα

|Mα |(E
0
αα(q)−E0

αα(0))+ ∑
γ �=α

Mγ

|Mγ |(E
π/2
αγ (0)−E0

αγ(0))

) (3.9)

Δαβ (q) =
2

|Mα |sin2 θ
×(

Mβ

|Mβ |
(E0

αβ (q)−Eπ/2

αβ (0))− ∑
γ=α,β

Mγ

|Mγ |(E
0
γγ(q)−E0

γγ(0))

) (3.10)

In the case of one magnetic sub-lattice equation Eq. (3.9) reduces to the

following well known expression.

ωq = 4
E(q,θ)−E(0,θ)

M sin2 θ
(3.11)

We note that our expressions in Eq. (3.9) and (3.10) deviate from those in a

recent publication [33]. However it is clear that an unfortunate mathematical

error has been introduced in the derivation of the magnon energies in that pub-

lication. It is not considered that the magnon energies in Eq. (27) in Ref. [33]

are functions of Re[J̄q
12]

2 and a change of sign upon translation by a reciprocal

lattice vector Re[J̄q
12]→−Re[J̄q+b

12 ] is thus irrelevant for the periodicity of the

magnon energies, i.e. we still have ωq = ωq+b. Hence their conclusion that

the off-diagonal matrix elements in the spin-dynamical matrix should be zero

is incorrect.
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Eqs. (3.9) and (3.10) are equivalent to Eq. (3.8) and thus capture the known

features of magnon dispersion curves such as the linear dispersion relation

near the Γ-point and relatively small deviations from the second nearest neigh-

bour approximation for the anti-ferromagnetic transition metal monoxides.

The latter is expected since we can show that long-range exchange parameters

are relatively small. None of these characteristics of antiferromagnetic transi-

tion metal monoxides appear in the calculated dispersion curves of Ref. [33].

3.3 The Magnetic Force Theorem

Since the size of the basis of non-collinear magnetic calculations is doubled

compared to collinear calculations, the computational cost of spiral calcula-

tions scale quickly with an increased cut-off in the plane wave or angular mo-

mentum for the LAPW or APW+lo basis. For this reason, small accurate

energy differences between spin spiral structures, which is the cornerstone of

this thesis, are very computationally costly to obtain. For this reason it has

long been a standard practice in the field to turn to the magnetic force theorem

(MFT) [34], which states that the total energy difference of neighbouring mag-

netic states can be approximated by the difference in sums of single particle

eigenvalues as obtained from the Kohn-Sham equations.

E(q)−E(0) = ∑
occ

εν(q)−∑
occ

εν(0)+O2(δρ,δm) (3.12)

Since the MFT is central to obtaining total energy differences between non-

collinear states for a moderate cost in many methods of extracting exchange

parameters, an extensive discussion can be found on the validity of the ap-

proximation.

V. Antropov [35], P.Bruno [36] and Katsnelson et al. [37] showed in sepa-

rate works within the framework of multiple scattering theory, that the "bare"

exchange parameters should be corrected in order to correspond to exchange

parameters as derived from inverse dynamic magnetic susceptibility. P. Bruno [36]

in particular recognised that the constraining fields that fixed the direction of

the magnetic moments were neglected in major applications of the MFT, while

they in principle should affect the eigenvalue sums, and suggested an appropri-

ate renormalisation of the exchange parameters. Their methods were applied

on bcc Fe and fcc Ni and it was found that the corrected exchange parame-

ters yielded increasing magnon excitation energies and critical temperatures

for both systems compared to results obtained with the exchange parameters

using the "bare" MFT. This was not an unproblematic result since increasing

magnon excitation energies for bcc Fe worsened the agreement with experi-

mental results.
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Katsnelson et al. [37] suggested that the success of the "bare" MFT in

the case of bcc Fe is due to error cancelation and that reason the "bare" ex-

change parameters should still be applied for magnon excitations, while the

critical temperature should be evaluated with renormalised exchange parame-

ters. However, since the error cancelation is specific to bcc iron it seems that

the procedure should not be generalised. Indeed, we show in paper IV that

for B2 structured FeCo the "bare" MFT introduce large errors in the disper-

sion of spin-spirals that can successfully be corrected only with a procedure

analogous to P. Bruno’s renormalisation.

In non-self consistent spin spiral total energy calculations the Γ - point

potential is used for all spin spirals regardless of their wave vector q and

Eq. (3.12) is applied to obtain the total energy differences. In our procedure,

that in the framework of the frozen magnon approach is the analogue of P.

Bruno’s renormalisation, we apply pre-converged constraining fields on each

site. These fields have been converged pseudo-self consistently (in a previous

step) with a frozen Γ - point potential. The same qualitative changes in the cal-

culated exchange parameters, the magnon dispersion and critical temperature

for bcc Fe is found as for the previously mentioned approaches.

Examples of methods that do not rely on the "bare" MFT are calculations

of the full dynamical magnetic susceptibility [38] or its static limit. We have

implemented a version of the inverse static transverse susceptibility (ISTS)

method developed by Grotheer et al. [28, 29] since it avoids the complications

introduced by the MFT. The implementation is described in the next section

and we compare our results with the MFT based frozen magnon results in

paper IV.

It is interesting to note that in non-collinear systems, the relative directions

of the magnetic moments are a result of the competition between electronic

exchange and kinetic energy. [28] In the framework of the generalised Bloch

theorem and non-self consistent spin-spiral calculations it becomes very ob-

vious, since we literarily only change the kinetic energy contribution to the

Hamiltonian between different spin spiral structures (for a given set of cone

angles).

3.4 Exchange Parameters from Susceptibility
Calculations

Assuming a Heisenberg Hamiltonian we immediately obtain a relation be-

tween the exchange parameters and the ratio of an applied external magnetic

field to the resulting magnetic moments, i.e. the static magnetic susceptibility.

∑
R′

mR′ ·Bt
R′ = ∑

R′
mR′ ·Bc

R′ −
1

2
∑
RR′

JRR′eR · eR′ (3.13)
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The derivative of the total energy expression (Eq. (3.13)) with respect to the

direction vector eR′ of the magnetic moment at site R′, yields the following

field equation:

mR′Bt
R′ = mR′Bc

R′ −∑
R

JRR′eR (3.14)

The q-dependence comes from the form of the direction vector eR.

eR = sinθ cos(q ·R)x+ sinθ sin(q ·R)y+ cos(θ)z (3.15)

This enables us to define the inverse static transverse magnetic susceptibil-

ity χ−1
RR′ by:

χ−1
RR′ = δRR′

Bt,x
R′

mx
R′

+(1−δRR′)
JRR′

mx
Rmx

R′
(3.16)

Finally the relations between the applied constraining fields and the inverse

susceptibility is given by:

∑
R

χ−1
RR′m

x
R = Bc,x

R′ (3.17)

Equations (3.16) and (3.17) relate our approach to previous studies done

along the same line by Grotheer et al. [29, 28] The main difference with re-

spect to our approach is that they explicitly calculated the static susceptibility

in reciprocal space, which they then invert in order to get the magnon dis-

persion. In our approach we consider the x-component of the field equation,

Eq. (3.14), to calculate directly the exchange parameters in real space using

a least squares fitting (LSF) procedure, similar to the one we implemented in

paper I. A further difference is they apply a fixed external field and evaluate

the resulting directional vectors eR, while we evaluate the constraining fields

necessary for fixed directional vectors.

A major advantage of this method is that for each considered spin-spiral

calculation we obtain N sets of constraining fields and N resulting moments,

where N is the number of magnetic sub lattices in the system. That means

that we obtain the necessary values N rows in our system of equations. On

the other hand in the conventional frozen magnon technique we only obtain a

single value - the total energy for each calculation. This makes the scaling of

the ISTS method favourable over the conventional frozen magnon technique.

Furthermore the constraining fields converge much faster with respect to the

number of k-points compared to the fine energy differences in conventional

frozen magnon calculations. Together these considerations imply a significant

reduction in computational cost compared to self consistent spin spiral calcu-

lations making the method comparable to non-self consistent frozen magnon

calculations.
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4. Key Results

4.1 Test case bcc Fe

After implementing the frozen magnon method in the Fleur code according

to the procedure detailed in paper I, we made numerous tests to investigate

how the construction of the sets of spin-spirals affect the numerical stability

of the least squares problem. One alternative we considered was to calculate

spin spirals for q-points selected along paths that follow high-symmetry lines

in the Brillouin zone. The motivation behind this choice was to employ the

crystal symmetries that were compatible with the spin-spiral wave vectors in

the ab-initio calculations and thus reduce the computational costs.

Figure 4.1. The convergence of the nearest neighbor exchange parameter in bcc Fe

as a function of the number of exchange parameters used in the least squares fitting.

Figure from Paper I: [32], copyright (2013) by APS.

As an example, we present the case of bcc Fe in Fig. 4.1. It is clear that this

restriction of spin-spirals to the high-symmetry lines (Γ-N-P-Γ-H-N) led to

poor numerical stability as compared to the "full sampling" procedure, where

we scattered wave-vectors randomly in the first Brillouin zone. The latter ap-

proach was employed henceforth for all the calculations presented in this the-

sis. In Fig. 4.1 it is also shown that the results of the previously implemented,

Fourier based, method of extracting exchange parameters corresponds exactly
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to the results of the least squares approach if sufficiently many exchange pa-

rameters are taken into account.

A possible approach could be to combine a number of high symmetry points

with an increasing number of general points depending upon the number of re-

quired exchange interactions. This would provide a numerically stable least

squares fitting procedure, while some reduction in the computational costs

could be achieved, especially for high symmetry crystals with a few dominat-

ing short range interactions.

4.2 Transition-Metal Monoxides

The transition metal monoxides NiO and MnO adopt the rocksalt structure

in the paramagnetic phase. Below the Nèel temperature, an antiferromagnetic

ordering sets in, where the direction of the atomic moments alternates between

neighboring [111] planes (Fig. 4.2). The anti-ferromagnetic ordering is a result

of strong superexchange interaction between each transition metal ion and its

next nearest neighbors. Exchange-striction leads to a simultaneous magnetic

and structural phase transition where the rocksalt structure is distorted into a

trigonal structure.

Figure 4.2. The chemical and magnetic structure of the transition metal monoxides

NiO and MnO with their alternating spin-planes in the [111] direction. The lattice

vectors of the magnetic unit cell are depicted by bold arrows.
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MnO and NiO are known for having strong correlation effects associated

with the 3d-electrons localized on the transition-metal ions. DFT function-

als such as the local spin density approximation (LSDA) and the generalized

gradient approximation (GGA) are not able to describe strong electron cor-

relation. Beyond DFT methods such as the LSDA+U [39, 40, 41, 42, 43],

Self interaction corrected (SIC) [44, 45, 46], dynamical mean field theory

(DMFT) [47] and hybrid funtionals [48, 49, 50] have been employed with

greater success improving the correspondence between calculated and experi-

mental properties such as lattice parameters, band gaps and excitation energies

for magnons and phonons.

To my knowledge, previous to this study, no full potential LSDA+U results

have been published using an accurate method for obtaining exchange param-

eters (I don’t consider the evaluation of exchange parameters by total energy

differences of different collinear states as an accurate method). Furthermore,

the results for MnO, employing the atomic sphere approximation (ASA) for

the potential, indicated that the LSDA+U was inappropriate for the description

of the magnetic properties of the system. The calculated ratio between the

nearest and second nearest neighbour interaction differed significantly from

the experimentally obtained ratio.

Figure 4.3. Exchange parameters in MnO (nearest and next-nearest neighbours) ob-

tained for different values of Hubbard U. The available experimental values (Exp.

[23], refers to Dudarev et al. [Phys. Rev. B 57, 1505]) are given with dotted lines for

nearest neighbour and dashed lines for next nearest neighbour exchange parameters.

Figure from Paper I: [32], copyright (2013) by APS.
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In Fig. 4.3 the results for the nearest and second nearest neighbour exchange

parameters are shown for values of Hubbard U from 3 to 9 eV. For MnO it is

seen that U 
 7 eV reproduces the experimental situation with the LSDA+U

functional.

Solovyev et al. [40] showed that the experimental magnon dispersion could

be obtained by adjusting the exchange splitting and charge transfer energy,

the first being the difference in energy between majority and minority d-band

and the second the difference in energy between the oxygen 2p-states and the

minority d-band. These quantities are crucial in determining the strength of

the various exchange mechanisms in magnetic oxides.

For instance the direct exchange, that is relevant to nearest neighbour inter-

actions depends on the exchange splitting, while the 180◦ super-exchange is

the dominant contributor to the next nearest neighbour interaction and depends

both on the exchange splitting and the charge transfer energy. This discussion

implies that the full potential treatment gives a significantly more accurate

exchange splitting and charge transfer energy than the ASA.

The trigonal distortion raises the degeneracy of J↑↑1 and J↑↓1 , since the dis-

tance to the neighbours within the [111] plane will be larger than the neigh-

bours outside the [111] plane. This implies that the direct overlap of the

d-states of neighbouring atoms becomes different, thus affecting the direct

exchange contribution, while changes in angles may affect the 90◦ super-

exchange contribution. A volume conserving tensor T with a distortion param-

eter δ may be applied to make the transition between the cubic and trigonal

structures.

Figure 4.4. Nearest neighbour exchange parameters in MnO, as a function of the

trigonal distortion δ . The experimental value of the distortion is marked by the vertical

dashed line. These values were obtained for U = 6.9 eV and J = 0.86 eV. Figure from

Paper I: [32], copyright (2013) by APS.
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⎞
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Indeed it has been assumed that changes in the nearest neighbor exchange

parameters are the main reasons for the exchange-striction effect in the transition-

metal monoxides [45] and a calculation of the exchange parameters of MnO

gives a significant dependence upon the distortion parameter as seen in Fig. 4.4.

Figure 4.5. Comparison between experimental and calculated magnon dispersion

curve for MnO. Exp. [23] refers to the work of G. Pepy [J. Phys. Chem. Solids

35, 433], Exp. [26] shows results of M. Kohgi et al. [J. Phys. Soc. Jpn. 36, 112] while

Exp. [27] are data from A.L. Goodwin et al. [Phys. Rev. B 75, 075423]. For calcula-

tions we consider both the ideal rocksalt structure (blue line) and a trigonal structure

(red line) defined by a distortion parameter δ = −0.005. (U = 6.9 eV and J = 0.86

eV). Figure from Paper I: [32], copyright (2013) by APS.

In Fig. 4.5, the magnon dispersion curve for MnO in the cubic structure

is shown in addition to the curve for the experimental trigonal structure. All

exchange parameters that are of the order of 0.1 meV or larger are included.

An excellent agreement with the experimental results is obtained when the ex-

perimental structure is assumed for MnO. It is shown that the non-zero energy

obtained experimentally [51, 52, 53] at the M/M′-point in MnO is due to the

trigonal distortion introduced by exchange striction.
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Figure 4.6. Magnon dispersion for MnO in the cubic structure for 3 and 6 exchange

parameters, using Eq. (3.6). The "Direct" curve is calculated with Eq. (3.9) and (3.10)

and represents the infinite limit. (with U = 6.9 eV and J = 0.86 eV) Figure from Paper

I: [32], copyright (2013) by APS.

In Fig. 4.6 the magnon energies are shown for 3 and 6 included exchange

parameters and compare these with the curves produced by using Eq. (3.9)

and (3.10) that represent the infinite limit. Minor changes can be seen when

increasing the number of exchange parameters from 3 to 6. We can see that

further increases will not introduce noticeable changes in the dispersion curves

since the curves produced with 6 parameters and curves given by the infinite

limit are on top of each other.
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4.3 Magnetic Properties of Distorted B2 structured
FeCo

Motivated by previous works on tetragonally distorted B2 structured FeCo that

suggested the material as a possible candidate for HAMR applications [38],

the dependence of the Curie temperature (TC) of the distortion was investi-

gated. Experimentally the tetragonal distortion may be tuned by growing a

film of FeCo on a substrate with an appropriate lattice structure. If the struc-

tural mismatch between the film and the substrate is small, then it might be

energetically favourable for the film to adjust its structure to the substrate.

FeCo has been successfully grown on Pd, Ir and Rh substrates [54], giving a

tetragonal structure with progressively higher c/a ratio.

The frozen magnon method was applied as implemented in the Fleur code

according to the procedure detailed in paper I. In the light of the later results

of paper IV the quantitative results, as reported in paper II, should be checked

with a method that doesn’t rely on the MFT. However, the main qualitative

conclusions may still apply and a short summary is given here.

Figure 4.7. The structure of B2 FeCo. Created with VESTA [55].

For the B2-type FeCo compound the tetragonal distortion reduces the TC.

The TC decreases monotonically from 1575 K (for c/a = 1) to 940 K (for c/a

=
√

2). The changes of the nearest neighbor Fe-Co exchange interaction are

sufficient to explain the c/a behaviour of the TC, as can be seen from Fig. 4.8.

The first reason is that the value is significantly larger than the value of the

Co-Co or Fe-Fe parameters. Secondly, they closely follow the monotonical

reduction of TC with increasing distortion, except for a flattening-out of TC
close to c/a =

√
2.
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And thirdly, even though the intra-sublattice exchange interactions show

strong variations with tetragonal distortion compared to the Fe-Co interaction,

these interactions differ in sign and thus largely cancel out in their contribution

to the TC. Only close to the end of the interval at c/a =
√

2 do the Co-Co and

Fe-Fe interactions contribute significantly towards a stronger ferromagnetic

coupling, which results in a flattening-off of the curve of TC close to c/a =
√

2.

Figure 4.8. Inter-sublattice Fe-Co exchange interactions and critical temperature vari-

ation (blue curve) as a function of changes in the c/a ratio.

The behaviour of the exchange interactions with the changes in the c/a ratio

and the resulting reduction of TC can be attributed to different exchange mech-

anisms that are discussed qualitatively in paper II. The moderate TC value sug-

gests that FeCo grown on the Rh substrate with c/a = 1.24 could be a promising

material for HAMR applications.
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4.4 Magnetic Properties of Inverse Heusler Materials

In half-metallic magnets there is a metallic majority-spin electronic band struc-

ture and a semiconducting minority-spin electronic band structure.[56, 57]

Such compounds could lead to the creation of a fully spin-polarised current,

maximising the efficiency of spintronic devices. A class of materials bridging

the gap between half-metals and magnetic semiconductors are the so-called

spin-gapless semiconductors (SGS); where there is an almost vanishing zero-

width energy gap at the Fermi level in the majority-spin direction and a usual

energy gap in the other spin-direction.[58].

In a previous work several SGS compounds have been identified. Motivated

by potential spintronic applications, we applied the frozen magnon method as

implemented in paper I together with a classical Monte Carlo method to inves-

tigate their magnetic properties. In paper III we report the results for the five

inverse-Heusler (SGS) compounds Mn2CoAl, Ti2MnAl, Cr2ZnSi, Ti2CoSi

and Ti2VAs.

a

Next−nearest Neighbors

Nearest Neighbors

2

D
X X YInverse Heuslers (XA) :  X YZ
A B C

Z

Figure 4.9. The lattice structure of inverse Heusler alloys with the chemical formula

X2YZ. X and Y are transition metal atoms (with the valence of Y larger than of X)

and Z is an sp-element. The nearest and next-nearest neighbours of an A site are

represented on the right hand-side panel.
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All compounds except Ti2CoSi are ferrimagnetic in their magnetically or-

dered phase. Due to gap in the minority spin channel the exchange interactions

decay fast and the magnetic properties of these SGSs are determined by the

nearest and next nearest neighbour exchange interactions as seen in Fig. 4.10.

Calculated exchange parameters were used to determine the temperature

dependence of the magnetisation and Curie temperatures. The Tc of all the

compounds are well above the room temperature (see Fig. 4.11) making them

suitable for further experimental considerations. The only material among

those in the study that has been synthesised to date is Mn2CoAl. For Mn2CoAl

the temperature dependence of the magnetisation and Curie temperature are in

very good agreement with available experimental data as seen in Fig. 4.11.
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Figure 4.10. Inter-sublattice exchange interactions as a function of distance, for three

different inverse Heusler alloys.
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Figure 4.11. Sub-lattice magnetisation as a function of the temperature as obtained

from Monte-Carlo simulations. The vertical dashed line marks the room temperature,

273 K. In the case of Mn2CoAl we compare our calculated data with the experimental

results from Ref. [59].
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4.5 Constraining Fields, the MFT and Susceptibility
Calculations

In paper IV we investigated the impact of the long wave length approximation

in the magnetic force theorem for B2 structured FeCo and found significant

differences between the non-self consistent calculations utilising the MFT and

self consistent calculations. Furthermore we noted that significant improve-

ments could be made to the non-self consistent calculations by including pre-

converged constraining fields in the calculations for each spin spiral.

Figure 4.12. The total energy dispersion for FeCo, with a non-zero cone-angle on the

Fe magnetic sub-lattice. The dispersion curves were obtained without any constrain-

ing field (green points), non-self-consistently with applied constraining field (blue

points) and self-consistently with constraining fields.

In Figs. 4.12, 4.13 and 4.14 we show the results of these calculations. Here

we see changes in the dispersion of spin-spirals with all different combinations

of cone-angles that we normally consider in the frozen magnon method as

implemented in paper I.

39



Figure 4.13. The total energy dispersion for FeCo, with a non-zero cone-angle on the

Co magnetic sub-lattice.

Figure 4.14. The total energy dispersion for FeCo, with a non-zero cone-angle on both

Fe and Co magnetic sub-lattices.
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We applied the frozen magnon method, implemented in the Elk code ac-

cording to the procedure detailed in paper I, to the problem of calculating the

changes in the exchange parameters due to the constraining fields. Here the

frozen magnon method was modified such that the energies considered, were

obtained by application of pre-converged constraining fields. The obtained

exchange parameters can be seen in Figs. 4.15, 4.17 and 4.16.

Figure 4.15. Inter-lattice (Fe-Co) exchange interactions, without any constraining

field (green line), with applied constraining fields (red line) and as obtained from self-

consistent susceptibility calculations (black line).

In Figs. 4.15, 4.17 and 4.16 we also include the exchange parameters gener-

ated by the newly implemented ISTS method. In this method the calculations

are done self-consistently and thus the MFT is completely avoided. Since the

dispersion generated with non-self consistent calculations including constrain-

ing fields correspond very well with the self-consistent dispersion, we expect

the exchange parameters generated by the ISTS method to correspond well

with the frozen magnon calculations that include pre-converged constraining

fields. This is also the case for the inter sub lattice interactions as can be seen in

Fig. 4.15. Especially noteworthy is the perfect agreement for the dominating

nearest neighbour inter sub lattice interaction. However for the relatively weak

intra sub lattice interactions we actually note a better agreement between the

ISTS calculations and the ones obtained by the frozen magnon method with-

out the use of constraining fields. This is contrary to expectations since the

dispersion shown in Figs. 4.12, 4.13 only depends on intra-lattice interactions

and we see large qualitative changes there.
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Figure 4.16. Intra-lattice (Co-Co) exchange interactions, without any constraining

field (green line), with applied constraining fields (red line) and as obtained from self-

consistent susceptibility calculations (black line).

Figure 4.17. Intra-lattice (Fe-Fe) exchange interactions, without any constraining field

(green line), with applied constraining fields (red line) and as obtained from self-

consistent susceptibility calculations (black line).
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This might be a result of the rather low number of exchange parameters

used in Heisenberg model. To generate more exchange parameters we need to

converge a larger set of spin-spirals in order to achieve numerical stability for

a larger system of equations.

In parallel with our investigation of FeCo we applied our various methods

to bcc Fe. This is a system that historically has been considered for the differ-

ent correction procedures to the MFT. From the works of V. Antropov [35], P.

Bruno [36], Katsnelson et al. [37], we know that corrections to the MFT typ-

ically worsen the agreement between non-self consistent and self-consistently

calculated total energies for finite wave-vectors in the case of bcc Fe.

When applying pre-converged constraining fields in non-self-consistent cal-

culations this was also the results we got. The results of the non-self-consistent

calculations without fields were closer to the self-consistent total energy cal-

culations as shown in Fig. 4.18. This imply that in this case the ISTS method

should give results that are similar to the methods employing the "bare" MFT.

Figure 4.18. Spin-wave excitation spectrum for bcc Fe along the Γ-P symmetry line.

This was also the case as shown in Figs. 4.19 and 4.20. We obtain an al-

most perfect match between the exchange parameters generated by the ISTS

method and exchange parameters obtained by L. Bergqvist [60] using the

frozen magnon procedure and the Liechtenstein formula [34].

The comparisons in Fig. 4.20 is less exact, but still give good quantitative

agreements.
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Figure 4.19. Comparison between our exchange parameters as calculated self-

consistently from the static transverse susceptibility and the MFT results of L.

Bergqvist [60].

Figure 4.20. Comparison between our exchange parameters as calculated self-

consistently from the static transverse susceptibility and MFT results of Pajda et

al. [61], Mryasov et al. [62] and Frota-Pessoa et al. [63].
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5. Perspectives and Outlook

Many questions and possibilities were created by the implementation of the

inverse transverse susceptibility method into the Elk code. Most immediately

there is a need to completely converge the FeCo exchange parameters calcu-

lations so that there remains no doubt about the impact of the omission of the

constraining fields. We need to establish if the absence of the fields has such a

large effect on this particular system, as our current calculations indicate. If so,

then we might have to reconsider some of the results we obtained particularly

in Paper II, and possibly in Paper III.

Furthermore it would be interesting to extend the case studies to oxides and

Heusler materials since the method, due to the fact that the MFT is avoided,

should be particularly effective in investigating systems with short range in-

teractions and induced moments. Moreover, the scaling of the method with

respect to the number of magnetic atoms makes it favourable to deal with

relatively large multi-lattice systems (most of which are good candidates for

spintronics applications).

Combining the ISTS method with more sophisticated energy functionals

could further improve the accuracy and range of applications for correlated

systems. Another direction could be to make an ISTS method implementation

in a plane wave code to access bulk systems with larger unit cells, systems

with impurities, surfaces and nano-structures.

As a next step in method development, I had the idea that there is a possi-

bility to generalise the (already quite) generalised Bloch theorem to include a

larger class of homogenous magnetic structures than the regular spin-spirals.

For instance, I believe that it is possible to formulate a spin-spiral like formal-

ism that allows for changes of the rotation axis within the unit cell, thus pro-

viding a generalisation of the frozen magnon method to complex non-collinear

magnetic structures.
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7. Sammanfattning på svenska

Den här avhandlingen är en kombination av metodutveckling, implementering

och tillämpningar. Arbetet är motiverat delvis av möjligheterna till framtida

nytta i form av teknologisk utveckling och delvis av att det är roligt att tänka i

nya banor. Utmaningen vi har är att beskriva magnetiska egenskaper med hög

precision utifrån grundlägnade kvant mekaniska principer formulerade inom

täthetsfunktionalteorin. Den frusna magnon metoden erhåller information om

interaktioner inom magnetiska material genom att beräkna energin av våglik-

nande förändringar av riktningen av de magnetiska momenten i materialen.

Denna metod implementerades i ett program baserat på täthetsfunktionalte-

orin på ett generellt vis som medger beräkningar av system med ett flertal

magnetiska sub-gitter.

En första tillämpning av denna metod var en undersökning av hur den mag-

netiska ordningstemperaturen i kubiskt FeCo förändrades med en tetragonal

förändring av gitterstrukturen. En dylik strukturförändring kan åstadkommas

genom att bilda en film av FeCo på ett underliggande gitter med den eftersökta

gitterstrukturen. Om skillnaden mellan filmens struktur och det underliggande

lagret är litet kan systemet sänka sin energi genom att anpassa filmens struktur.

Motivet bakom studien var att FeCo kunde ha en tillämpning som mag-

netiskt lagringsmedia tack vare att energikostnaden för att förändra riktnin-

gen på de lokala magnetiska momenten är hög och de därför är stabila med

avseende på temperatur och förändringar av riktningen på närliggande mo-

ment. Detta gör att man kan kan ha en hög informationstäthet på lagringsme-

diet. Nackdelen är dock att det är svårt att skriva till lagringsmediet. För

att komma runt detta problem har HAMR metoden föreslagits där man hettar

upp lagringsmediet lokalt för att lättare kunna skriva till just detta segment i

lagringsmediet, vilket illustreras i Fig. 7.1.

Den magnetiska ordningstemperaturen skall därför inte vara allt för hög. I

studien som presenteras i denna avhandling föreslås därför att en film av FeCo

på ett underlag av Rh kan utgöra en god kandidat då ordningstemperaturen är

900 K och lägst i det intervall av strukturer som undersöktes.
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Figure 7.1. Perpendicular recording technique versus HAMR recording method. Sea-

gate. http://www.dailytech.com/

I en andra tillämpning görs en studie av magnetiska Heusler material som

har en mycket speciell elektronstruktur som gör att ledningsförmågan i ma-

terialet beror på elektronströmarnas spin. De material som studerades hade i

alla fall utom ett endast studerats teoretiskt tidigare. Magnetiska egenskaper

beräknades i syfte att erbjuda experimentalister möjligheten att tillverka mate-

rial med lämpliga egenskaper. I det fall materialet hade tillverkats och studer-

ats stämde de beräknade egenskaperna väldigt väl överens med experimentella

resultat.

Slutligen undersökte vi det magnetiska kraftteoremet som är en approxima-

tion som är central för flertalet metoder som undersöker magnetiska interak-

tioner i fasta material. Den implementerade frusna magnon metoden korriger-

ade genom att införa magnetiska fält i beräkningarna som fixerade momentens

vinklar. Det visade sig att med denna korrektion så förbättrades möjligheten

att använda det magnetiska kraftteoremet avsevärt för kubiskt FeCo. Dock

tillämpade vi samma korrigerade metod på bcc Fe, som är ett material där

dylika korrektioner gett försämmade resultat tidigare vilket också var vad vi

erhöll. Som en lösning på detta problem implementerades en metod som helt

undvek det magnetiska kraftteoremet och som för en jämförbar kostnad kunde

erhålla förbättrade resultat i båda fallen och därmed verkar erbjuda ett bättre

tillvägagångssätt för framtida tillämpningar.
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