
http://www.diva-portal.org

This is the published version of a paper presented at IPDPS 2015, May 25–29, Hyderabad, India.

Citation for the original published paper:

Ros, A., Jimborean, A. (2015)

A dual-consistency cache coherence protocol.

In: Proc. 29th International Parallel and Distributed Processing Symposium (pp. 1119-1128). Los

Alamitos, CA: IEEE Computer Society

http://dx.doi.org/10.1109/IPDPS.2015.43

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-256060

A Dual-Consistency Cache Coherence Protocol

Alberto Ros

University of Murcia

aros@ditec.um.es

Alexandra Jimborean

Uppsala Universitet

alexandra.jimborean@it.uu.se

Abstract—Weak memory consistency models can maximize
system performance by enabling hardware and compiler opti-
mizations, but increase programming complexity since they do
not match programmers’ intuition. The design of an efficient
system with an intuitive memory model is an open challenge.

This paper proposes SPEL, a dual-consistency cache coherence
protocol which simultaneously guarantees the strongest memory
consistency model provided by the hardware and yields im-
provements in both performance and energy consumption. The
design of the protocol exploits a compile-time identification of
code regions which can be executed under a less restrictive,
thus optimized protocol, without harming correctness. Outside
these regions, code is executed under a more restrictive protocol
which enforces sequential consistency. Compared to a standard
directory protocol, we show improvements in performance of
24% and reductions in energy consumption of 32%, on average,
for a 64-core chip multiprocessor.

I. INTRODUCTION

Given the prevalence of multi-core processors and the trend

of continuously increasing the number of cores, the effi-

ciency of coherence protocols becomes of utmost importance.

However, not only traditional protocols perform sub-optimally

on modern architectures, but their inefficiency escalates as

the number of cores in the system grows. State of the art

coherence protocols seek to detect and exploit memory ac-

cessing characteristics of code with the goal of simplifying

the protocol while delivering scalability and performance [1],

[2]. Despite the promising results, such protocols exhibit

limitations (for instance, fail at providing support for legacy

code), and were therefore disregarded for being integrated in

the emerging architectures (e.g., Intel Xeon Phi [3]), which

still implement traditional, inefficient, directory-based cache

coherence protocols.

One source of inefficiency is that coherence protocols have

been traditionally designed to provide the strongest consis-

tency model (or memory model): sequential consistency (SC).

This design decision eases the development of the protocol by

isolating the cache coherence protocol from the consistency

model provided by the multi-core. However, it comes at the

cost of performance limitations, especially when the system

provides a more relaxed consistency model [4]. In answer,

modern coherence protocols follow the sequential consistency

for data-race-free (SC for DRF) model [5], which allows

a simpler and more scalable design [1], [2] and improves

performance [6]. Nevertheless, a major drawback is that such

protocols do not provide backwards compatibility with existing

software that requires a stronger consistency model.

Another source of inefficiency of traditional protocols stems

from not taking advantage of applications’ behavior, thus

missing potential performance improvements. To exploit this

opportunity, numerous proposals revolve around identifying

the nature of memory accesses as private or shared [7], [8], [9],

[10], [11], [12], [13], [14], [15] for optimizing the coherence

protocol or, for example, enhancing data placement. While

these optimized coherence protocols outperform traditional

protocols, the underlying techniques for classifying accesses

still lack accuracy (Section II), due to the classification of

memory accesses based on the private or shared nature of
the target data. Performed at runtime, such a classification

is either coarse-grained [7], [10], [11] or increases hardware

complexity [9], [12], [15]. Performed at compile-time, it must

remain conservative, due to memory accesses which cannot be

fully disambiguated statically [8], [13].

This work proposes SPEL, a dual-consistency cache coher-

ence protocol that provides SC, while relaxing the coherence

protocol only during the execution of data race free codes.

SPEL stands for Scalability, Performance, Energy efficiency

and support for Legacy code. By relaxing the protocol, SPEL

achieves high performance and scalability, and, by delivering

SC, it ensures compatibility with legacy software. Key to this

ability is a compile-time identification of extended data-race-
free code regions (xDRF). Each xDRF region consists of a

set of data-race-free (DRF) [16] regions that can be executed

under a high-performance and scalable SC-for-DRF protocol,

thus providing SC (Section III). For non-xDRF regions, coher-

ence is ensured by a standard directory protocol (SC protocol).

The proposed design smoothly blends both protocol modes,

which can be simultaneously active: threads executing non-

DRF regions follow the SC protocol, while threads executing

xDRF regions follow the SC-for-DRF protocol. Cache blocks

transition from one protocol mode to the other on demand, to

maximize performance (Section IV).

Unlike previous approaches which focus on classifying

memory accesses as private or shared based on data classi-

fication, in this paper we target codes in which the compiler

can unequivocally identify xDRF regions. Classes of codes

amenable to compile-time identification of xDRF regions

include both (1) already parallel applications and (2) sequential

codes automatically parallelized at compile time. The first

category refers to parallel codes with OpenMP annotations. We

exemplify the second category with sequential codes that are

statically analyzable and exhibit parallelization opportunities,

by applying polyhedral transformations [17], [18].

2015 IEEE 29th International Parallel and Distributed Processing Symposium

1530-2075/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPS.2015.43

1119

We evaluate SPEL on a wide variety of applications from

different benchmark suites, simulating a 64-core chip mul-

tiprocessor architecture similar to the Intel Xeon Phi co-

processor [3] (Section V). Experiments show an average

performance improvement of 24% while reducing energy

consumption by 32% (Section VI).

II. BACKGROUND AND MOTIVATION

Modern coherence protocols focus on a three-fold goal:

scalability, performance and energy consumption [19]. This

paper describes an optimized SC-for-DRF coherence protocol
to efficiently maintain coherence during the execution of xDRF

regions and successfully address the three-fold goal. The

optimized protocol is complemented by a traditional protocol,

enabled during the execution of non-xDRF regions, maintain-

ing compatibility with existing code. Next subsections discuss

the advantages and drawbacks of SC-for-DRF protocols and

of previous techniques for classifying memory accesses, and

describe our approach for overcoming their shortcomings.

A. Sequential consistency for DRF protocols

SC-for-DRF protocols rely on the guarantee that, during

DRF regions, threads perform either private or read-only

memory accesses [1], [2], [20]. A memory access is private if

it targets a memory location that is only accessed by one thread

during the execution of one DRF region; and is read-only if the

location is not written within the DRF region. Cache coherence

is thus immune to the order of memory operations during

DRF regions, which enables more flexibility in the coherence

protocol and leads to higher scalability, performance and

energy efficiency. SC-for-DRF protocols exhibit significant

advantages such as reducing access latency and directory

pressure, alleviating blocking and diminishing protocol traffic

(Section IV-B). Given the granularity of a memory access

finer than a cache block, coherence of DRF regions can be

maintained by an SC-for-DRF protocol [5], if false sharing

problems are handled appropriately (Section IV-B1).

Limits and solutions: Previously proposed SC-for-DRF pro-

tocols conservatively impose self-invalidation of cached data

in each synchronization point (regarded as boundaries of

DRF regions). This excessive invalidation limits their perfor-

mance [1], [2]. In contrast, SPEL reduces self-invalidation, by

relying on the compiler to indicate the points of synchroniza-

tion that indeed require self-invalidating cached data. SPEL

considerably improves the cache hit rate, and consequently,

performance and energy consumption (Section VI).

More importantly, SC-for-DRF protocols cannot guarantee

SC for non-DRF codes, leading to undefined behavior. This

breaks compatibility with legacy non-DRF software, yielding

such protocols impractical. As a dual-consistency protocol,

SPEL provides a natural solution to this shortcoming, by

relying on the compiler to identify regions that can be safely
executed under an SC-for-DRF protocol, and ensuring support

for non-DRF regions with a traditional SC protocol. Hence,

compile-time delineation of xDRF regions plays a crucial role.

XS S M L XL
Problem size

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Sh
ar

ed
 m

em
or

y
bl

oc
ks

 (%
)

OS-based
xDRF-based

Fig. 1. Shared blocks w.r.t. problem size (average of all Polybench apps)

B. Classification of memory accesses

Data-race-free properties are strongly connected in seman-

tics with the private-shared nature of memory accesses. While

previous proposals classified memory accesses for guiding data

placement [7], [13] or optimizing coherence protocols (e.g.,
reducing self-invalidation [2], reducing directory pressure [11],

[21]), SPEL relies on the delineation of xDRF regions to

minimize the coherence maintenance while providing SC

guarantees, for any code. Next we review the most widely

adopted approaches for memory access classification.

1) OS-based classification: The operating system (i.e. OS-

based classification) [7], [10], [11] classifies a memory access

as private if the entire accessed page is referenced only by

one thread, during the entire execution. Hence, in practice, the

majority of memory accesses are finally classified as shared.

Limits and solutions: OS-based classification is highly over-

conservative. To unleash optimizations, SPEL relies on a

classification of xDRF regions, where a memory access is

private (or read-only) if the target address is accessed by a

unique thread only within the xDRF region. Therefore, we

consider both a finer granularity (size of accessed data vs.

memory page) and temporality (i.e., the classification is valid

during the execution of the xDRF region, see Section III).

Preliminary experiments on the Polybench benchmark

suite [22] evaluate the effectiveness of these classification

strategies. Fig. 1 clearly emphasizes the limits of the OS-

based classification for large inputs, as the programs run

longer, the majority of memory accesses are marked as shared,

whereas the xDRF-based classification identifies such accesses

as private. Had SPEL relied on the OS-based classification, a

large part of code (if not all) would have been classified as

non-DRF, missing enormous optimization opportunities.

2) Standard compiler-based classification: Previous ap-

proaches propose compile-time classification of memory ac-

cesses, based on the nature of accessed data [8], [13], [23].

Limits and solutions: Standard compile-time classification is

hindered by the classical problem of static disambiguation of

individual data. In contrast, we target code regions in a class of

applications obeying the paradigm that all memory accesses

are private or read-only within the boundaries of a certain

region: OpenMP and automatically parallelized applications

(Section III). In consequence, our proposal is not hindered by

dynamic memory allocation or pointer aliasing.

1120

III. DELINEATION OF XDRF REGIONS

SPEL is readily applicable on applications for which a com-

piler can precisely identify xDRF regions, either automatically

or based on user-provided annotations.

An xDRF region consists of a set of DRF regions. The DRF

regions may be interleaved with non-DRF (nDRF) regions,

but the nDRF regions do not belong to the xDRF region. We

denote such nDRF regions as enclave. An xDRF region must

satisfy the following properties:

(1) no memory access performed in an enclave nDRF region

may alter data accessed in the xDRF region. As an exception, a

thread is allowed to modify its thread local data, even during

the execution of a nDRF region, since no other thread can

access it; (2) all properties that hold in a DRF region, hold

across the entire xDRF region.

A. xDRF regions in OpenMP codes

The OpenMP programming model is particularly well-

suited for such a classification, as data sharing is entirely con-

trolled by dedicated synchronization constructs (e.g., atomic,

critical), which are easily identified statically. Similarly, in au-

tomatically generated data parallel applications, the compiler

has complete knowledge of the xDRF and nDRF code regions.

Once the parallelizing code transformations have been ap-

plied, the compiler delineates parallel from sequential regions.

Sequential regions are considered xDRF, while parallel regions

may contain a mixture of interleaved xDRF and nDRF regions.

Barriers mark the beginning and end of an xDRF region,

nevertheless, there may be several enclave nDRF regions (i.e.,
synchronization points that protect shared data such as locks,

critical sections) . Should synchronization mechanisms be used

with moderation in scalable parallel programs, most of the

parallel code represents xDRF regions.

Identification of xDRF regions is based on the seman-

tics of each OpenMP construct. For example, the directive

#pragma omp parallel for splits the for-loop such that each

thread in the current team executes different loop iterations,

as displayed in Listing 1. Such code transformations are per-

formed blindly by the compiler, nevertheless, the programmer

is responsible for avoiding data races, by ensuring that the loop

iterations can run in any order (i.e., there are no loop carried

data dependences and no parallel updates of shared variables).

1 #pragma omp parallel for(sharedA)
for(int i=0; i<N; ++i)

3 A[i] = i;

5 //Is internally transformed to:
Start_parallel_region();

7 Thread_func(...);
End_parallel_region();

9

Thread_func(...){
11 int this_th = omp_get_thread_num();

int num_th = omp_get_num_threads();
13 int my_start = (this_th) * N / num_th;

int my_end = (this_th+1) * N / num_th;
15 for(int i=my_start; i<my_end; ++i)

A[i] = i; }

Listing 1. OpenMP for directive and the simplified transformed code

In this simple example, since no synchronization is

required, the whole parallel region is an xDRF re-

gion, thus the boundaries of the xDRF region coincide

with the functions calls Start_parallel_region(),

End_parallel_region().
The OpenMP framework provides several solutions to avoid

data races. The privatization approach (e.g., private, thread-

private, firstprivate, lastprivate clauses) uses the copy-in /

copy-out strategy to copy the value of a shared variable

into a thread-local, such that each thread can safely update

its private copy. Finally, the private copies may be merged

back into the shared variables at the end of the parallel

region, according to the semantics of the privatization clause.

Internally, these thread-private variables are declared in the

code section executed by each thread, hence the copy-in is

transparent to our classification strategy, while the copy-out

takes place outside of the xDRF region, i.e., after a barrier.
Reductions provide the means to accumulate the values of

the thread-private variables in a shared copy. In the trans-

formed code, reduction operations are either protected by

locking mechanisms or the shared variable is updated with an

atomic instruction. Such code regions are classified as nDRF.
Similarly, other synchronization mechanisms (e.g., criti-

cal, atomic, barrier directives) are identified and the cor-

responding code regions are marked as nDRF at compile-

time. For example, the entire code section protected by a

#pragma omp critical directive is nDRF, since threads

manipulate data that must be visible to other threads.1 On

the other hand, regions corresponding to directives or work-

sharing constructs which indicate that the code is executed

only once by one thread (e.g., #pragma omp single,

#pragma omp task) are marked as xDRF, and the updated

data is made visible to the other threads via synchronization

mechanisms (#pragma omp taskwait), which are nDRF.
Note that accesses to data annotated as shared by the

programmer via the OpenMP shared clause, may belong to

an xDRF region, if the OpenMP directive semantics indicates

such accesses are safe, e.g. array A in Listing 1.In contrast, ac-

cesses to a scalar declared as shared require synchronization,

e.g., critical section, and are therefore handled as nDRF.

B. Instructions delimiting regions of code
The code is compiled in two steps using LLVM [24]. First,

the parallel code is generated in the LLVM intermediate repre-

sentation. Next, a dedicated compiler pass inserts instructions

delimiting the xDRF and nDRF code regions. There are two

types of instructions inserted statically: sdrf and drf.flush.
The sdrf instruction (set SC-for-DRF coherence) delimits

DRF regions which are part of the same xDRF region. The

role of the sdrf instruction is to inform the processor whether

it has to handle the subsequent memory accesses under SC-

for-DRF or SC mode. For this purpose, it enables or disables

1Although a critical section is DRF, it cannot be embedded in a larger
xDRF region, since coherence is required between threads entering the same
critical section. In this proposal, critical sections are handled as nDRF, to
avoid splitting the enclosing xDRF region into smaller xDRF regions. Larger
xDRF regions reduce self-invalidation, and therefore, execution time.

1121

a processor flag DRF (SC-for-DRF coherence), accordingly.

Hence, “sdrf 1” sets the flag, indicating that coherence can

be guaranteed by the SC-for-DRF protocol, while “sdrf 0”
enforces the use of the SC protocol.

The drf.flush instruction delimits xDRF regions, where data

modified in the SC-for-DRF protocol mode must be propa-

gated. Since drf.flush instructions marks the boundaries of each

xDRF region (and not of each DRF region), the number of

flushes is considerably reduced, leading to better performance

than previous SC-for-DRF proposals.

An example is illustrated in Listing 2, which shows

the pseudo-code generated by the compiler when

#pragma omp parallel for schedule(runtime) is

encountered. The OpenMP clause schedule(runtime)
instructs the compiler to split the iteration domain of the

parallel loop in slices. Thus, each thread is allocated a subset of

iterations (slice), and as soon as it finishes its slice, the thread

asks for more work, by calling GOMP_next_slice(...).

This distribution of work allows for better load balancing,

but incurs more synchronization, since each request for more

work requires a lock to update the number of not-yet-executed

iterations (compared to the example in Listing 1). Each slice,

excluding the call GOMP_next_slice(...) represents a

DRF region, since the OpenMP paradigm guarantees that the

loop iterations may be run in parallel, without incurring data

races. The set of all slices, i.e., the set of all DRF regions,

builds up the xDRF region whose boundaries correspond

in this example to the ones of the OpenMP parallel region.

Hence, the xDRF region is non-contiguous since it is

interrupted by calls to GOMP_next_slice(...), which

represent nDRF regions.

sdrf 0
2 drf.flush
Start_parallel_region();

4 Thread_func(...);
sdrf 0

6 drf.flush
End_parallel_region();

8 sdrf 1

10 Thread_func(...){
sdrf 1

12 int my_start, my_end;
bool thread_has_work =

14 sdrf 0
/* Takes a lock and updates the

16 number of remaining iterations */
GOMP_next_slice(my_start, my_end, N);

18 sdrf 1
while (thread_has_work){

20 for(int i=my_start; i<my_end; ++i)
printf(" %d", i);

22 thread_has_work =
sdrf 0

24 GOMP_next_slice(my_start, my_end, N);
sdrf 1

26 }
}

Listing 2. Transformed code from Listing 1 when the clause
schedule(runtime) is specified

IV. DUAL CONSISTENCY CACHE COHERENCE PROTOCOL

Relying on the presented compile-time classification of

xDRF regions, we propose SPEL, a dual consistency cache

coherence protocol, where memory accesses within xDRF

regions are kept coherent by an SC-for-DRF protocol, i.e.,
writes are guaranteed to be made visible no later than the end

of the xDRF region, whereas memory accesses in a nDRF

region follow a standard directory protocol ensuring SC, i.e.,
writes are propagated immediately.

A. SC coherence protocol

Our SC coherence protocol is a traditional invalidation-

based MOESI directory protocol [25] with a directory cache

to track the memory blocks stored in the private caches.

Read misses are sent to the directory controller, where the

directory cache keeps the information about the owner (and

the sharers) of the cached blocks. The directory controller

forwards the request to the cache owning the block, in case the

owner is not the shared cache (co-located with the directory).

Then, the owner sends a copy of the data block to the requester,

which completes the read operation.

Write misses generate invalidation messages to all caches

holding copies of the requested block. Each cache replies to

the invalidation with an acknowledge message, or with the data

block in case of the owner of the block. These messages are

sent to the requester. Once the requester receives all messages,

it can perform the write.

All transactions finish with an unblock message from the

requester to the directory controller, which remains blocked

while the request is processed, until it receives the unblock.

B. SC-for-DRF coherence protocol

In SC-for-DRF (DRF=1), memory requests do not modify

the coherence status (e.g., cache MOESI states, directory in-

formation, etc). Hence, blocks cached during the SC-for-DRF

mode are not tracked by the directory and remain invisible

to the coherence protocol. Instead, every memory block sets

a toFlush (F) bit, that is kept along with every cache block.

For example, if a block is not present in the cache (I state)

and is brought by an xDRF load, the state remains I and the

presence bit is not added to the directory. Consequently, the

SC protocol cannot “see” the block and cannot invalidate it.

However, the block resides in cache with the F bit set, such

that the local processor can access it.

In contrast, the coherence status required by the SC protocol

must be visible to the SC-for-DRF protocol, so on a read miss,

the SC copy of the block is sent by the owner of the block.

The key performance benefits of SPEL in SC-for-DRF mode

are the following:

• Since the blocks marked as F are “invisible” to the

coherence protocol, they do not require an entry in the

directory cache, thus making a better use of the directory.

• As a consequence, invalidation requests performed by the

SC protocol do not affect the F blocks, thus reducing the

cache miss rate (particularly, due to false sharing misses)

and, in consequence, reducing traffic.

1122

• Thanks to the DRF properties, writes can be performed

without waiting for write permission or invalidation of

other copies, thus reducing the average memory latency.

• Directory blocking is considerably reduced, since it is

only required when the up-to-date copy of the block

is in a private cache. Thus both (i) network traffic is

reduced, as less unblock messages will be generated, and

(ii) waiting time is diminished.

1) False sharing: As opposed to real sharing where mul-

tiple threads update the same data, false sharing occurs when

multiple threads modify different data residing in the same

cache block. In traditional SC protocols, the block is marked as

invalid and updated later, which causes important performance

degradation, but SC-for-DRF protocols must handle false

sharing appropriately to maintain correctness.

Our compile time classification ensures data-race freedom

with a granularity finer than the cache block. Hence, during

SC-for-DRF coherence mode several cores can write on the

same block (but access different bytes). The protocol ensures

correctness by sending through the network “diffs” with only

the written bytes and by “merging” them at the shared cache

level. For this purpose, we add extra bits to mark the bytes

written during SC-for-DRF mode.

2) Hardware support for handling false sharing: Ideally,

in order to store the written bytes of every cached block, the

system would require one bit per cache byte. This represents

a memory overhead of 12.5% of the effective L1 cache.

However, this overhead can be reduced by storing the written

bytes only for a subset of the cached blocks, namely, for the

ones that are actually written during SC-for-DRF mode. In

practice, most accesses are actually read operations. A new

cache-like structure is required for keeping track of the written

bytes: the written-bits cache. While this alternative increases

the width of the structure due to the addition of a tag field, it

can considerably reduce its height. Effectively, as we show in

Section VI-B, a written-bits cache with only 32 or 16 entries

is sufficient for obtaining similar performance to having as

many entries as cache entries.

When there are no available entries in the written-bits cache,

some written-bits information has to be evicted. Since this

information is lost, SPEL forces a write-back of the dirty bytes

in the corresponding cache block, thus making them visible to

the SC protocol, as explained below.

C. From SC-for-DRF to SC: Propagating SC-for-DRF writes

Writes performed in SC-for-DRF mode become visible to

other threads either on demand or forced by the drf.flush
instruction. The first scenario occurs when (i) dirty F blocks

are evicted, (ii) the corresponding entries in the written-bits

cache are evicted, or (iii) upon write operations in SC mode.

The second scenario occurs at the end of xDRF regions.

Upon the eviction of a dirty F block (or its written-bits

entry), data are written back to the shared cache. Previously

all SC copies of the same block, which are tracked by the

directory, must be invalidated from the private caches and

written-back, if dirty, to the shared cache. The evicted F block

local cache
Core 1 &

local cache
Core 0 & Directory &

shared cache

I p0

F St Data
I

I p1

I p1

I

I

p0 p1 s

p1 s

1

1

M p1 s

(Merge)

Dir

wbits

DRF=1 DRF=1

Write p0

(Merge) Write p1

Data

Data

(Merge)

sdrf 0 DRF=0

Write s

Data

Evict B

GetX_DRF

GetX_DRF

Put_DRF

Inv

Data

GetX

I p0

(Merge)

Unblock

Ack

Data
I

DataF St

wbits

Fig. 2. Merging private data on evictions. Gray boxes indicate when the
processor write is effective. Block B is initially stored in the shared cache,
containing three data locations: p0 will only be accessed by core 0, p1 only
by core 1, and s will be accessed by both cores. At the beginning, the DRF
flag is set in both threads. First, Core 0 writes p0. The SC-for-DRF write is
performed without waiting for permissions, and both the F bit for block B
and the written-bit (wbits) corresponding to p0 are set. The remaining data of
the block is prefetched from the shared cache and merged appropriately with
the write. Similarly, Core 1 writes p1. Next, Core 1 sets the DRF flag to 0, so
future requests from Core 1 will be kept coherent by the SC protocol. Then,
Core 1 attempts to write s. Since the block has been accessed previously in
SC-for-DRF mode, the directory does not track it and the copy in Core 0 is
not visible to Core 1. Hence, Core 1 gets the block from the shared cache,
merges it with its dirty data, clears both F and wbits, and writes s. Now, p1’s
value is visible to any thread, because it is tracked by the directory (illustrated
as 1 in the Dir field). When B is evicted from Core 0, the directory asks
for a write-back of the copy in Core 1 (in case of more sharers, all should
be invalidated). Once Core 1’s copy arrives to the shared cache, it is merged
with the dirty data from Core 0, and an acknowledgement is sent to Core 0.
The evicted data is now also visible to other threads.

is then merged with the current copy, and from this point on,

it will be visible to other threads. Fig. 2 details this process.

Upon a write in SC mode, tracked copies are invalidated

and the data block is sent to the requester. If there is already

an F block residing in the requester’s cache, it is “merged”

with the current copy, resetting F and the written bits (Fig. 3).

When the processor executes the drf.flush instruction, every

dirty F block in its local cache is evicted and the instruction

does not commit until every eviction has been acknowledged

(see Fig. 2). The overall performance penalty of the drf.flush
instructions is negligible since they occur infrequently and they

do not evict blocks stored in cache by the SC protocol.

D. Thread migration

The operating system can decide at runtime to execute

a thread in a different core. We guarantee cache coherence

by forcing threads to execute an drf.flush instruction before

they are de-scheduled. This instruction makes the SC-for-DRF

writes visible to the SC coherence protocol, and therefore, they

can be seen from the new core.

E. Multitasking, simultaneous multi-threading, and syscalls

Both applications compiled to expose xDRF regions, as well

as other applications can execute on the same core. When two

1123

Directory &
shared cache

Dir DataF St Data
I

M s

I p1

DRF=1sdrf 1

Write p0

M sp0

1(Merge)

M s’p1p0

I

0

0

0

F St Data DRF=0 DRF=1

Data

Write s
GetX

Write p1

Data

(Merge)

GetX_DRF
I p1

sdrf 0 DRF=0

Unblock

Write s
GetX

Inv_Fwd

Data

Unblock

local cache
Core 0 &

I

local cache
Core 1 &

wbits

Fig. 3. Merging private blocks on writes to shared data. Core 0 starts with
the DRF flag unset and Core 1 with the flag set. First, Core 0 writes s. Next,
DRF flag is set in Core 0, and it writes p0. Since the state of the block is M
(modified), the SC-for-DRF write will be visible, and F and wbits are not set.
Then, Core 1 writes p1. As execution continues, the DRF flag is cleared in
Core 1, and it attempts to write s. However, the directory tracks B in Core 0,
so it asks Core 0 to invalidate B and send it to Core 1, where both blocks
are merged and F and wbits reset. Then, s can be written (s′).

applications in SC-for-DRF mode coexist on the same core, an

drf.flush instruction will write-back all F blocks and not only

the ones of the requesting application. However, in practice,

most write-backs correspond to blocks accessed by the current

application, as other blocks have already been evicted. Since

the DRF flag is set per thread, when a thread is de-scheduled,

the value of the DRF flag is recorded by the OS along with

the process context, and the newly scheduled thread resumes

with the value of the flag in its context.

Systems supporting multiple hardware threads (SMT) re-

quire one DRF flag per thread. Upon scheduling an application

thread to a hardware thread, the OS sets the corresponding

DRF flag, similar to a multitask environment.

System calls can share data, and therefore, they are always

executed under SC coherence. When an OS exception is

triggered, the DRF flag is cleared. Once the system call

completes, the thread resumes with its corresponding flag.

F. Protocol scalability

SPEL requires a number of written-bits entries for each

private cache. The area overhead entailed by them does not

depend on the number of cores, so it is a scalable structure.

When running in SC-for-DRF mode, SPEL eliminates most

directory invalidations, forwarding requests, cache-to-cache

transfers and unblock messages. The task of keeping coherence

in SC-for-DRF mode is distributed among the cores in the

system. This leads to less traffic and less communication

between threads, thus improving both performance and scal-

ability. Moreover, SPEL does not have any overhead with

respect to a standard directory protocol when running in SC

coherence mode.

In traditional protocols, directories may become a bottleneck

for large-scale systems, since they impose serialization of

TABLE I
SYSTEM PARAMETERS

Parameter Value
Cache hierarchy Non-inclusive
Cache states MOESI
Block / Page size 64 bytes / 4 KB
Split instr & data L1 caches 32 KB, 8-way (128 sets)
L1 cache hit time 1 (tag) and 2 (tag+data) cycles
Shared unified L2 cache 512 KB / tile, 16-way (512 sets)
L2 cache hit time 6 (tag) and 12 (tag+data) cycles
Directory cache 64 sets, 8 ways (×1 L1)
Directory cache hit time 2 cycle
Memory access time 160 cycles
Topology Bidirectional ring
Flit size, link time 72 bytes, 1 cycle

requests. The directory controller is blocked while process-

ing a request, hence, as cores submit multiple simultaneous

requests, they must wait for the controller to be unblocked.

As the number of cores in the system increases, the waiting

time can incur important performance degradation. In SC-for-

DRF mode, SPEL considerably reduces directory blocking

during the resolution of cache misses and it does not track

sharers, thus directory availability and productivity are highly

increased, preventing it from becoming a bottleneck.

V. SIMULATION ENVIRONMENT

We evaluate SPEL using the GEMS simulator [26], a cycle-

accurate simulator for multiprocessor systems. The intercon-

nection network has been modeled with GARNET [27]. We

have modified GEMS in order to model SPEL in detail

accounting for the cost of the new inserted instructions. To

report energy consumption we have used the McPAT tool [28]

assuming a 32nm process technology.

The baseline system used for the evaluation is a 64-tile chip

multiprocessor that shares many similarities with the recently

launched Intel’s Xeon Phi coprocessor [3]. For example, it

implements a directory-based cache coherence protocol and it

connects all cores through a high bandwidth bidirectional ring

interconnect. We model in-order cores and provide sequential

consistency. Processor techniques to improve performance

based on relaxing the consistency model have been previously

analyzed [14] and are complementary to this work. The focus

of this paper is the cache coherence protocol. The parameters

of the simulated architecture are shown in Table I.

We compare the proposed dual consistency protocol (SPEL)

to a traditional SC protocol (Directory) and a state-of-the-

art SC-for-DRF protocol (VIPS) [2] on a wide variety of

applications from codes parallelized with OpenMP, SpecOMP

2012 [29] (352.nab, 359.botsspar, and 367.imagick –test

input–) and Rodinia [30] (backprop –131072 elements–, bfs

–graph1MW 6.txt–, btree –mil.txt, command.txt–, hotspot –

1024 × 1024–, particlefilter –128 × 128 × 10, 10000

particles–, and pathfinder –width 50000–), to automati-

cally parallelized applications from the Polybench benchmark

suite [22] (adi, covariance, fdtd-2d, seidel, and trmm –small

size–, and mvt, bicg, and dynprog –medium size–). The

evaluated applications exhibit various data access patterns

and cover a large number of OpenMP constructs and thread

synchronization methods. Input sizes have been chosen in

order to provide a representative behavior of the applications

1124

 a
di

 b
ic

g

 c
ov

ar
ia

nc
e

 d
yn

pr
og

 fd
td

 m
vt

 s
ei

de
l

 tr
m

m

A
vg

. P
ol

yb
en

ch

 b
ac

kp
ro

p

 b
fs

 b
tre

e

 h
ot

sp
ot

 p
ar

tic
le

fil
te

r

 p
at

hf
in

de
r

A
vg

. R
od

in
ia

O
M

P

 3
52

.n
ab

 3
59

.b
ot

ss
pa

r

 3
67

.im
ag

ic
k

A
vg

. S
pe

cO
M

P

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

C
ac

he
 m

is
se

s
(%

)

Shared Private

Polybench RodiniaOMP SpecOMP

1. OS 2. xDRF

Fig. 4. OS- vs. xDRF-classification by cache misses

 a
di

 b
ic

g

 c
ov

ar
ia

nc
e

 d
yn

pr
og

 fd
td

 m
vt

 s
ei

de
l

 tr
m

m

A
vg

. P
ol

yb
en

ch

 b
ac

kp
ro

p

 b
fs

 b
tre

e

 h
ot

sp
ot

 p
ar

tic
le

fil
te

r

 p
at

hf
in

de
r

A
vg

. R
od

in
ia

O
M

P

 3
52

.n
ab

 3
59

.b
ot

ss
pa

r

 3
67

.im
ag

ic
k

A
vg

. S
pe

cO
M

P

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

M
em

or
y

bl
oc

ks
 (%

)

Shared Private

Polybench RodiniaOMP SpecOMP

1. OS 2. xDRF

Fig. 5. OS- vs. xDRF-classification by memory blocks

while keeping simulation time within a week. Statistics are

collected from the beginning of the first parallel region until

the end of the last parallel region.

VI. RESULTS

A. Effectiveness of the xDRF classification

This section compares the xDRF compile-time classification

of code regions employed in SPEL to the run-time classifica-

tions based on data sharing, e.g., OS-based classification, used

by VIPS. The comparison is performed with respect to two

key aspects for the protocol optimization: cache misses and

accessed memory blocks. Results for 64 threads are plotted

in Figs. 4 and 5. The shared bars represent the misses or

blocks that cannot be optimized, e.g., inside nDRF regions

using the xDRF classification or within shared pages using

the OS classification, while private represents misses or blocks

that can be optimized.

The ratio of private misses is important because misses

under the SC-for-DRF protocol are resolved faster and require

less traffic. Fig. 4 shows that even with a large number of

threads (64), when lock contention, and consequently, the

number of shared misses increases, the number of optimized

accesses is higher in the xDRF classification. Particularly, the

fraction of shared misses is reduced by 42% for the Polybench

applications, 90% for Rodinia, and 53% for SpecOMP.

The ratio of private memory blocks is also important since

it affects directory utilization and contention. Fig. 5 shows that

xDRF classification exhibits a higher rate of memory blocks of

which the directory is not required to keep track, compared to

OS. This is a consequence of the xDRF classification labeling

data as private if it maintains this state during the execution

512
256
128
64 32 16 8 4 2 1

Written-bit entries

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e Directory
RC-SC Polybench
RC-SC RodiniaOMP
RC-SC SpecOMP

(a) Execution time
512
256
128
64 32 16 8 4 2 1

Written-bit entries

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

Directory
RC-SC Polybench
RC-SC RodiniaOMP
RC-SC SpecOMP

(b) Energy consumption

Fig. 6. Performance variations due to written-bits cache size

of the xDRF region, while the OS approach requires data to

be private during the entire application’s execution. Therefore,

the xDRF classification significantly outperforms the OS-based

classification in both cases, thanks to a finer granularity (byte

vs memory page) and temporality (xDRF region vs entire

application). In particular, the ratio of private accessed memory

blocks is increased by 41% for Polybench, 67% for Rodinia,

and 37% for SpecOMP.

B. Area requirements

SPEL employs a written-bits cache that tracks dirty data

for private blocks. This section performs a sensitivity analysis

of the number of entries of this structure. Fig. 6 shows the

consequences of reducing the number of entries (averages over

each of the three evaluated benchmark suites). Values from

512 entries (corresponding to the number of entries in the L1

cache) to a single entry were evaluated. Results are normalized

with respect to a directory protocol, which does not require

this structure.

As the number of entries is reduced, performance of SPEL is

unaffected up to only 16 or 32 entries for Rodinia and 4 entries

for Polybench and SpecOMP, as Fig. 6(a) shows, since there

are not many blocks written during SC-for-DRF mode or they

are evicted due to cache capacity. The energy consumption

of the network and L2 increases as the number of written-bits

entries is reduced (Fig. 6(b)), but there is only a slight increase

as the number of entries is reduced up to 32 for SpecOMP, 16

for Rodinia, and 4 for Polybench.

Reducing the size of the written-bits cache has an impact

on energy consumption sooner than on execution time. This is

because during SC-for-DRF coherence, writes do not wait for

permission and can be performed immediately but the extra

write-backs caused by the eviction of written-bits increase

both network traffic and L2 accesses. When this traffic grows

considerably, execution time increases due to a bottleneck in

the network and cache controller. On the other hand, Poly-

bench applications are optimized for data locality, therefore a

small structure of 4 entries suffices, whereas for more complex

applications such as Rodinia or SpecOMP, a larger structure

is required.

We conclude that, in general, a structure containing 32

entries yields results competitive to the ones obtained using

512 entries. Therefore, assuming per-byte information, the

extra area requirements of SPEL with respect to the L1 cache

size is only 0.96% (0.37KB). In what follows, the results

presented for SPEL consider a 32-entry written-bits cache.

1125

 a
di

 b
ic

g

 c
ov

ar
ia

nc
e

 d
yn

pr
og

 fd
td

 m
vt

 s
ei

de
l

 tr
m

m

A
vg

. P
ol

yb
en

ch

 b
ac

kp
ro

p

 b
fs

 b
tre

e

 h
ot

sp
ot

 p
ar

tic
le

fil
te

r

 p
at

hf
in

de
r

A
vg

. R
od

in
ia

O
M

P

 3
52

.n
ab

 3
59

.b
ot

ss
pa

r

 3
67

.im
ag

ic
k

A
vg

. S
pe

cO
M

P

0.0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
0.22

C
ac

he
 m

is
s

ra
te

Cold-cap-conf
Coherence

Coverage
Self-inv

Polybench RodiniaOMP SpecOMP

1. Directory 2. VIPS 3. SPEL

Fig. 7. Cache miss rate with respect to a directory protocol

C. SPEL vs traditional vs SC-for-DRF protocols

SPEL is designed for optimizing performance as a SC-for-

DRF protocol, while providing support for legacy code, as

a traditional SC protocol. This section compares SPEL with

an SC protocol (Directory) and a state-of-the-art SC-for-DRF

protocol (VIPS [2]). Given that SC-for-DRF protocols require

that racy accesses are exposed, for comparison purposes, we

rely on the proposed xDRF classification to delimit the racy

code. Thus, non-DRF regions are guarded with memory fences

for VIPS, which impose self-invalidation and self-downgrade

of the cached shared blocks. This enables VIPS to execute

codes which would otherwise not be accessible, as races are

not exposed by default.

1) Cache miss rate: The cache miss rate varies in all three

evaluated protocols. Both VIPS and SPEL in SC-for-DRF

mode do not require invalidations due to writes nor down-

grades due to reads, but self-invalidations and self-downgrades

triggered by fence instructions and drf.flush, respectively. In

Fig. 7, the first bar illustrates the miss rate of the L1 cache

in a directory protocol split into three categories: misses due

to replacements in the cache (Cold-cap-conf), misses as a

consequence of invalidations and downgrades generated by re-

mote writes and reads (Coherence), and misses that come from

invalidations generated by directory evictions (Coverage). The

second bar shows VIPS, which involves no coherence or

coverage misses, but a fourth category of misses due to self-

invalidation. The third bar shows the proposed SPEL protocol,

thus all type of misses can be encountered.

Compared with Directory, despite the additional misses

incurred by self-invalidation, SPEL reduces the total num-

ber of misses, by avoiding coherence misses due to false-

sharing. Cache miss rate is reduced on average by 0.78%

for Polybench and 1.10% for Rodinia. The cache miss rate

for SpecOMP is very low and the variations obtained with

SPEL are not significant. With respect to VIPS, SPEL requires

self-invalidation only in the boundaries of xDRF regions,

while for nDRF regions it employs directory invalidations.

Overall, SPEL reduces the cache miss rate with respect to

both Directory and VIPS, emphasizing the advantages of the

dual consistency.

2) Execution time: By reducing the cache miss rate, SPEL

achieves considerable improvements in execution time com-

 a
di

 b
ic

g

 c
ov

ar
ia

nc
e

 d
yn

pr
og

 fd
td

 m
vt

 s
ei

de
l

 tr
m

m

A
vg

. P
ol

yb
en

ch

 b
ac

kp
ro

p

 b
fs

 b
tre

e

 h
ot

sp
ot

 p
ar

tic
le

fil
te

r

 p
at

hf
in

de
r

A
vg

. R
od

in
ia

O
M

P

 3
52

.n
ab

 3
59

.b
ot

ss
pa

r

 3
67

.im
ag

ic
k

A
vg

. S
pe

cO
M

P

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Directory VIPS SPEL

Polybench RodiniaOMP SpecOMP

Fig. 8. Execution time improvements with respect to a directory protocol

 a
di

 b
ic

g

 c
ov

ar
ia

nc
e

 d
yn

pr
og

 fd
td

 m
vt

 s
ei

de
l

 tr
m

m

A
vg

. P
ol

yb
en

ch

 b
ac

kp
ro

p

 b
fs

 b
tre

e

 h
ot

sp
ot

 p
ar

tic
le

fil
te

r

 p
at

hf
in

de
r

A
vg

. R
od

in
ia

O
M

P

 3
52

.n
ab

 3
59

.b
ot

ss
pa

r

 3
67

.im
ag

ic
k

A
vg

. S
pe

cO
M

P

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

LLC Network Written-Bits

Polybench RodiniaOMP SpecOMP

1. Directory 2. VIPS 3. SPEL

Fig. 9. Energy improvements with respect to a directory protocol

pared with both a pure SC protocol and a pure SC-for-

DRF protocol, as shown in Fig. 8. The extra self-invalidation

in the SC-for-DRF protocol increases execution time for

some applications, as bicg, mvt, and trmm. For the Rodinia

benchmarks, SC-for-DRF protocols work efficiently since the

misses caused by cache capacity clearly dominate the ones

caused by self-invalidation. Hence, VIPS and SPEL yield

similar performance. However, for Polybench and SpecOMP

massive self-invalidation impact negatively performance, and

SPEL reduces the average execution time by 26% and 12%, on

average, compared to VIPS. Compared with the SC protocol,

SPEL consistently improves performance for each application.

On average, SPEL boosts performance by 30% for Polybench

applications, and 18% for Rodinia and SpecOMP.

3) Energy consumption: Fig. 9 illustrates the energy con-

sumption of VIPS and SPEL normalized with respect to Di-

rectory. Results show the energy consumption of the network

and of the shared cache (LLC), Fig. 6(b), but also the energy

consumed by the accesses to the written-bits cache. Since

VIPS maintains this information in the MSHR structure, we

assume that the extra energy consumption is negligible.

Recall that SPEL reduces the number of L1 cache misses:

(i) with respect to an SC protocol, by not invalidating private

blocks upon writes, and (ii) with respect to an SC-for-DRF

protocol, by reducing self-invalidation. Generally, with regard

to the shared cache L2, the number of accesses increases in

SC-for-DRF protocols due to extra fetches or write-backs.

However, SC-for-DRF protocols also benefit from the merging

of cache blocks containing SC-for-DRF data on a write-back,

thus reducing the network traffic.

1126

Therefore, SPEL consumes less energy than a directory

protocol since it removes most of the coherence misses, and

less energy than VIPS thanks to fewer self-invalidation and

self-downgrade events. On average, SPEL exhibits a reduction

in the energy consumption of 30% for Polybench, 36% for

Rodinia and 29% for SpecOMP, compared to a directory

protocol. Compared to VIPS, average reductions of 24%, 9%,

and 23%, respectively, are achieved by SPEL due to the

reduction of invalidations and write-backs.

VII. RELATED WORK

Classifications: An efficient xDRF classification of code

regions is key for designing SPEL. Classification of regions

has been addressed by Effinger-Dean et al [31], reasoning

about interference free regions (IFR) in DRF codes. IFRs are

associated to variables (data) and guarantee that while a thread

executes the IFR, no other thread can write to the shared

variable accessed by the IFR, but not to any shared variable, as

in the xDRF classification. Moreover, xDRF expands as much

as possible across synchronization points (locks) and includes

non-overlapping and non-adjacent DRF regions, to maximize

the granularity of the safe xDRF regions.

Previous proposals classify memory accesses as private or

shared based on the nature of accessed data, either at runtime

or at compile-time. Examples of run-time classifications are

OS-based [7], [10], [11] (Section II-B1), TLB-based [32],

or hardware-based [9], [12], [15], [33] methods. TLB-based

methods are able to capture more private pages, but at the cost

of extra traffic and complexity. Hardware-based classification

requires extra hardware support and increases storage costs,

which become prohibitive if all accessed blocks are tracked,

but can be decreased by tracking only cached blocks. Had

SPEL employed a hardware-based classification, numerous

extra self-invalidations would have been caused by frequent

shared-to-private and private-to-shared re-classifications.

Compile-time classifications [8], [13], [23] rely on standard

static analysis, which is hindered by dynamic memory alloca-

tion and pointer aliasing, thus classification is either conserva-

tive or speculative. Both solutions lead to performance losses,

either due to missed optimization opportunities or due to

additional support required to recover from mis-speculations.

End-to-End SC [14] combine run-time OS-based and

compile-time classifications. A memory access is considered

safe (private or read-only) if guaranteed by at least one of the

analyses (static or dynamic). This classification enables opti-

mizations in the hardware itself, such as instruction reordering

and out-of-order commits of accesses from the write-buffers.

There are several synergies between SPEL and End-to-End

SC: first, the two classifications are complementary: while

xDRF classification is more accurate during the execution

of xDRF regions, the static-dynamic approach could further

classify accesses within nDRF regions; second, both proposals

provide SC while enabling optimizations: End-to-End SC opti-

mizes the processor design and SPEL the coherence protocol.

As these techniques are orthogonal, a joint proposal would

maximize the optimization opportunities.

Relaxed consistency protocols: SC-for-DRF consistency

protocols [1], [2], [6], [34], [35] rely on self-invalidation at

synchronization points: Lebeck and Wood use self-invalidation

to limit the number of cache blocks registered in the di-

rectory [6], SARC coherence [34] employs self-invalidation

and implements a writer prediction to avoid the directory

indirection upon downgrades. In DeNovo [1] a compiler inserts

self-invalidating instructions based on source code annotations.

DeNovo implements a directory that tracks the writers, but

not the readers, so they rely on downgrading registered copies

upon read misses. VIPS [2], [35] employs a write-back policy

for private blocks, which provides efficiency, and a write-

through-policy for shared blocks, providing simplicity. It em-

ploys both self-invalidation and self-downgrade, thus removing

the need of a directory structure. All these proposals require

DRF applications for providing SC, otherwise, they provide

SC-for-DRF, which makes them unsuitable for legacy codes,

unless all data races are exposed.

SPEL is more general, being able to adapt to the code’s

characteristics and choose the suitable protocol, thus always

providing SC. Additionally, xDRF regions, in contrast to DRF

regions, enable the protocol to avoid many self-invalidations

and self-downgrades. Thus SPEL outperforms the state-of-the-

art SC-for-DRF protocols, as shown in the previous section.

TSO-CC proposes a scalable protocol that guarantees Total

Store Order (TSO) given the wide adoption of the TSO

consistency model in commodity processors (e.g., x86 or

SPARC) [4]. Although TSO-CC gets similar performance to

a directory protocol, its advantage lies in the reduction of the

area required by the directory structure, which only requires

a pointer to the last writer. TSO-CC can also benefit from

the proposed dual protocol by relaxing the consistency model

for accesses in xDRF regions, and thus, being able to achieve

performance improvements.

Hardware support: Ashby et al. [20] perform selective

self-invalidation of data that might have been updated by

other core by relying on inexact information using Bloom

filters. The bloom filters are reset only on barriers, which

decreases their efficiency. DeNovoND [36] performs selective

self-invalidation upon lock synchronization, using a hardware

queue lock. However, both proposals have the drawback of (i)

trading information accuracy for reducing hardware support

and (ii) incurring very expensive self-invalidation since all

cache tags must be matched against the filter. In contrast, SPEL

minimizes self-invalidation by using a precise classification.

VIII. CONCLUSIONS

The dual consistency cache coherence protocol, SPEL, pre-

sented in this paper adapts dynamically to the code’s behavior,

switching between the highly optimized and the restrictive

mode, guaranteeing the strongest consistency model and im-

proving scalability, performance, and energy consumption.

SPEL provides optimizations for applications in which the

compiler can identify parallel regions of code that can execute

under an SC-for-DRF protocol (xDRF). Coherence of nDRF

regions is maintained with a standard directory protocol. SPEL

1127

outperforms a traditional directory protocol by approximately

30% for Polybench applications, and 18% for Rodinia and

SpecOMP, on average; achieves savings in energy consump-

tion from 29% to 36%, on average; and requires negligible

extra hardware resources.

All in all, SPEL achieves scalability, performance and en-
ergy efficiency and ensures compatibility with legacy software.

ACKNOWLEDGMENT

This work was supported in part by the ”Fundación Seneca-

Agencia de Ciencia y Tecnologı́a de la Región de Murcia”

under grant ”Jóvenes Lı́deres en Investigación” 18956/JLI/13,

by the Spanish MINECO, by European Commission FEDER

funds, under grant TIN2012-38341-C04-03, as well as by the

Swedish Research Council UPMARC Linnaeus Centre and by

the VR frame project ”Efficient Modeling of Heterogeneity in

the Era of Dark Silicon”: 106201305/C0533201.

REFERENCES

[1] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo: Rethinking
the memory hierarchy for disciplined parallelism,” in 20th Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT), Oct. 2011,
pp. 155–166.

[2] A. Ros and S. Kaxiras, “Complexity-effective multicore coherence,” in
21st Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2012, pp. 241–252.

[3] “Intel Xeon Phi Coprocessor,” http://software.intel.com/en-us/
mic-developer, Apr. 2013. [Online]. Available: http://software.intel.
com/en-us/mic-developer

[4] M. Elver and V. Nagarajan, “TSO-CC: Consistency directed cache
coherence for tso,” in 20th Int’l Symp. on High-Performance Computer
Architecture (HPCA), Feb. 2014.

[5] S. V. Adve and M. D. Hill, “Weak ordering – a new definition,” in 17th
Int’l Symp. on Computer Architecture (ISCA), Jun. 1990, pp. 2–14.

[6] A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation: Reducing
coherence overhead in shared-memory multiprocessors,” in 22nd Int’l
Symp. on Computer Architecture (ISCA), Jun. 1995, pp. 48–59.

[7] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: Near-optimal block placement and replication in distributed
caches,” in 36th Int’l Symp. on Computer Architecture (ISCA), Jun. 2009,
pp. 184–195.

[8] J. Meng and K. Skadron, “Avoiding cache thrashing due to private data
placement in last-level cache for manycore scaling,” in Int’l Conf. on
Computer Design (ICCD), Oct. 2009, pp. 282–288.

[9] S. H. Pugsley, J. B. Spjut, D. W. Nellans, and R. Balasubramonian,
“SWEL: Hardware cache coherence protocols to map shared data
onto shared caches,” in 19th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), Sep. 2010, pp. 465–476.

[10] D. Kim, J. Ahn, J. Kim, and J. Huh, “Subspace snooping: Filtering
snoops with operating system support,” in 19th Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), Sep. 2010, pp. 111–
122.

[11] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Increasing
the effectiveness of directory caches by deactivating coherence for
private memory blocks,” in 38th Int’l Symp. on Computer Architecture
(ISCA), Jun. 2011, pp. 93–103.

[12] H. Hossain, S. Dwarkadas, and M. C. Huang, “POPS: Coherence
protocol optimization for both private and shared data,” in 20th Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT),
Oct. 2011, pp. 45–55.

[13] Y. Li, R. G. Melhem, and A. K. Jones, “Practically private: Enabling
high performance cmps through compiler-assisted data classification,” in
21st Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Sep. 2012, pp. 231–240.

[14] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi,
“End-to-end sequential consistency,” in 39th Int’l Symp. on Computer
Architecture (ISCA), Jun. 2012, pp. 524–535.

[15] J. Zebchuk, B. Falsafi, and A. Moshovos, “Multi-grain coherence direc-
tories,” in 46th IEEE/ACM Int’l Symp. on Microarchitecture (MICRO),
Dec. 2013, pp. 359–370.

[16] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” IEEE Computer, vol. 29, no. 12, pp. 66–76, Dec. 1996.

[17] A. Schrijver, Theory of Linear and Integer Programming. John Wiley
& Sons, Inc., 1986.

[18] P. Feautrier, “Dataflow analysis of scalar and array references,” Int’l
Journal of Parallel Programming (IJPP), vol. 20, no. 1, pp. 23–53, Feb.
1991.

[19] M. M. K. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache
coherence is here to stay,” Communications of the ACM, vol. 55, no. 7,
pp. 78–89, Jul. 2012.

[20] T. J. Ashby, P. Dı́az, and M. Cintra, “Software-based cache coherence
with hardware-assisted selective self-invalidations using bloom filters,”
IEEE Transactions on Computers (TC), vol. 60, no. 4, pp. 472–483, Apr.
2011.

[21] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato, “Increasing
the effectiveness of directory caches by avoiding the tracking of non-
coherent memory blocks,” IEEE Transactions on Computers (TC),
vol. 62, no. 3, pp. 482–495, Mar. 2013.

[22] “Polybench,” http://www.cse.ohio-state.edu/∼pouchet/
software/polybench/, Nov. 2011. [Online]. Available:
http://www.cse.ohio-state.edu/∼pouchet/software/polybench/

[23] Y. Li, A. Abousamra, R. Melhem, and A. K. Jones, “Compiler-assisted
data distribution for chip multiprocessors,” in 19th Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), Sep. 2010, pp. 501–
512.

[24] C. Lattner and V. S. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in 2nd IEEE / ACM Int’l
Symp. on Code Generation and Optimization (CGO), Mar. 2004, pp.
75–88.

[25] P. Sweazey and A. J. Smith, “A class of compatible cache consistency
protocols and their support by the IEEE futurebus,” in 13th Int’l Symp.
on Computer Architecture (ISCA), Jun. 1986, pp. 414–423.

[26] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s
general execution-driven multiprocessor simulator (GEMS) toolset,”
Computer Architecture News, vol. 33, no. 4, pp. 92–99, Sep. 2005.

[27] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “GARNET: A detailed
on-chip network model inside a full-system simulator,” in IEEE Int’l
Symp. on Performance Analysis of Systems and Software (ISPASS), Apr.
2009, pp. 33–42.

[28] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “Mcpat: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in 42nd
IEEE/ACM Int’l Symp. on Microarchitecture (MICRO), Dec. 2009, pp.
469–480.

[29] Standard Performance Evaluation Corporation, “SPEC OMP2012,”
http://www.spec.org/omp2012. [Online]. Available: http://www.spec.
org/omp2012

[30] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Int’l Symp. on Workload Characterization (IISWC), Oct. 2009, pp.
44–54.

[31] L. Effinger-Dean, H.-J. Boehm, D. Chakrabarti, and P. Joisha, “Ex-
tended sequential reasoning for data-race-free programs,” in 2011 ACM
SIGPLAN Workshop on Memory Systems Performance and Correctness
(MSPC), Jun. 2011, pp. 22–29.

[32] A. Ros, B. Cuesta, M. E. Gómez, A. Robles, and J. Duato, “Temporal-
aware mechanism to detect private data in chip multiprocessors,” in 42nd
Int’l Conf. on Parallel Processing (ICPP), Oct. 2013, pp. 562–571.

[33] M. Alisafaee, “Spatiotemporal coherence tracking,” in 45th IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), Dec. 2012, pp. 341–350.

[34] S. Kaxiras and G. Keramidas, “SARC coherence: Scaling directory
cache coherence in performance and power,” IEEE Micro, vol. 30, no. 5,
pp. 54–65, Sep. 2011.

[35] S. Kaxiras and A. Ros, “A new perspective for efficient virtual-cache
coherence,” in 40th Int’l Symp. on Computer Architecture (ISCA), Jun.
2013, pp. 535–547.

[36] H. Sung, R. Komuravelli, and S. V. Adve, “DeNovoND: Efficient
hardware support for disciplined non-determinism,” in 18th Int’l Conf.
on Architectural Support for Programming Language and Operating
Systems (ASPLOS), Mar. 2013, pp. 13–26.

1128

