
http://www.diva-portal.org

Preprint

This is the submitted version of a paper presented at LaTiCE 2015.

Citation for the original published paper:

Berglund, A., Eckerdal, A. (2015)

Learning practice and theory in programming education: Students’ lived experience.

In: Proc. 3rd International Conference on Learning and Teaching in Computing and Engineering Los

Alamitos, CA: IEEE Computer Society

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-252762

Learning Practice and Theory in Programming
Education

Students’ Lived Experience

Anders Berglund
Uppsala Computing Education Research Group, UpCERG

Uppsala University
Uppsala, Sweden

Anders.Berglund@it.uu.se

Anna Eckerdal
Uppsala Computing Education Research Group, UpCERG

Uppsala University
Uppsala, Sweden

Anna.Eckerdal@it.uu.se

Abstract— In learning to program, there is a complex
interplay between the learning of practice (what to write, how to
read compiler messages, etc.) and the learning of theory (what
programming constructs are good for, how they “work”, how the
programme executes etc.). Our on-going project focuses on this
interplay - normally not directly visible for the learners
themselves - and offers insights about the complexity of the
learning process. From a micro-level analysis of video films of
students’ collaboration in lab sessions, we follow how the students
attention moves from one aspect to another (theoretical or
practical), and then further, until, in good cases, we can
document that a meaningful learning has taken place.
Theoretically the project takes its point of departure in a
framework, inspired by the roots of phenomenography and
variation theory. Theory and practice are here interpreted from
a pragmatic perspective, close to the students’ (and, as we
believe, most programmers) intuitive understanding and use of
the terms. The ultimate aim of the project is to support teachers
and teaching institutions to teach programming in such ways that
students better learn how to program. That is, the project takes
its point of departure in the disciplinary learning - the learning of
programming - and aims to propose possible improvements in
our teaching, by building on the insights gained by the micro-
analyses of the students’ learning. In this paper we illustrate,
from an example, how the research process leads us from micro-
level observations on how the students attentions move from
different aspects (both theoretical and practical) of the half-ready
computer program they aim to finalize, over our analysis of the
lab sessions, to some insights in the complex interplay between
theory and practice in programming students’ learning process.

Keywords— Learning to program, theory and practice,
phenomenography, variation theory, micro-analysis

I. INTRODUCTION

As experienced programming teachers, we are aware that
we need to encourage the students to learn both the theoretical
aspects of programming (for example the meaning of an if-
clause, the idea methods) more or less at the same time as they
learn the practical aspects (the handicraft, such as where to put
semicolon, how to act on error messages), in order for a good
learning outcome. Our experience says that one of these
aspects, taught without the other, will give an inferior learning
outcome, possibly even to fail.

These insights, seen in the light of relevant research results
in learning in STEM (Science, Technology, Engineering and
Mathematics) and the phenomenographic theoretical
framework of learning, stimulated us to formulate a research
project, which we call Theory and practice in lab work - a
complex interplay [2], on the complex interplay between theory
and practice in programming education.

The ultimate aim of the project is to support teachers and
teaching institutions to teach programming in such ways that
students better learn how to program. That is, the project takes
its point of departure in the disciplinary learning - the learning
of programming - and aims to propose possible improvements
in our teaching, by building on the insights gained by the
micro-analyses of the students’ learning. We also believe that
the results will be useful in other disciplines with laboratory
work.

II. RESEARCH QUESTION

With this as a background, we address the following
research question in the current paper:

 What is the role of practice when students learn to
program in terms of theoretical knowledge and practical
skills in the lab?

We illustrate, from an example how our research process,
starting with micro-level observations on how the students’
attentions, moves between different aspects (both theoretical
and practical) of the half-ready computer program they aim to
finalize during their lab sessions. We then analyse the data
from the lab session to continue with a preliminary discussion
on some results concerning how theory and practice interact
when students learn to program in the lab.

III. RELATED WORK

The present work focuses on the relationship between
learning of theory and learning of practice in the lab. We thus
draw on previous research on the distinction between theory
and practice, and on how students learn in the lab.

There exists no universal definition of what is meant by
‘theory’ and ’practice’. In educational research in the Western

culture there seems to be an accepted agreement that theory
and practice are opposite parts of a dualistic opposition [1], but
different terminologies are used with somewhat different
meanings in different research traditions. From higher
education research [3] discuss WTP, “ways of thinking and
practicing”. This concept highlights the fact that competence in
a subject area not only involves the ability to master certain
subject-specific ways of thinking, but also the ability of
practicing. There exists a considerable body of research in
mathematics education research where knowledge is largely
divided into two types, often referred to as ‘conceptual’ and
‘procedural’ and similar to the distinction between theory and
practicing made here. McCormick [4] writes that these
concepts relate to “a familiar debate in education, namely that
of the contrast of content and process (p149) ... In mathematics
education the argument has been about ‘skills versus
understanding’.” From technology education [4] makes a
similar distinction, discussion ‘conceptual knowledge’ and
‘procedures’, while from physics education von Aufschnaiter
and von Aufschnaiter [5] discuss how students learn ‘theory’
and ‘practice’ in the lab.

Learning by practicing programming, for example in the
lab, is an important and not questioned part of programming
educations Computer Science Curriculum [6]. Höök [7] studied
some factors that correlated to final exam results in an
introductory programing course. The factors were e.g. how
many hours the students had coded themselves, and how many
hours they had watched a peer student code while they solved a
problem together. Höök found that the students with the
highest grades on the exam had spent considerable more time
coding themselves compared to students with lower grades.
The exam included questions on writing, reading code, and
some questions on theory. Even though previous research as
well as established experiences point to how important it is to
practice, little is known on what happens during practical lab
work in terms of the learning of theory and practice, and why it
is so important for students to practice.

Although students are normally offered exercises and
opportunities to practice in the lab under supervision in
programming courses the failure and dropout rates are still high
([8], [9], [10], [11], [12], and [13]). The main focus to improve
learning of programming has been on learning technologies
and techniques like developing and evaluating software tools
([14], [15], and [16]). Still the problems remain.

Some research from computing education has focused on
how students learn theory in terms of concepts. Here the main
focus has been on misconception ([17], [18]). Examples of
research on students’ understanding of concepts are [19], [20],
and [21].

The problematic relationship between learning theory and
learning practice in the lab is pointed to in areas like natural
science and technology ([22] [23], [5], and [4]). Only little is
written on this relationship in programming education.
Holmboe [24] emphasises that good understanding in
programming requires both practical skills and conceptual
understanding, and a connection between the two. The complex
relationship between conceptual learning and practice has been
recognized by for example du Bolay [25] who discusses

domains that programming students must learn to master.
These include the syntax and semantics of a programming
language and different programming skills. du Boulay writes:

None of these issues are entirely separable from each
other, and much of the 'shock' [...] of the first few
encounters between the learner and the system are
compounded by the student's attempt to deal with all
these different kinds of difficulty at once. (p. 284).

IV. THEORETICAL UNDERPINNINGS

The project leans theoretically on the phenomenographic
research framework. Phenomenography often is seen, and used,
as a methodology, aiming to unfold and describe the
qualitatively different ways in which students understand, or
relate to, something. In this project, however, we build on its
theoretical underpinnings that offers a framework for
distinguishing a certain aspect of something from another
aspect of the same phenomenon using a second-order
perspective, as well as the ideas underlying variation theory,
stressing the necessity of variation in what the students see, or
experience, for a meaningful learning to take place.

The concept of Object of Learning also has its roots in
phenomenography. Marton & Booth [26] describe it in the
following way: “Object of Learning [can be] described on the
collective level, as a complex of the different ways in which
the phenomenon can possibly be experienced from the point of
view of individual learning.” (p. 163, slightly edited) That is,
the object of learning, in this interpretation, defines what can be
learned about something in a certain setting.

The object of learning has three facets, relevant for this
project and that varies over what it describes and by whom it is
seen. The intended object of learning is the aim of the teaching,
as seen by the teacher, the enacted object of learning describes
what is possible to learn (not to be confused with the learning
goals, a term from an administrative perspective and formal
course plans), from the perspective of a researcher, while the
lived object of learning is the learning outcome at a certain
point of time, as seen by the learners themselves. ([27], and
[28])This paper takes the students’ perspective and thus has its
focus on the lived object of learning.

In the analysis we refer to gaps in students’ understanding
in the sense discussed by Wickman and Östman [29] and
Lidar, Lundqvist and Östman [30]: “Learning is a process
where gaps are filled by construing new differences and
similarities in relation to what is immediately intelligible” [29,
p. 603]. Lidar et al. [30] write “The concept of gap is used to
operationalize situations where people in action show that they
are trying to make the activity they are engaged in to proceed.”
(p. 152)

 Theory and practice

There is no universal understanding of the concepts theory
and practice, as we have discussed above. In the present
analysis we rather discuss theory-oriented actions, and
practice-oriented, following [2]:

 When we are able to use language […] to adequately
express an intended meaning that corresponds to our

present understanding of a learning object, then we express
knowledge in a theory-oriented way.

 When we are able to act adequately towards an intended
end, based on our present understanding of a learning
object, then we express knowledge in a practice-oriented
way.

V. THE EMPIRICAL SETTING AND DATA COLLECTION

Data for the T-PIPE was collected from programming
teachers and students in upper secondary schools (high
schools) as well as at undergraduate university level. The data
that are relevant for this paper stems from students, taking
their first programming course, doing a lab in their first
programming course at three universities in Sweden. The
intended learning outcomes were similar at the three
universities: methods that return value in Java, or functions in
Python, but the details how the lab was constructed and what
had been taught previously to the lab varied slightly between
the universities. This influenced which details the students
focused on and were stuck on during the lab.

We video filmed 29 students distributed over 13 groups,
with each group consisting of two to three students
collaborating at one computer. Each group was filmed from
behind in order for us to see what gestures or movements the
students did (for example pointing to the screen) and to be
able to distinguish between the two or three students. We also
captured the screens and the sounds to be able to follow in
detail what the students did and their conversation. After the
lab individual stimulated recall interviews with the students
were performed where we discussed the lab. We showed them
short passages from the films, in which we judged that the
student had gained new insights and asked him or her to
describe what happened. We thus have two films, one from a
camera and one from the screen, from each student group as
well as the audio recordings of the individual interviews, plus
the audio recorded individual interviews. The interviews and
the screen films were transcribed verbatim.

VI. THE ANALYSIS

During the analysis we looked for sequences in the data
where it seemed as if both, or one of, the students gained some
new insights. Inspired by [31] we refer to these sequences as
threads of learning. The topics of discussion in the threads of
learning varied, but were always related to the lab and its
purpose. It was often a technical detail (for example, the role of
curly brackets, which was not explicitly mentioned as a
learning goal, but that still is a requirement for managing the
larger task, to the purpose of methods that returns value in Java
or functions in Python.

The possible threads of learning were, in most cases,
identified by the second author, and were then discussed by the
two authors, until a consensus was reached on possible
interpretations of the thread of learning or until the possible
thread was jointly judged as unproductive from the point of
view of the research questions asked in the project.

The analysis was explorative in its nature. We, as
researchers, at certain occasions took the perspectives of the
students, that is, a view from within the data where we were
aiming to come close to see what the students saw. At other
occasions, but still on the same episodes, we took an outside
perspective, being analytic and analysing what, of the topic at
hand that could be learnt. Methodologically we followed the
four-step model described in [32], which has been developed as
a part of this research project.

In our analysis in the present article we studied one thread
in relation the other possible threads, looking for differences
and similarities. Further, we followed the “flow” or the thread
of the discussion to see how it moved between topics that had a
focus on practice and on those that focused on theory.

VII. AN EXAMPLE OF THE INTERPLAY BETWEEN THEORY AND

PRACTICE

In this article we use an example of a thread of learning
from our data to illustrate the close relationship between
students’ learning of theory, referred to in this text as theory-
oriented action and their learning of practice, here referred to as
practice-oriented action. Our conclusions, presented in context
of the example, are based on our analysis of several similar
examples, and are thus not solely based on this example.

In our example we see how the students move between
focusing on theory and focusing on practice in what they do.
When our example starts, the three students, Adam, Bengt and
Cecilia1 , are supposed to write an if-statement in a method.
When reading the supporting on-line document required for the
task, they realize that they do know neither the syntax nor the
semantics of curly brackets in Java. Their lived object of
learning has thus narrowed from being on how to write
methods in Java, to the if-statement, to now on how to use and
write curly brackets in Java. Despite this not being stated
explicitly as the intended object of learning, it is still a relevant
learning task, since writing methods in Java always involves
using curly brackets.

Our example is structured on the following way: Firstly, in
section A, we set the scene by presenting the situation, showing
the code that the students have written up until now and the
examples from the supporting document that they have found.
Secondly, in section B, we listen to the discussion between the
students, with our annotations on the interplay between theory
and practice intertwined between the statements of the students.
Thirdly, in section C, we summarize how we see the students
moving between theory and practice.

A. The scene for the example

The students’ code, written in the editor, looks like this
when our example begins. Their code is not correct. The lines
are numbered for later reference.

1. public void distClosestWall() {
2. this.getModelDisplay().getHeigth();

1 The names used in this paper are not the real names of the students,

and do not reflect their gender

3. this.getModelDisplay().getWidth();
4. if (getHeight()<getWidth());
5. System.out.println(int getHeiget());
6. else
7. System.out.println(int getWidth());
8. }

At this point the students are not sure if there should be a

semicolon after else on line 6. They open the supporting
document with the explanation and find examples of the if-
statement. The examples the students study are showed below:

Example 1 from the supporting document
if (x > 0) {
 System.out.println(“Positive.”);
}

Example 2 from the supporting document
if (x > 0) {
 System.out.println(“Positive.”);
}
else {
 System.out.println(“Not positive.”);
}

B. The students discussions with our annotations

The students now become aware of differences between
their own code and the examples in the supporting document.
They start to discuss curly brackets. Text in italics is our
comments from our observations from the film taken from
behind (see section V).

1. The students are writing an if-statement and discuss

whether they need semicolon after else. They open the
document on if-statements and start to read it.

The sequence starts with a practice-oriented action (1).The
work continues:

2. Adam: They have these points to curly brackets after
those. Should you then … silence. Where is it then?
Cecilia points to where { and } are at the keyboard

3. Cecilia: How often are you supposed to use them?
4. Adam: Should we use it Referring to the curly bracket

after if too? Adam refers to line 4.

5. Adam types { directly after the keyword if
6. Bengt: Hm. Let’s first try to figure that out.
7. Adam presses Enter after the first print-statement on

line 5 and types } on the new line
8. Cecilia: I would have put it before the if so if kind of

comes inside.

The practice-oriented action (1) triggers a theory-oriented
discussion (2-4, 6, 8). During this, Adam’s practice-oriented
actions of typing brackets (5, 7) lead to further theory-oriented
discussions (6, 8). Their work continues:

9. Bengt: They don’t do it like that there. Referring to the
examples in the document

Since the discussion does not lead the students to an

answer to how curly brackets are used and why, Bengt
continues by reading further in the document (9). This helps
Adam to advance:

10. Adam: Ops, it shouldn’t be there, it should be here.
11. Adam moves { to the end of line 4, after the if-

statement and the semicolon.
12. Cecilia: What, why did we put it there?
13. Adam types { after else on line 6
14. Bengt: Because they did it like that. Bengt refers to the

examples in the supporting document
15. Cecilia: But why do you do like that? I image that it

kind of does, what do those brackets do? I image that
it should be like, parenthesis you kind of do first.

16. Adam types { after the print-statement on line 7.
17. Bengt: No it’s not parenthesis, it has nothing to do

with that. Bengt sounds very sure.
18. Cecilia: But why do you put, what is it really?
19. Bengt: I think it’s the end of the statement. This is the

statement.
20. Adam: Yes, it’s the part we are working on. This is the

if-statement. Adam points to the screen to the
statement that is connected to if. This is kind of the
method that is included in if. This is what makes if
work.

21. Cecilia: Aha, I understand. Okay, I get it.

This helps Adam to correct the position of the curly
brackets (11) and place the other brackets (13, 16). A
continued theory-oriented discussion of the semantics (12-21)
is initiated by the practice-oriented action in (11). The theory-
oriented discussion starts with a question from Cecilia (12),
which makes Bengt points to the syntax “Because they did it
like that” referring to the examples. Cecilia seems not satisfied
and makes a comparison to previous knowledge on the
semantics of parenthesis in language in general. Finally Bengt
and Adam give suggestions on the semantics of curly brackets
in if-statements. After this Cecilia seems satisfied: “Ok, I get
it.” This discussion seems to develop their understanding of
the meaning and use of curly brackets even though it seems as
if they believe that the brackets are needed for the if-statement
to work at all (20-21).

After this sequence the code in the editor looks like this:

public void distClosestWall() {
 this.getModelDisplay().getHeigth();
 this.getModelDisplay().getWidth();
 if (getHeight()<getWidth()); {
 System.out.println(int getHeiget ());
 }
 else {
 System.out.println(int getWidth());
 }
}

The analysis is summarised and illustrated in Table 1. The
table has three columns. The left column summarizes the
theory-oriented activities we have identified in our analysis,
and the middle column similarly contains a summary of the
practice-oriented activities identified. The right column
contains comments to explain and highlight what happens

during this thread of learning, with a focus on how the theory-
and practice-oriented activities interact and contribute to the
full learning process.

C. Summary of the interplay between theory and practice in
the example

To summarise, this thread of learning in the lab session
gives the student a possibility to work with, and learn about,
curly brackets in relation to if-statements when developing the
method distClosestWall().

The questions raised relate to the syntax and semantics of
curly brackets: how are they used, what is the purpose of them,
and what do they correspond to in relation to the students’
previous knowledge? The students come up with several
different suggestions. Eventually they put the curly brackets in
the correct positions, after comparing with examples in a
document, and Adam gives an explanation on why they are
used. The students seem to have got a first glimpse of how
curly brackets embrace statements that belong to the if-
statement. They do not seem to understand neither the syntax
completely (they still have a semicolon in the end of line 4),
nor the full meaning of curly brackets, nor do they have a
relevant language to express their current understanding (Adam
calls the body of the if-statement “the method that is included
in if”).

The variation in the syntax lies in that the code in the
examples in the supporting documents differ from their own
code in that they do not use curly brackets. This insight triggers
a movement in their attention. Further there is a variation
between what Adam reads in the document and where he first
puts the left bracket { directly after if. Cecilia finally tries to
compare curly brackets to ordinary parenthesis to better
understand their semantics. This variation in the syntax comes
to the fore by practice-oriented actions as well as theory
oriented reflections: reading the document and typing a curly

Theory-oriented activity Practice-oriented activity Comment
 Write a method. Open the document

on if statements.
The method requires an if-statement.

(1) Read the document on the if-
statement.

 Discover [1] in the examples given.

 (3-4) How often…? Should we use it
after if …?

Practice-oriented discussion on
where curly brackets should appear,

syntax.
 (5, 7) Adam types curly brackets The action triggers a theory-oriented

question:
(8) I would have put it before the

if…
 This comment triggers a practice-

oriented action:
 (9-11) Ops, it shouldn’t be there it

should be here. [Moves the curly
bracket {]

Pattern recognition in the document
triggers the action, which starts a

new discussion:
(12-21) What, why did we put it

there? … what do those brackets do?
… I image that it should be like,

parenthesis

 Now the students discuss the
semantics of curly brackets and
compare to previous knowledge.

Table 1. The table summarizes key points of the analysis regarding the interplay between theory-oriented and practice-oriented
activities that occurred during the short sequence in the lab described above.

bracket in a way that seems correct, and reflecting on how this
relates to ordinary parenthesis.

The discussion of syntax precedes that of the semantics,
with suggestions from students’ pre-knowledge in-between.
Further, it is only one of the students who strives to develop her
conception through understanding the meaning of curly
brackets, the other two seem to, which they also say in the
subsequent interviews, strive for pragmatic solutions, to write a
syntactically correct if-statement.

VIII. CONCLUSIONS

The focus in the TPIPE-project is to get a better
understanding of the complex relationship between students’
learning of theory and their learning of practice. In this section
we discuss some patterns on how theory and practice interact in
students’ learning that our example illustrates and that we can
see in our larger data set.

The example from the on-going research discussed in this
paper illustrates a common pattern in our data: It is not until the
students do something in practice; here they start to write an if-
else-statement, that they notice a variation between their own
code and the code in the examples. In the practice the students
open up a variation so that they become aware of a gap in their
understanding; they do not know the syntax and semantics of
curly brackets in Java. When the students notice the gap they
try to fill it. A complex movement between practice-oriented
and theory-oriented actions follows. The pattern we see is:

 In the practice students notice variation, often created
by the students themselves, which makes them
becoming aware of a gap in their understanding. The
practice thus seems to strengthen and direct students’
attention, through variation, to such gaps and thus opens
for learning.

Another observation from this example is how the students
go about trying to fill the gap. First they focus on the syntax
rules. In the example, Bengt answers Cecilia’s question why
they put the curly bracket at a certain position: “Because they
did it like that”, referring to the document they are studying. In
the next phase Cecilia, who doesn’t seem to be satisfied with
this answer attempts to compare and connect the use of curly
brackets with ordinary parenthesis. Cecilia’s suggestion is
firmly dismissed by Bengt. This leads however to a further
discussion on the semantics of curly brackets where Adam and
Bengt contribute with some aspects. Situations like this, with
attempts to connect to previous knowledge are discussed by
[30]. The authors write: “In order to fill the gap, relations have
to be created between what the students already know and what
is new in the situation.” (p. 152). The pattern that we see here
and elsewhere in our data indicates that the attempt to fill a gap
in programming might often follow a certain pattern:

 Student often first focus on syntax and how to do in
practice. If they do not succeed, a theoretical discussion
may start where the focus shifts to previous knowledge
and whether this can contribute to filling the gap.
Finally, if this attempt did not succeed, a continued

theoretical discussion on what is new in the situation, or
practical attempt, may follow.

An initial practice-oriented action, which can be
characterized as for example ‘we do as we did in the previous
exercise‘-thinking, or ‘this is what the lab instruction says we
should do’-thinking, or ‘I just happened randomly do this’, can
trigger a need for understanding why, or why not, it should be
done in this particular way. A theory-oriented discussion,
which in our data is often focused on semantics, may follow to
resolve the problem. When the students seem content with their
explanation, or if they cannot come further, they continue with
a practice-oriented action. Again, the practice might make the
students aware of a gap in their understanding which leads to a
theory-oriented discussion. Thus, we can follow a wave, or a
movement forward in the learning process, which alters
between practice-oriented actions and theory-oriented
reflections, but where the practice-oriented actions frequently,
but not always, seem to be the initial triggers of the movement.
This may be because the students’ own practice creates
variation, which helps them discover gaps in their
knowledge/understanding.

Already before this project started we were aware of that
both theory and practice were needed for a good learning of
programming. But how closely connected these two facets are,
to what extent they support each other and the whole, and how
many ways in which they can interact, has only became visible
to us as during this research project.

ACKNOWLEDGMENT

We want to thank the students who participated in this study,
and our colleagues Lennart Rolandsson, Inga-Britt Skogh, and
Michael Thuné. This work is supported by a grant from the
Swedish Research Council (Vetenskapsrådet), for which we
are grateful.

REFERENCES

[1] B. Molander, Kunskap i handling: Daidalos, 1996.
[2] A. Eckerdal, "Theory and practice in lab work - a

complex interplay," Grant application to
Vetenskapsrådet (the Swedish Research Council)
2011.

[3] V. McCune and D. Hounsell, "The development of
students’ ways of thinking and practising in three
final-year biology courses," Higher Education, vol.
49, pp. 255 - 289, 2005.

[4] R. McCormick, "Conceptual and Procedural
Knowledge," International Journal ofTechnology and
Design Education, vol. 7, pp. 141 - 159, 1997.

[5] C. von Aufschnaiter and S. von Aufschnaiter,
"University students' activities, thinking and learning
during laboratory work.," European Journal of
Physics, vol. 28, pp. 51 - 60, 2007.

[6] "Computer Science Curriculum," Joint Task Force on
Computing Curricula, Association for Computing
Machinery (ACM), IEEE Computer Society2013.

[7] L. J. Höök, "On the bimodality in an introductory
programming course: an analysis of student
performance factors. ," Department of Information
Technology, Uppsala University, Uppsala2014.

[8] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial,
D. Hagan, Y. B.-D. Kolikant, et al., "A multi-
national, multi-institutional study of assessment of
programming skills of first-year CS students,"
SIGCSE Bull., vol. 33, pp. 125--180, 2001.

[9] A. Robins, J. Rountree, and N. Rountree, "Learning
and teaching programming: A review and
discussion," Computer Science Education, vol. 13,
pp. 137 - 172, 2003.

[10] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J.
Hamer, M. Lindholm, et al., "A multi-national study
of reading and tracing skills in novice programmers,"
pp. 119--150, 2004.

[11] A. Eckerdal, R. McCartney, J. E. Moström, M.
Ratcliffe, K. Sanders, and C. Zander, "Putting
Threshold Concepts into Context in Computer
Science Education," SIGCSE Bulletin inroads, vol.
38, pp. 103-107, 2006.

[12] P. Kinnunen and L. Malmi, "Why students drop out
CS1 course?," in Second international workshop on
Computing education research (ICER '06),, 2006, pp.
97 - 108.

[13] P. Kinnunen, "Challenges of teaching and studying
programming at a university of technology:
Viewpoints of students, teachers and the university. ,"
Helsinki University of Technology, Helsinki,
Finland., Unpublished PhD thesis 2009.

[14] P. Gross and K. Powers, "Evaluating assessments of
novice programming environments," pp. 99--110,
2005.

[15] K. Powers, S. Cooper, K. J. Goldman, M. Carlisle,
M. McNally, and V. Proulx, "Tools for Teaching
Introductory Programming: What Works?," ACM
SIGCSE Bulletin, vol. 38, pp. 560 - 561, 2006.

[16] D. Valentine, "CS educational research: a meta-
analysis of SIGCSE technical symposium
proceedings," in the 35th SIGCSE technical
symposium on Computer science education, Norfolk,
Virginia, USA, 2004, pp. 255-259.

[17] N. Ragonis and M. Ben-Ari, "A long-term
investigation of the comprehension of OOP concepts
by novices," Computer Science Education, vol. 15,
pp. 203-221, Sept. 2005.

[18] K. Sanders and L. Thomas, "Checklists for grading
object-oriented CS1 programs: concepts and
misconceptions.," in Innovation and technology in
computer science education (ITiCSE '07). , 2007.

[19] A. Berglund, Learning computer systems in a
distributed project course: The what, why, how and

where vol. 62. Uppsala, Sweden: Acta Universitatis
Upsaliensis, 2005.

[20] C. Bruce, L. Buckingham, J. Hynd, C. McMahon, M.
Roggenkamp, and I. Stoodly, "Ways of experiencing
the act of learning to program: A phenomenographic
study of introductory programming students at
university," Journal of Information Technology
Education, vol. 3, pp. 143--160, 2004.

[21] A. Eckerdal and M. Thuné, "Novice Java
programmers' conceptions of "object" and "class",
and variation theory," SIGCSE Bulletin inroads, vol.
37, pp. 89–93, 2005.

[22] A. Hofstein and V. N. Lunetta, "The Laboratory in
Science Education: Foundations for the Twenty-First
Century. ," Science Education, vol. 88, pp. 28 - 54,
203.

[23] M.-G. Séré, "Towards Renewed Research Questions
from the Outcomes of the European Project Labwork
in Science Education," Science Education, vol. 86,
pp. 624 - 644, 2002.

[24] C. A. Holmboe, "Cognitive Framework for
Knowledge in Informatics: The Case of Object-
Orientation," in Proceedings of the 4th annual
SIGCSE/SIGCUE ITiCSE conference on Innovation
and technology in computer science education, 1999.

[25] J. du Boulay and H. Benedicte, "Some difficulties of
learning to program," 1989.

[26] F. Marton and S. Booth, Learning and awareness.
Mahwah, New Jersey, USA: Lawrence Erlbaum
Associates, 1997.

[27] F. Marton and A. B. M. Tsui, Classroom Discourse
and the Space of Learning. Mahwah, New Jersey:
Lawrence Erlbaum Ass., 2004.

[28] F. Marton, Necessary Conditions of Learning:
Routledge, 2015.

[29] P. O. Wickman and L. Östman, "Learning as
discourse change: A sociocultural mechanism.,"
Science Education, vol. 86, pp. 601 - 623, 2002.

[30] M. Lidar, E. Lundqvist, and L. Ostman, "Teaching
and learning in the science classroom - The interplay
between teachers' epistemological moves and
students' practical epistemology," Science Education,
vol. 90, pp. 148-163, Jan 2006.

[31] Å. Ingerman, C. Linder, and D. Marshall, "The
learners’ experience of variation: following students’
threads of learning physics in computer simulation
sessions. ," Instructional Science, vol. 37, pp. 273 -
292, 2007.

[32] A. Eckerdal and M. Thuné, "Analysing the enacted
object of learning in lab assignments in programming
education," presented at the Proceedings of the 2013
Learning and Teaching in Computing and
Engineering conference, Macau, 2013.

