oS

http://www.diva-portal.org

Postprint

This is the accepted version of a paper published in Journal of Computational Physics. This paper has
been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

Citation for the original published paper (version of record):

Tillenius, M., Larsson, E., Lehto, E., Flyer, N. (2015)
A scalable RBF—FD method for atmospheric flow.
Journal of Computational Physics, 298: 406-422
http://dx.doi.org/10.1016/j.jcp.2015.06.003

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urnkb.se/resolve?urn=urn:nbn:se:uu:diva-256651

A scalable RBF-FD method for atmospheric flow™

Martin Tillenius®, Elisabeth Larsson®*, Erik LehtoP, Natasha Flyer®

%Dept. of Information Technology, Uppsala University,
Box 337, SE-751 05 Uppsala, Sweden
b Dept. of Mathematics, KTH Royal Institute of Technology,
SE-100 44 Stockholm, Sweden
¢National Center for Atmospheric Research,
P.O. Box 3000, Boulder, CO 80307-3000, USA

Abstract

Radial basis function-generated finite difference (RBF-FD) methods have recently been
proposed as very interesting for global scale geophysical simulations, and have been shown
to outperform established pseudo-spectral and discontinuous Galerkin methods for shal-
low water test problems. In order to be competitive for very large scale simulations,
the RBF-FD methods needs to be efficiently implemented for modern multicore based
computer architectures. This is a challenging assignment, because the main computa-
tional operations are unstructured sparse matrix-vector multiplications, which in general
scale poorly on multicore computers due to bandwidth limitations. However, with the
task parallel implementation described here we achieve 60-100% of theoretical speedup
within a shared memory node, and 80-100% of linear speedup across nodes. We present
results for global shallow water benchmark problems with a 30 km resolution.

Keywords: shallow water, scattered node, task parallel, distributed memory,
multicore, radial basis function, RBF-FD
2000 MSC: 65Y05, 65Y10, 656M99

1. Introduction

In computational geoscience, models are often global in the sense that the considered
domain is the atmosphere around the earth, the surface of the earth, or the mantle of
the earth. Furthermore, there may also be a variety of coupled physical processes as in
global climate simulations, where different models for the atmosphere, the land surface,

*The work of M. Tillenius and E. Larsson was supported by the Swedish Research Council through
the Linnaeus centre of excellence UPMARC, Uppsala Programming for Multicore Architectures. The
work of E. Lehto was supported by The Dahlquist Research Fellowship. NCAR is sponsored by the
National Science Foundation (NSF). N. Flyer acknowledges support of NSF grant DMS-0934317. The
computations were performed on resources provided by SNIC through Uppsala Multidisciplinary Center
for Advanced Computational Science (UPPMAX) under Project SNIC2014-3-102.

*Corresponding author

Email addresses: martin.tillenius@gmail.com (Martin Tillenius), elisabeth.larsson@it.uu.se
(Elisabeth Larsson), elehto@kth.se (Erik Lehto), flyer@ucar.edu (Natasha Flyer)

Preprint submitted to Journal of Computational Physics June 8, 2015

the oceans, the large ice sheets, and others all contribute to the global results. These
simulations are both time consuming and produce large volumes of data. Hence, they
cannot be performed without the use of parallel processing. Some of the largest computer
systems in the world are dedicated to weather and climate simulations.

Existing community models such as EC-Earth connected with the European Center
for Medium-Range Weather Forecasts (ECMWTF), and the Community Earth System
Model (CESM) connected with the National Center for Atmospheric Research (NCAR),
USA, use grid based numerical methods for the simulations. This makes it costly to
resolve local solution features, because typically a larger region needs to be resolved in
order to preserve grid integrity. Reported resolutions in current simulations are at a level
of 30-100 km, but processes that are of importance for the global simulation result may
occur on even finer scales.

An interesting alternative to using grid based methods are meshfree methods based
on radial basis function (RBF) approximation. These methods work with scattered nodes
and easily allow for local refinement of the numerical solutions. Global RBF approxima-
tion methods have been shown to be competitive compared with other commonly used
numerical approaches in computational geosciences in a series of papers [17, 18, 44, 15].
However, for large node sets, it becomes expensive in terms of computational time and
storage to work with the dense linear systems that arise from the global approximations.

By replacing the global RBF approximations with local RBF approximations, we can
reduce the computational cost while retaining the flexibility with respect to geometry
and the ability to work with scattered nodes. RBF-generated finite differences (RBF—
FD) are similar in nature to finite difference methods, but with stencils that are built
on scattered nodes instead of nodes in a grid, and an underlying interpolation that is
RBF based instead of polynomial. In the paper [16], RBF-FD methods were compared
with, and outperformed state-of-the-art methods for fluid flow test cases over the sphere.
These comparisons were done with a sequential implementation. However, in order to
demonstrate the viability of the RBF-FD method for large scale computational geo-
science, we also need to show that it scales to large problem sizes and can be efficiently
parallelized for large computer systems.

The RBF-FD method is relatively new, with an early mentioning in the conference
paper [39] from 2000, and further development and analysis for example in [33, 43, 10, 45,
3,9, 8,5, 4]. There is still not much research done on parallelization of these methods.
However, a parallel implementation of an RBF-FD method for the shallow water equa-
tions on the sphere for multiple CPUs and GPUs can be found in [6]. Each CPU runs
a Message Passing Interface (MPI) process and handles the necessary communication.
Local computations are off-loaded to the GPU attached to the CPU. Speedups of up to
7 compared with execution on one CPU are reported. An OpenMP parallelization of an
RBF-FD method for a coupled thermal-fluid flow problem can be found in [25]. The
stencils and problem sizes are small, and only two cores are used, but the results are good.
The parallel method is further developed in [26] with experiments for up to 16 cores. An
MPI implementation of a similar application problem and similar RBF-FD approach is
presented in [11], where experiments are performed on a 36-node cluster. However, no
performance results are reported. In the recent conference paper [14], parallel sparse
matrix-vector products for applications such as the RBF-FD method for the shallow wa-
ter equations are implemented for the Intel Many Integrated Core (MIC) architecture.
The conclusions made there are similar to the ones we make in the present paper, even

2

if the implementation method is different. A preliminary version of the shared memory
part of this paper can be found in [38].

In the MPI/OpenCL and MPI approaches used for parallelization in [6, 11], the
programmer is responsible for explicitly expressing all data transfers and decide where
in the system each computation takes place. Also the implementation for the MIC
in [14] involves some rather technical operations in order to exploit the vector processing
units. With the OpenMP approach of [25, 26] the programmer works with pragma
directives to the compiler inserted into the sequential code. The latter is significantly
easier to implement, however the performance may be suboptimal due to the global
synchronization points introduced by the fork-join style programming model.

In this paper, we employ a task-based parallel programming model. These models
are emerging as one of the most promising approaches to achieve high performance in
scientific applications at a reasonable programming effort. By a task we mean an object
that can be called asynchronously, that is, a piece of code together with its required data.
The programmer writes a sequential code in terms of tasks, while a run-time system
provided by a programming framework is responsible for scheduling and executing tasks
in parallel. There are several widely spread frameworks of this type such as OmpSs [13]
(from the StarSs family of programming models) and StarPU [1]. In this work we use the
SuperGlue framework [36, 34, 35], developed by the first author. Its performance with
respect to other frameworks was tested in [35], and SuperGlue was shown to be highly
competitive.

The RBF-FD discretization of the shallow water equations on the sphere generates
sparse unstructured matrices, where the size of the matrix corresponds to the total
number of node points (degrees of freedom) and the number of non-zero elements per
row is determined by the stencil size. The main operations of the solver are sparse
matrix-vector multiplications. Due to bandwidth limitations, this type of operation does
not perform well on multicore architectures in general. However, for each evaluation of
the spatial differential operator, 16 sparse matrix-vector multiplications are required in
order to form the necessary derivatives. We show that by reusing the sparsity pattern
across these multiplications, we increase the ratio of computations per memory access and
regain the scalability. In this way, we address our first objective to establish that RBF—
FD methods on unstructured grids can be efficiently implemented for modern multicore
based computer architectures.

The second objective of the paper is to demonstrate that task-based parallel program-
ming is a tool that provides high programmer productivity and significantly facilitates
the writing of scientific software without sacrificing absolute performance. Samples from
the implementation are included for reference.

Finally, we show that the RBF-FD method can produce highly resolved and very
sharp solutions to challenging shallow water benchmark problems. A series of illustration
for two test cases, flow over an isolated mountain and evolution of a highly non-linear
way are shown. Future work involves how to implement adaptive node refinement. This
is not pursued here.

The paper is organized as follows: In Section 2 we define the shallow water problems
that we use as benchmarks. Then in Section 3, we discuss the RBF-FD method. Section 4
contains the discrete formulation of the problems. The task-based programming model
is explained in Section 5, and the parallel implementation of the solver is described in
Section 6. Finally, Section 7 provides performance experiments and solution examples,

3

and the conclusions are given in Section 8.

2. The shallow water equations on the sphere

For a new method to be adopted in any field it must first be shown to perform well
for certain benchmark problems. In computational geosciences, and especially for global
atmospheric simulations, the shallow water equations (SWE) constitute an important
problem class for numerical testing. The SWE are a set of non-linear partial differ-
ential equations (PDE) which capture the main features of the horizontal dynamics of
atmospheric flow around the earth.

In this paper, we will use two of the benchmarks that were used in [16] to evaluate the
parallel performance of RBF-FD methods for the SWE. The first test case that we use
is called “flow over an isolated mountain”. The initial condition is perfectly laminar flow
in the easterly direction, but due to the presence of a very large cone shaped mountain,
the flow develops a wave pattern with time. A full description can be found in [40]. The
second test case, described in [24], represents the evolution of a highly non-linear wave.
The solution contains high frequency components and sharp gradients. Figure 1 shows
the solutions of the two test cases at different times.

In combination with grid based methods on the sphere, the SWE are often formulated
in spherical coordinates. However, this introduces unphysical singularities at the poles.
RBF based methods are oblivious to the coordinate system used and its orientation.
Hence, we choose to work with the Cartesian formulation of the SWE, which is singularity
free and given by

Ou =—(u-V)u— f(x xu)—gVh,
ot
Oh

where u = (u,v,w) is the wind field, x = (z, y, 2) is the location, f = 2Qz is the Coriolis
force, where 2 is the angular velocity of the earth, & is the geopotential height, and g is
the gravity.

Using the Cartesian formulation, we instead need to project the operators onto the
curved surface of the earth. This approach was introduced in [18], and is applied also
in [16]. For practical purposes, we first scale the problem to the unit sphere. The
projection operator onto the unit sphere is defined as P = I —xa”. The projected form
of the SWE then becomes

%;:_p[(u.Pv)u+f(w><u)+gPVh], (1)
% = —PV - (hu). (2)

3. The RBF-FD method and its properties

Here we will discuss the RBF-FD method. We start with the general framework,
and then discuss different properties that are important for the approximations. For
4

Day 0 Day 6

Figure 1: RBF-FD solutions to the shallow water test case “flow over an isolated mountain” using
655532 nodes and showing the geopotential height (top), and the “evolution of a highly non-linear
wave” using 612 346 nodes and showing relative vorticity (bottom) at different times. The black circle
shows the location of the cone shaped mountain. In both cases, a perturbation of an initially laminar
flow develops over time to affect the flow on a global scale. The equator and the 0°/180° meridian are
indicated by solid grid lines, and north is upward.

each property, we will in particular discuss aspects that may influence the ability of the
method to scale to large problem sizes.

We start by defining the RBFs that we will use in the underlying approximations.
A radial basis function ¢(r) is a function in d dimensions whose value depends only
on the distance r = || — ¢|| from its center point ¢. Many commonly used RBFs are
also equipped with a so called shape parameter ¢ that is applied to the argument to
influence the flatness of the RBF. Figure 2 shows the effect of scaling on a Gaussian
RBF, ¢(r) =e="".

P A R \\\
77 7 NANNN\\\
////////////////////7/(/((((1(;\;;\\ NN \\\))

\
W Wit
AN \\\\\\\ WY

I

—

_

e=1 :1/3 e=3

Figure 2: The shape of a Gaussian RBF for different values of the shape parameter ¢.

Assume there are N scattered nodes on the surface of the sphere (or in any other
geometry of choice). A differential operator D is approximated at the location x. by
using a weighted combination of the function values fr, k = 1,...,n at the n < N
nearest neighboring nodes. That is,

Df(x) ~ > wifr, (3)
k=1

where the weights wy are determined by requiring the approximation to be exact when
the solution can be exactly represented by the basis underlying the approximation, which
here consists of radial basis functions centered at the scattered nodes. Assuming that
fl@) = Y bl — zl]) = Yor_; Aedr(x) yields the following linear system of
equations for the weights

o1(z1) 1(z2) - Pr1(xn) wy Doy ()
p2(x1) d2(z2) - Pa(mn) wy Depa(x.)

(4)

(@) Gu(@) - du@a) | | wn | | Do)

Figure 3 provides a graphical representation of a differentiation stencil on the sphere. The
exemplified stencil is quite large with n = 75. Because the sphere is a periodic domain
(no boundaries) we can use large stencils without running in to the particular problems
that are associated with boundaries and high-order stencil approximations. It has been
shown that RBF approximations in the limit where the basis functions become flat are
polynomials [12, 28, 32, 30]. Therefore, at least for small values of €, the approximation
error for a stencil for a first-order derivative with n points behaves as O(h¥), where

(k+1)2 <n< (k+2)? (5)

and (k + 1)? is the number of degrees of freedom in a polynomial of degree k restricted
to the sphere.

1000

L L L L L L b
0 1000 2000 3000 4000 5000 6000
nz = 198400

Figure 3: Left: This is an illustration of a 75 node stencil on the sphere. The differential operator is
evaluated at the node marked with a square. The size of the markers indicates the magnitude of the
stencil weights and the color indicates the signs. The nodes marked with green rings (further away) are
not included in the stencil. Right: The structure of a global differentiation matrix for N = 6400 nodes.
A bandwidth minimization algorithm has been applied to the matrix.

To assemble a global differentiation matrix that approximates the operator D at all
node points given the function values at these points, we let x. traverse all node points,
and then we enter the generated weights into the corresponding row in the global sparse
differentiation matrix. A typical sparsity pattern for a differential operator approxima-
tion on the sphere is shown in the right part of Figure 3.

3.1. Stability for time-dependent PDEs

The most critical issue in scaling the RBF-FD method to large problem sizes is
stability, in particular for hyperbolic PDEs (lacking a diffusion term) like the SWE. The
discretization of the spatial operator may, as illustrated in [16], exhibit eigenvalues with
a positive real part, leading to instability. A remedy for this was given in [20] in the
form of hyperviscosity operators that can be added to the discrete operator in order to
suppress the unstable modes. The hyperviscosity operator is of the type A™, where m
needs to be higher for larger stencil sizes (corresponding to higher order methods).

To ensure convergence to the inviscid solution, the hyperviscosity must be inversely
scaled with respect to the resolution, and to obtain optimal accuracy, the order of the
hyperviscosity operator should match the numerical order of the advection discretization.

Using Gaussian RBFs, the hyperviscosity operators can be efficiently implemented [20],
see also [29] for the flat limit version. Therefore, we will use Gaussian RBFs throughout
this paper.

3.2. Stencil sizes

The stencil size has already been discussed above and how the order of accuracy k
relates to the stencil size n is given by equation (5). A larger stencil leads to higher
accuracy, but more stability problems.

7

The first test case, flow over an isolated mountain, has a non-smooth forcing term
representing the conical mountain. Therefore, the accuracy is not improved by increasing
the stencil size beyond a certain point. For this problem we will use the size n = 31
(corresponding to a fourth order approximation) chosen in [16] for all experiments. For
the second test case, we use a larger stencil with n ~ 75. This corresponds to a seventh
order approximation.

Following equation (5), it might seem reasonable to choose the stencil size equal to
(k + 1)2. However, it has been observed in experiments that certain stencil sizes have
better stability properties than others. These special numbers are typically n = 17, 31,
50, 75, and 101. We do not know yet why these sizes are better, but one theory is that
they have symmetry properties, depending on the layout of the nodes.

3.3. Node sets on the sphere

There are different approaches to create quasi uniform node distributions on the
sphere. Minimum energy (ME) nodes [42] are of high quality, but only relatively small
node sets can be generated. Maximum determinant (MD) nodes [41, 42] are also high
quality and somewhat larger node sets can be generated. These are used for the smaller
problem sizes in our numerical experiments. For the larger problem sizes, we have tried
icosahedral (ICO) node sets [2] that can be easily generated for large problem sizes.
However, the quality of the icosahedral node sets is a little bit worse. The number of
close neighbors to a node point depends on the location in the original icosahedron. This
does not matter very much for small problem sizes, but for the large problem sizes, it is
one of the factors that influence stability. Therefore, we have instead used DistMesh [31]
(DM) to generate a first version of the node set, and then smoothed it by application
of an approximate electrostatic repulsion. Local node refinement is a possibility that
should be further explored. For a problem with localized solution features, this allows
for a smaller total number of nodes than with a uniform distribution, while providing
appropriate resolution in each part of the domain. However, moving to non-uniform
node sets would require better stencil selection algorithms in order to attain stability.
The node sets must also be smoothly varying to avoid large dispersion and aliasing errors.

8.4. Scaling of stencils and RBFs

Stencil weights are computed by solving a linear system Aw = b. If we fix the node
configuration, i.e, the number of stencil nodes and their relative location up to a scaling
and translation, then we can focus on the effects of the scaling of the coordinates and
the scaling of the RBFs. Define the stencil size h as the largest distance between two
nodes in the stencil. We use the notation A = A(h,e) and b = b(h,e) in order to
facilitate the discussion of the scaling issues. Due to the interchangeability of the scaling
of the distances r and the shape parameter ¢ in the argument of the RBFs, we have the
following relations

A(aho, gq) = A(ho, agy), (6)
b(ahg,ey) = a?b(hg, aggy), (7)

where ¢ is the order of the differential operator D.
We will discuss two main strategies for choosing the scaling parameters: (i) keeping
the shape parameter constant and (ii) stationary scaling. With the first strategy, theory
8

tells us that the error will go to zero as h — 0 in exact arithmetic. However, the
numerical stability of the computation of the stencil weights depends on the conditioning
of the matrices A. Equation (6) tells us that decreasing h with a fixed e is numerically
equivalent to decreasing ¢ for a fixed h. For a fixed node set, the condition number of
A goes to infinity as e~2* when ¢ — 0 as shown in [28] and [32]. Hence, if the weights
are computed directly from (4), we get numerical stability problems for small ¢ and/or
small h.

A number of numerically stable methods for evaluating RBF interpolants or approx-
imants in the flat ¢ — 0 limit have been developed [23, 19, 21], see also [22] for global
RBF approximations on the sphere. Common for these are that the cost for evaluat-
ing the stencil weights becomes higher (by a constant factor), but computations can be
stably performed for any small value of €. Some problems may arise when the stencils
become very small in relation to the size of the spherical surface. The surface is then
numerically flat, but we are trying to generate a stencil in a three-dimensional space. A
work-around is to project the nodes onto the tangent plane and compute the weights in
the two-dimensional plane instead (personal communication Bengt Fornberg).

The second strategy, stationary scaling, is commonly adopted in practical applica-
tions, as, e.g, in [16]. By employing equation (6) for both arguments, we have that
A(ho,ey) = A(aho,e9/a). That is, if we decrease h while at the same time increasing
€, the condition number stays constant. This is of course an advantage, but as h — 0
we will run into a saturation error at some point, beyond which accuracy is not further
improved. The stencil can be modified by inclusion of lower order polynomial terms, by
which some order of convergence can be retained. How the stencil approximation errors
depend on € and h is discussed in [3] and explicit formulas are given for low order stencils.
In the article [29], the two strategies for stencil scaling are compared with each other as
well as with stencils that include polynomial terms. It can be seen that up to the point
where the saturation error enters, the performance is similar.

In [16], RBF-FD approximations were computed for N up to O(10°) nodes with
maintained convergence for the flow over an isolated mountain test case. However, a
slight change in the convergence trend for the largest problem size could indicate that
the saturation error occurs in that regime. This might put in question the need for
higher resolutions and parallel implementations. We will try to put this issue to rest by
a hypothetical example. Assume that we want to approximate two different functions
f(x) and g(x) = f(Bz). Then any derivative of order ¢ is scaled by 7 for g(x) compared
with the same derivative of f(z) for the corresponding location. If we apply a stencil
with the combination (hg, g,) to f(z), we should apply a stencil with (ho/3, Be,) to g(z).
Then the function values at the node points for the two functions will be identical and
the stencils will be identical up to a scaling factor of 57 (see eq. (7)), corresponding to
the higher derivative of g(x). The conclusion is that if saturation strikes at a certain h
for f(z), then it strikes at h/f for g(x). Hence, a function with variations at shorter
scales (8 > 1) can be resolved more before reaching the saturation error. Furthermore,
by using the stable methods, we can use scaling approach (i), which does not suffer from
saturation errors.

4. The discrete formulation of the shallow water equations

To obtain a semi-discretization of the PDE, the RBF-FD stencils are used for approx-
imation of the spatial PDE operators at each node point and the results are assembled
into one sparse global differentiation matrix per operator involved. Here the spatial op-
erators are the different components of PV, and we denote the differentiation matrices
by D%, D¥;, and D% For details on how to apply the projected operators to the RBFs
for the right hand side in the stencil weight computation (4), see [16].

We adopt a tensor notation, where each element of a matrix or a vector in turn is a
matrix or a vector. An underlined quantity such as z = (1, ..., :cn)T denotes a node
function with a (matrix, vector or scalar) value at each node point. Operations that
involve node functions are interpreted as being applied element wise for each node. The
discrete gradient operator applied to a vector or a scalar node function yields

nu Dyv Dyw DXk
Dyu= |D{u D¥v Djw|, Dyh= |D%{h]|, (8)
Diu Div Diw D%h

and the discrete divergence operator similarly becomes
Dy - u = D§u+ D¥v+ Djw. (9)

With this notation, the semi-discrete form of the shallow water equations on the
sphere becomes

0
% =—Plu-Dyu+ f(z xu) +gDnh], (10)
%:—(Q-DNMQDN@). (11)

For the time-derivative, the classical fourth order Runge-Kutta method is used. The
SWE are of hyperbolic type, which motivates the choice of an explicit time-stepping
method. To ensure stability, small hyperviscosity terms yDXu and yD%h respectively,
are incorporated into the scheme. These represent a small amount of diffusion, which
acts as stabilizer without significantly altering the solution values. As in [16], all oper-
ators are discretized using Gaussian RBFs, which allows for efficient evaluation of the
hyperviscosity operator [20].

The computationally most expensive operations in evaluating the right hand side
functions in the system of ODEs (10)—(11) resulting from the spatial discretization of
the PDEs (1)—(2) are the applications of differentiation matrices to node functions. There
are four solution components u, v, w, and h, and each is differentiated with respect to
the three coordinate directions. Furthermore, we apply the hyperviscosity once to each
component. This results in a total of 16 sparse matrix-vector multiplications for each
evaluation of the right hand side functions.

5. Task based parallel programming

We have chosen to use a task-based programming model to parallelize the SWE solver.
There are two main reasons for this choice. The first is the programmer productivity
10

aspect. A key idea in task parallel programming is that it allows the programmer to write
a sequential code in terms of computational tasks, and then a run-time system handles
the parallel execution of the tasks. In scientific applications, tasks typically share some
data and this leads to dependencies between tasks in terms of constraints on the order
in which they can execute. The run-time system needs to respect these constraints when
scheduling tasks for execution. Figure 4 shows a schematic representation of an algorithm
in terms of dependent tasks.

Figure 4: Example of a task graph from a 3x3 block Cholesky factorization.The circles represent tasks
and the arrows represent a must-execute-before relationship. The dashed line connects two tasks that
can run in any order, but not at the same time. The red tasks are factorizations, the blue are column
updates, and the green are the matrix-multiplication updates in the trailing submatrix.

The second reason to choose a task-based programming model is performance. Tasks
are scheduled dynamically at run-time to the cores, processors, and computational nodes.
Load balancing, so far only in the shared memory setting, is achieved at run-time by task
stealing. No particular assumptions are made about the hardware beforehand except for
the distinction between shared memory and distributed memory. The execution instead
adapts to the conditions of the system where the software is running. Another important
aspect is that in the task model, global barriers, which typically do not scale well, can
be avoided. Synchronization is instead fine grained between different tasks. In [27]
and [7] the suitability of different programming models and scheduling approaches was
investigated for linear algebra problems on multicore based architectures, and dynamic
scheduling was found to be beneficial for performance.

In this work, we use the SuperGlue' library, developed by the first author [36, 34, 35],
for dependency-aware task-based parallel programming. The performance of SuperGlue
has been compared with that of related efforts and it was shown that SuperGlue has
comparatively very low run-time overhead. In SuperGlue, the programmer defines tasks
and also registers what type of access to shared data that each task performs. The types
can be for example read, write, and add, where the latter is used for accesses that can
be performed in any order, but not at the same time. The tasks are submitted to the
run-time system, which infers the dependencies from the data accesses and schedules the
tasks accordingly.

An important principle in our view of task parallelism is that tasks depend on data,
not on other tasks. This allows us to add dependencies without having to synchronize
with other tasks. We use a system with data versioning, where tasks depend on a
particular version of the data. When the required version becomes available, the task
can execute. It should be noted that we do not duplicate data. The versions replace

Ihttps://github.com/tillenius/superglue
11

each other as they become available. The versions are handled by data objects that we
call (data) handles. This gives additional flexibility and allows us to construct handles
not only for consecutive blocks of data, but for arbitrary data structures, as well as for
logical resources such as for example disk I/O.

6. The sequential and parallel implementations of the solver

In this section, we will describe the implementation, optimization, and parallelization
of the RBF-FD method for the SWE step by step, starting with the sequential code and
leading up to the parallel distributed code.

6.1. The sequential MATLAB code

The first implementation of the RBF—FD SWE solver was done in MATLAB. How-
ever, as reported in [16], even the pilot implementation was 4-10 times faster, when
comparing serial execution times, than the latest C4+ discontinuous Galerkin solver de-
veloped at the National Center for Atmospheric Research (NCAR), Boulder, CO, USA.
In the comparison, the discontinuous Galerkin model was running on a cubed sphere grid
utilizing spatially uniform A- and p-refinement. The performance difference can in part
be attributed to the restrictive time step condition of high order spectral elements.

The main computational tasks in the code are the initialization part where the weights
in the differentiation matrices are computed, and the Runge-Kutta time-stepping loop.
An excerpt from the MATLAB-code containing these two steps is shown in Appendix A.

Profiling of the MATLAB program shows that the majority of the time (74% for
the tested problem size) is spent in the evaluation of the right hand side of the SWE.
Therefore, this is the part of the program that we target initially. Note that the initial
computation of the different stencil weights is trivially parallelizable in the sense that for
each operator, the N linear systems of size (n x n) are independent of each other.

Further examining the computations in the right hand side function, we find that
over 90% of the time is spent in sparse matrix-vector multiplications between differentia-
tion matrices and intermediate solution vectors. Hence, parallelizing this code efficiently
amounts to handling sparse unstructured matrix-vector multiplications, which is a clas-
sical example of a bandwidth-bound operation that is hard to get to scale on multicore
based computer systems.

6.2. The sequential C++ code

We consider the time-stepping loop only and start by performing optimizations and
adjustments of the sequential code. The particular characteristic of sparse matrix-vector
multiplications that makes them scale poorly is the low ratio of computations to memory
accesses. A common feature of this and other RBF-FD methods is that differentiation
matrices for different operators have identical sparsity patterns, since they use the same
stencil sizes. This can be exploited to increase the computational intensity. First, we
store the solution variables in the N x 4 matrix H, where each row contains the values
of (u, v, w, h) at one point (z, y, z). Then, we also store the differentiation matrices,
denoted by DPx, DPy, DPz, and L (for the hyperviscosity) together in the aggregated
operator D, reusing the common sparsity pattern. Instead of performing four separate

12

Table 1: The execution time in millions of cycles and the speedup of (the different parts of) the right
hand side computation when the sequential C4+ code is compared with the sequential MATLAB code.

MATLAB C++ Speedup
Differentiation 8186 1441 5.7
Hyperviscosity 2606 679 3.8
Other rhs ops 790 200 4.0
Total 12062 2402 5.0

matrix-vector multiplications with H, we compute them all at the same time as T=D*H,
where T has 16 values per node point.

The computations can be further optimized by noting that each instance of the so-
lution value (u, v, w, h) is of length four. This allows us to employ AVX (Advanced
Vector Extensions to the x86 instruction set) SIMD instructions when multiplying the
differentiation matrices with H. The SIMD instructions are significantly more efficient
than performing four single instruction operations. We have also changed from column
major storage as used by MATLAB to row-major compressed sparse row (CSR) storage
of the matrices.

The overall speedup from the MATLAB implementation to the sequential optimized
C++ code was 5.0 times. For a breakdown into different parts, see Table 1. Note that
much of the gain was achieved by exploiting the structure of this specific problem. We
could not have achieved the same speedup by using a standard optimized library routine
for sparse matrix-vector multiplication.

6.3. The task parallel shared memory C+4++ code

As discussed in Section 5, we use the task parallel framework SuperGlue for the imple-
mentation of the parallel code. The first step is a shared memory parallel implementation,
and the problem we will discuss is how to do the sparse matrix-vector multiplications
efficiently using SuperGlue.

We need to formulate the algorithm in terms of tasks. This can be done in different
ways for any given problem and it does have implications for performance. Task size is
one important parameter. Too small tasks make the overhead from scheduling visible,
whereas too large tasks are hard to schedule efficiently and may lead to reduced paral-
lelism. Figure 5 shows how the matrix is blocked to allow parallelism, and the resulting
access pattern of a single task of the sparse matrix-vector multiplication.

[

Figure 5: The partitioning of the matrix and vectors, and the responsibility of a single task of the
matrix-vector multiplication. The data accessed by the task is shaded.

The SuperGlue implementation of the blocked version is included in Appendix A. We
would like to emphasize that the code complexity is quite similar to that of the original
MATLAB implementation. We need to write a wrapper for each computational kernel

13

to make it into a task, but it is still easy to follow the code and recognize the different
steps in the algorithm.

6.4. The task parallel distributed memory C+4+ code

The management of the distributed environment and the communication between
different computational nodes is implemented as a layer on top of SuperGlue, using
MPI for the message passing calls. Because the distributed framework builds on the
SuperGlue programming model, the user code for the distributed case is almost identical
to the shared memory code. The main difference from the user perspective is that the
handles and tasks now are upgraded to MPI_Handle and MPI_Task with some additional
functionality. Therefore, when an MPI_Handle is created as opposed to the basic handle,
the user must in addition specify the data owner process rank and the associated memory
block. Each computational node submits the same sequence of tasks to the run-time
system, which then decides which tasks will be executed locally and which to discard.
The decision is based on the location of the output data from the task. The run-time
system also detects for which tasks data transfers from other nodes are needed and
inserts the appropriate communication tasks. All communication is point-to-point, and
the implementation cannot currently take advantage of collective communication. This
is not an issue for the SWE solver, as its communication pattern is primarily point-to-
point. We are also developing another version of the distributed task-based framework,
DuctTeip [46], with the same programming model, and also built on SuperGlue, but with
slightly different design choices.

Figure 6 shows a simplified example of what the run-time system does in a situation
when a transfer is needed. The transfer is detected when the Copy task is submitted.
For the process with rank 0, the owner of the data x, a task that will send the data is
submitted. When the send is completed, a FinishedSendTask updates the version number
of the data. At rank 1, when the data has been received, a PublishTask is submitted
that copies the data to the handle. In addition to keeping track of version numbers, the
handles also register who last wrote to a certain data, and which nodes already have a
copy of the latest version. When scheduling tasks, the run-time system gives priority to
tasks that work on data that will be communicated.

Xx.set_owner_rank (0); @
y.set_owner_rank (1); - mpi @

Rank 0 Rank 1

submit (new Write(x)); FinishedSendTask

submit (new Copy(x, y));
submit (new Write(x));

Figure 6: The code to the left shows the tasks that the programmer submits, and the figure to the right
shows also the additional tasks that are submitted by the run-time system and how they interact with
the MPI process thread.

14

7. Experimental results

The numerical experiments are performed on the Tintin cluster at the UPPMAX
facilities at Uppsala University. The cluster has 160 computational nodes equipped with
dual AMD Opteron 6220 Bulldozer CPUs. Formally, this gives us 16 cores per node.
However, it is important to note that each floating point unit is shared between two
cores. Hence, for the type of floating point heavy simulations performed here, we can
not expect a speedup of more than 8 times on one computational node.

The result section consists of two main parts, first we analyze the performance of
the parallel implementation, and then we discuss the SWE solutions computed with the
parallel RBF-FD method. The code that we used can be downloaded from GitHub?.

The convergence of the RBF-FD method is not the focus of this paper. However,
we did perform some experiments for the second test case, which has a smooth solution,
using the solution with N = 155718 nodes as reference. With a stencil size n = 31, we
achieve almost the expected fourth order convergence. The larger stencil size n = 75 £2
leads to approximately fifth order convergence. This is lower than the expected seventh
order, but the actual errors are about 8 times smaller than for n = 31 and a given N.
More extensive experimental results on the convergence of RBF—FD methods applied to
convective problems formulated over the sphere are reported in [20, 16].

7.1. Parameter values in the experiments

For the “flow over an isolated mountain” test case, we use stencil size n = 31, hy-
perviscosity of order 4, and the amount of hyperviscosity v = —0.05 - N~%. For the
“evolution of a highly non-linear wave” test case, we instead use stencil size n = 75,
hyperviscosity of order 8, and the amount of hyperviscosity v = —0.3 - N=8. Even at
coarse resolutions, these terms are very small, and do not qualitatively affect the solution
apart from ensuring stability.

The node sets, shape parameters, time steps, and block sizes used for the first test
case are listed in Table 2. These are the values that were also used in [16]. The shape
parameter values are chosen close to the ill-conditioning limit for optimal accuracy. How-
ever, for the largest problem size, due to the lack of uniformity of the icosahedral node
set, we needed to increase the shape parameter value in order to have stability. This
decreases the accuracy of this solution compared to having the expected value ¢ = 28.
The last column in the table shows how this affects the product eh (which relates to the
stationary scaling), assuming that h is proportional to 1/ V/N.

For the second test case we have also increased the shape parameter value for the
largest problem. We had problems with the ICO node sets, and therefore we have used
the smoothed DM nodes. Furthermore, we included a stencil selection procedure, where
stencils of sizes n = 75 4+ 2 are compared with respect to the total magnitude of the
weights Y |w;|/y/n, and the one with smallest result is used. The rationale behind this
procedure is that stencils with weights of large magnitude have in experiments been
found to produce local instabilities. The method parameters that were used are given in
Table 3.

?https://github.com/tillenius/rbf-sw

15

Table 2: The node sets, shape parameter values, time steps, and block sizes used for the numerical
simulations of the “flow over an isolated mountain” test case. The last column indicates how the
relation between the shape parameter and the stencil size changes.

N Type e At ny €/VN
6400 MD 2.7 900 400 0.0338
25600 MD 5.5 300 1280 0.0344
40962 ICO 7.0 180 1280 0.0346
163842 ICO 14.1 60 1600 0.0348
655362 ICO 40.0 60 2048 0.0494

Table 3: The parameter values for the numerical simulations of the second test case. Note that the
stencil size (and the shape parameter values) are larger than for the first test case.

N Type e At ¢/VN
42768 DM 12.6 180 0.0609
86111 DM 180 90 0.0613

155718 DM 243 60 0.0616
344444 DM 36.2 60 0.0617
612346 DM 60.0 30 0.0767

The time step was investigated in the previous paper [16], and similar time steps are
used here for the smaller problem sizes. The proportionally larger time steps for the
highest resolution runs were chosen close to the stability limit, in order to reduce the
total run time.

7.2. Performance analysis

All experiments in this section are performed for the “flow over an isolated mountain”
test case. In each experiment, we run the code for 100 time-steps, which is enough to
compute the speedup, but does not correspond to a complete run. For the largest problem
with time step At = 60s, the total simulation time corresponding to 15 days requires
21600 time steps. The sparse matrices are divided into blocks of different sizes depending
on the problem size. These block sizes work well, but are not completely optimized. For
the largest problem we use a block size of 2048 x 2048, resulting in 320 x 320 blocks.
Blocks that are empty are discarded.

We start with experiments for the shared memory case as this is the basis for the dis-
tributed memory code and the performance properties will partly be inherited. Figure 7
visualizes an execution trace for the largest problem size considered, with N = 655 362
nodes. The tasks from different time steps do not need to synchronize globally, and
the scheduler can take advantage of this to schedule any tasks that are ready to run, in
parallel. The relatively small block size implies a large number of tasks, which means
more time is spent on task generation and task management. In this case, 2% was spent
on task generation, and 5% was idle time, which includes task management. When the
block size is increased to 4096 x 4096 elements, the task generation time is decreased to
0.5% of the run time, and the idle time is reduced to only 1.36%. In spite of this, the
overall computation time is about 5% slower. The reason is that SuperGlue schedules

16

Thread

|
|
|

Time (cycles) 1e6

Figure 7: Part of an execution trace for N = 655362 nodes and 16 shared memory cores. Each triangle
represents a task with start time at the base and finish time at the tip. Tasks of the same color belong
to the same time-step. The longer tasks are the ones that submit the computational tasks.

tasks by locality, and smaller working sets means that more data can be reused between
tasks. Increasing the block size increased the number of cache misses with almost 20%.

Table 4 shows the resulting speedups for different problem sizes. The parallel code
with execution time T, is compared both against the best serial (unblocked) code with
execution time Thest, and against the parallel (blocked) code running on 1 core with
execution time T7. The estimated total execution time of the whole simulation T;Ot is
also given as this is the time that the end user will experience.

Table 4: Speedups for 100 time steps using the shared memory code. We compare against the best serial
code, Thest, and execution on one core with the parallel code, T7.

Size N T, (s) Speedup Thest/Tp, Speedup T7/T, Total T;Ot

6400 0.1 70 8.7 (109%) s
25600 0.5 60 68 (84%) 21s
40962 0.9 53 6.0 (75%) Im 3s
163842 4.3 43 51 (64%) 15m 27s
655362 18.3 41 49 (61%) 1h 5m 5ls

The theoretical optimal speedup is 8 on the system we are using, and with the very
low idle time seen in the execution trace, we might expect a nearly perfect speedup.
However, this is where the bandwidth-bound characteristics of the sparse matrix-vector
multiplication comes in. In current multicore processors, resources such as caches and
memory bandwidth are shared between several cores. This may result in contention
between the cores and consequently performance degradation when the resource is over-
subscribed. The efficiency decreases as the problem size increases, because of the larger
working set. Comparing the memory behavior when solving the largest and the smallest
problems, the larger problem generated over two times as many last-level cache misses
per instruction.

To evaluate the contention hypothesis, we compute the total time spent in the sparse

17

matrix-vector products in the sequential case and compare with the time in the parallel
case (sum over the cores). We then find that the time in the parallel case is 152% of
the sequential. The slowdown that we experience indicates that the cores are waiting
for data to be delivered from memory. The problem is a combined effect of having few
computations per data access, and not accessing data consecutively in memory.

How to schedule to decrease the resource contention is discussed in [37]. However,
this approach only improves the situation if there are tasks that do not need the resource
in question that can be interleaved with the resource bound tasks. This is not the case
here, since all the heavy tasks are similar in nature.

Full execution: 100 time teps

15D AP DI I D> DA DD DD DD 5> DA DI IIDIN 11D Dt MDD IO DD DB DA D I DD DD AD DD i
14-D DD DM DI DI D D DD ISP DD DD D DI MDD D10 D DD DD DN B D)
13-H I D) DD DD) DD I D DD D DD DD D - DADAMM DD DD DD D DI ID DD DA DIV IPIDD M
12-DIH DD I D DM b 1 S D D) | DO D D D DD D 1 - D b D A M
IR AR R U A 2 g L A L A T
1ODIK IR INDY DARDDHHMPMDID - DI DI ND NI DD MDD I MDD PP DI IDIDDID DPID MDD DIPIDN - HD
DY D DD D A O DD M DD DD DD b D DD D D AMM MDD DD DM DAY MM DH DY DD DD DIV
PIPIIIDIN DIEDDID DD DN DD I PN D10 DM DI D PN DI N ORI D DD DD D
DI DD D DD A 1 I i 4 D > MMM 0 D0 b 1 0 O D -
LA Al A S Al g O A S T
B DIIPDY DUDH D DD D DD MR DI B DD DIDY DD DD D D IR DD DI NI D DD DM H
Uauaad sl Al L T S g R i i A Sl S S S T
53 D> 1) DI D 3 DDA D1 10 D 610 D I DD 1 DD DD M- D DA b D I D 1 DA
L Rl 2 R L A el 2 i < it Al e 2
ML D DRI MMM DDA MDA DN D DD DD DD DI D D DA DI HDAHDI DD DI DD DNDD
P O DD D D b Do 10 D D) D D O I A DI | D) 1 DI 1111 D PO N B |

b 200 400 600 800 1000
Time (cycles) 1e6

Thread

OFRrNWRPRUOON OO

First node zoomed in

Figure 8: The execution trace for N = 655362 nodes using a distributed system with 10 computational
nodes, each with 16 shared memory cores. The top subfigure shows the full execution trace for 100 time
steps. There are 10 bands, each representing one computational node. The lower subfigure shows a part
of the trace only for the first computational node (the lower band in the top subfigure). The colors
represent the different time steps.

Figure 8 shows execution traces for the distributed memory code, running 100 time-
steps of the problem with N = 655363 nodes and block size 4096 x 4096. Thread 0 on
each node is responsible for communication, which is why it executes fewer tasks. All
MPI calls are non-blocking to overlap with task execution, and are not shown in the
execution trace. Even when excluding thread 0, the idle time is here 20.40%, which is
larger than in the shared memory case.

The distribution of data between the computational nodes, and consequently the
distribution of work is currently static (determined before the execution starts). By
implementing a load-balancing strategy at the node level, this can be improved. We are
currently investigating mechanisms for automatic load-balancing over the nodes.

18

Table 5: Speedups for 100 time steps using the distributed memory code. We compare against the best
shared memory code, Tihared, and execution on one node with the parallel code, T7j.

Nodes Block size Execution time Speedup Efficiency
q Ny Tq (S) Ttot Tshared/Tq Tl /Tq T’best/T‘q/Q/8

1 2048 18.76 1h T7m 32s 0.98 1.00 50%

2 2048 9.22 33m 11s 1.98 2.04 (101.8%) 51%

4 2048 4.48 16m 8s 4.08 4.19 (104.7%) 52%

6 2048 2.99 10m 45s 6.12 6.28 (104.7%) 52%

8 2048 2.22 8m 0s 8.23 8.44 (105.5%) 53%

10 2048 2.32 8m 21s 7.89 8.09 (80.9%) 41%

10 4096 1.83 6m 35s 10.00 10.26 (102.6%) 51%

Table 5 shows the speedup of the distributed code for different numbers of computa-
tional nodes. The execution time 7, for running on ¢ computational nodes is compared
both against the best shared memory code (without MPI) with execution time denoted
by Tihared, and against the distributed code (with MPI) running on one node, T;. We
have also computed the total parallel efficiency as the speedup against the best serial
code Thest /Ty, divided by the total (effective) number of cores, which is 8¢.

Looking at these numbers, we find that the scaling of the parallel code is very close
to the theoretical best speedup of ¢ up until 10 nodes. This means that the total effi-
ciency is more or less constant for all numbers of nodes. What happens at 10 nodes is
that generating the tasks starts taking longer time than executing them. However, by
increasing the block size, we can regain perfect scalability.

If we now look at the overall speedup that has been achieved, the distributed parallel
code running on 10 computational nodes is currently 205 times faster than the original
MATLAB implementation, 41 times faster than the optimized serial C-++-code, and 10
times faster than the parallel shared memory code. Clearly, this enables both larger and
faster SWE simulations using the RBF—FD method.

7.8. Shallow water equation simulation results

The “flow over an isolated mountain” test case is comparatively easy to solve, and
visually, the solutions appear identical for all problem sizes. Figure 9 shows the solution
for the lowest resolution NV = 6 400, which corresponds to 300 km, and the error measured
against the solution with N = 163 842, which corresponds to around 60 km. In [16], the
finer solution was compared against a highly resolved discontinuous Galerkin solution
showing that the error in the geopotential height was less than 1 m. As mentioned
before, we do not carry out a full convergence study here, instead we focus on finding
out if we can solve the larger problems with a qualitatively well behaved solution.

For the “evolution of a highly non-linear wave” test case it is much harder to get a
physically correct solution. It also takes longer to solve the problem because we use a
larger stencil and a smaller time step. In Figure 10, a number of solutions are displayed
with a resolution of about 30 km for the largest problem. Solutions for smaller node
numbers can be found in [16] for comparison. All the solutions have the expected qual-
itative behavior, but we can see that the features of the solution become sharper and
better resolved with each refinement. Hence, the higher resolution that we could reach
with the parallel code really has an effect.

19

T T cr\&
N> —
50 @0@7;\/ gpz _ U/ 1
R S T2
E E 0 o e
E 3 et Y@
° ¥
_50 é ! ? Qz &
—1!’)0 —160 —56 6 56 160 150
Longitude Longitude
N = 6400 Error against N = 163 842

Figure 9: Left: The computed geopotential height after 15 days for the “flow over an isolated mountain”
test case with a resolution of 300 km. The geopotential height ranges from 5000 m (blue) to 5950 m
(red), with 50 m intervals between contour lines. Right: The errors in the coarse solution when compared
with a reference solution with 60 km resolution. The largest difference is 13 m, and the interval between
contour lines is 2 m. The reference solution has an error that is below 1 m [16].

We believe that the behavior can be improved by employing one of the stable methods,
RBF-QR [19] or RBF-GA [21], to compute stencils for smaller e-values. This is something
that we will implement and test.

8. Conclusions

Our three main objectives in this paper were to show that the RBF—FD method can
be efficiently parallelized, that task-based parallel programming is a suitable approach
both for productivity and performance, and that the method can produce high quality
solutions for the shallow water benchmark problems.

Starting from the original MATLAB implementation, which was shown to perform
well sequentially compared with a discontinuous Galerkin solver [16], we have achieved
205 times speedup. Compared with the best sequential C++ code, we have a speedup of
41 using 10 computational nodes (160 cores, 80 FPUs) in a cluster. Part of this speedup
comes from specific optimizations of the sparse matrix-vector multiplications. These are
method and problem specific and can not be found in standard library routines. However,
similar opportunities would arise in other RBF-FD solvers as well. Judging from the
performance experiments, the code can scale to even larger computer systems, if needed.

The parallelization was done using the SuperGlue library for task-based parallel pro-
gramming. The resulting code is quite similar to the original code except that the
operations on matrices and vectors are blocked. The programmer does not need to pay
any particular attention to the parallel aspects, except that in the distributed code, the
data ownership is specified. The block size does affect performance to some extent. Over-
all, the productivity goal is met compared with the effort it would take to hardcode all
interactions and schedules.

The task-based approach resulted in a very efficient code. There is very little idle
time, and the performance losses that are observed are due to resource sharing, which
cannot be completely avoided for a multicore based system. We have no reason to believe
that another parallel approach would be more efficient.

20

N = 42768 N =86111

N = 155718 N = 344444

N = 612346

Figure 10: The computed relative vorticity after 6 days for different resolutions for the “the evolution
of a highly non-linear wave” test case. The top boundary corresponds to the North Pole, the bottom
boundary is the Equator, and the zero longitude is located in the center of the horizontal axis.

We were able to compute highly resolved solutions to the shallow water benchmark
problems. The second test case with the highly non-linear wave is quite sensitive to the
method parameters and to the node layout. We believe that local node refinement could
prove beneficial for stability, since all features would be resolved properly. However, this
still needs to be investigated.

21

Appendix A. Sample MATLAB and C+4++ code

Here we show the main function of the original MATLAB program together with the
shared memory C+4++ implementation, to illustrate that the difference in code complexity
is relatively small.

Listing 1 shows the main computational steps of the MATLAB implementation. First
the necessary RBF-FD matrices are set up, and then the time stepping is performed in
a loop. The variable H is an (N x 4) matrix with the node functions of the four solution
components at the current time step as its columns.

% Build differentiation matrices
% and hyperviscosity operator
[DPx, DPy, DPz, L] = rbfmatrix_£fd();

for i=1:timesteps
% Runge-Kutta
F1 = dt*xrhs(H);

F2 = dt*rhs(H + 0.5%F1);
F3 = dt*rhs(H + 0.5*%F2);
F4 = dt*xrhs(H + F3);

H=H+ (1/6)*(F1 + 2%xF2 + 2xF3 + F4);
end

Listing 1: Excerpt from the main program of the MATLAB implementation.

Listing 2 shows the SuperGlue user code for the blocked matrix-vector multiplication.
First, the involved blocked data structures with nb blocks in each dimension are created.
Each block of these data structures contains a SuperGlue handle. Then the task to
multiply a single block is defined. The data accesses are registered in the constructor
and the run method (which is not displayed here) implements the computational kernel.
Finally, a helper function is defined, which submits the block multiplication tasks in a
loop.

BlockedMatrix D(nb,nb);
BlockedVector H(mnb);
BlockedVector T(mnb);

struct MultTask : public Task {

mult (VectorBlock &T, MatrixBlock &D, VectorBlock &H) {
registerAccess(add, T.handle);
registerAccess(read, D.handle);
registerAccess(read, H.handle);

}

void run() { /* T += D*H x*/ }

};

void mult (BlockedMatrix &D, BlockedVector &H, BlockedVector &T) {
for (int i = 0; i < nb; ++i)
for (int j = 0; j < mnb; ++j)
submit (new MultTask(T(i), D(i,j), H(j)));
}

Listing 2: Blocked matrix-vector multiplication using SuperGlue. Note that the actual multiplication
kernel is not shown.

22

To see how we can build a more complete application, we also show the code for the
whole time-stepping loop in Listing 3. GenTasks is a task that submits other tasks. It
calls a number of subroutines, which are listed below, that in turn submits the compu-

tational tasks. When all task for one time-step have been submitted, a new instance of
GenTasks is added.

// Runge-Kutta step
void GenTasks::run() {
£(F1, H); // Fi = £(H)

add(H1, H, 0.5xdt, F1); f(F2, H1); // F2 = f(H + 0.5xdt*F1)

add (H2, H, 0.5%dt, F2); f£f(F3, H2); // F3 = £(H + 0.5%dt*F2)

add (H3, H, dt, F3); £(F4, H3); // F4 = f£(H + dt*F3)

step(H, F1, F2, F3, F4); // H = H + dt/6%(F1+2%F2+2%F3+F4)
submit (new GenTasks (H)); // Generate new tasks for next step

}

// evaluate OH/Ot

void f(dH, H) {
mult (T, D, H); // T = DxH
rhs (dH, H, T); // dH =

}

Listing 3: The main loop in the task parallel code. Note that all the subroutines here submit tasks.

The implementation of the mult subroutine was indicated in Listing 2. The other
helper routines are displayed in Listing 4.

void add(Htmp, a, H) {
for (int r = 0; r < nb; ++r)
submit (new AddTask (Htmp(r), a, H(r));
}

void rhs(dH, H, T) {
for (int r = 0; r < nb; ++r)
submit (new RHSTask(H(r), T(r)));
}

void step(H, F1, F2, F3, F4) {
for (int r = 0; r < nb; ++r)
submit (new StepTask(H(r), Fi(r), F2(r), F3(r), F4(r)));

Listing 4: The helper tasks that submit the computational tasks for each block of the matrix H.

[1] C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier, StarPU: a unified platform for task schedul-
ing on heterogeneous multicore architectures, Concurrency Computat. Pract. Exper. 23 (2) (2011)
187-198.

[2] J. R. Baumgardner, P. O. Frederickson, Icosahedral discretization of the two-sphere, SIAM J.
Numer. Anal. 22 (6) (1985) 1107-1115.

[3] V. Bayona, M. Moscoso, M. Carretero, M. Kindelan, RBF-FD formulas and convergence properties,
J. Comput. Phys. 229 (22) (2010) 8281-8295

[4] V. Bayona, M. Moscoso, M. Kindelan, Gaussian RBF-FD weights and its corresponding local
truncation errors, Eng. Anal. Bound. Elem. 36 (9) (2012) 1361-1369.

[5] V. Bayona, M. Moscoso, M. Kindelan, Optimal variable shape parameter for multiquadric based
RBF-FD method, J. Comput. Phys. 231 (6) (2012) 2466—2481.

23

[6]
[7]
(8]
[9]

(10]

(11]
(12]

(13]

(14]

(15]

(16]

[17]
18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]

27]

28]

[29]

(30]

E. F. Bollig, N. Flyer, G. Erlebacher, Solution to PDEs using radial basis function finite-differences
(RBF-FD) on multiple GPUs, J. Comput. Phys. 231 (21) (2012) 7133-7151.

A. Buttari, J. Langou, J. Kurzak, J. Dongarra, A class of parallel tiled linear algebra algorithms
for multicore architectures, Parallel Computing 35 (1) (2009) 38-53.

O. Davydov, D. T. Oanh, Adaptive meshless centres and RBF stencils for Poisson equation, J.
Comput. Phys. 230 (2) (2011) 287-304.

O. Davydov, D. T. Oanh, On optimal shape parameter for Gaussian RBF-FD approximation of
Poisson equation, Comput. Math. Appl. 62 (2011) 2143-2161.

H. Ding, C. Shu, D. B. Tang, Error estimates of local multiquadric-based differential quadrature
(Imqdq) method through numerical experiments, International Journal for Numerical Methods in
Engineering 63 (11) (2005) 1513-1529.

E. Divo, A. J. Kassab, An efficient localized radial basis function meshless method for fluid flow
and conjugate heat transfer, J. Heat Transfer 129 (2) (2006) 124-136.

T. A. Driscoll, B. Fornberg, Interpolation in the limit of increasingly flat radial basis functions,
Comput. Math. Appl. 43 (3-5) (2002) 413-422.

A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, J. Planas, OmpSs: a
proposal for programming heterogeneous multi-core architectures, Parallel Processing Letters 21 (2)
(2011) 173-193.

G. Erlebacher, E. Saule, N. Flyer, E. Bollig, Acceleration of derivative calculations with application
to radial basis function: Finite-differences on the Intel Mic architecture, in: Proceedings of the 28th
ACM International Conference on Supercomputing, ICS "14, ACM, New York, NY, USA, 2014, pp.
263-272.

URL http://doi.acm.org/10.1145/2597652.2597656

N. Flyer, E. Lehto, Rotational transport on a sphere: local node refinement with radial basis
functions, J. Comput. Phys. 229 (6) (2010) 1954-1969.

N. Flyer, E. Lehto, S. Blaise, G. B. Wright, A. St-Cyr, A guide to RBF-generated finite differences
for nonlinear transport: shallow water simulations on a sphere, J. Comput. Phys. 231 (11) (2012)
4078-4095.

N. Flyer, G. B. Wright, Transport schemes on a sphere using radial basis functions, J. Comput.
Phys. 226 (1) (2007) 1059-1084.

N. Flyer, G. B. Wright, A radial basis function method for the shallow water equations on a sphere,
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 (2106) (2009) 1949-1976.

B. Fornberg, E. Larsson, N. Flyer, Stable computations with Gaussian radial basis functions, STAM
J. Sci. Comput. 33 (2) (2011) 869-892.

B. Fornberg, E. Lehto, Stabilization of RBF-generated finite difference methods for convective
PDEs, J. Comput. Phys. 230 (2011) 2270-2285.

B. Fornberg, E. Lehto, C. Powell, Stable calculation of Gaussian-based RBF-FD stencils, Comput.
Math. Appl. 65 (4) (2013) 627-637.

B. Fornberg, C. Piret, A stable algorithm for flat radial basis functions on a sphere, STAM J. Sci.
Comput. 30 (1) (2007) 60-80.

B. Fornberg, G. Wright, Stable computation of multiquadric interpolants for all values of the shape
parameter, Comput. Math. Appl. 48 (5-6) (2004) 853-867.

J. Galewsky, R. Scott, L. Polvani, An initial-value problem for testing numerical models of the
global shallow-water equations, Tellus A 56 (5) (2004) 429-440.

G. Kosec, B. Sarler, Solution of thermo-fluid problems by collocation with local pressure correction,
Int. J. Numer. Meth. Heat & Fluid Flow 18 (7/8) (2008) 868-882.

G. Kosec, R. Trobec, M. Depolli, A. Rashkovska, Multicore parallelization of a meshless PDE solver
with OpenMP, in: G. Haase, M. Liebmann (eds.), Parallel Numerics 11, Leibnitz, Austria, 2011,
pp- 58-69.

J. Kurzak, J. Dongarra, Implementing linear algebra routines on multi-core processors with pipelin-
ing and a look ahead, in: B. Kagstrom, E. Elmroth, J. Dongarra, J. Wasniewski (eds.), Applied
Parallel Computing. State of the Art in Scientific Computing, vol. 4699 of Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, 2007, pp. 147-156.

E. Larsson, B. Fornberg, Theoretical and computational aspects of multivariate interpolation with
increasingly flat radial basis functions, Comput. Math. Appl. 49 (1) (2005) 103-130.

E. Larsson, E. Lehto, A. Heryudono, B. Fornberg, Stable computation of differentiation matrices
and scattered node stencils based on Gaussian radial basis functions, STAM J. Sci. Comput. 35 (4)
(2013) A2096-A2119.

Y. J. Lee, G. J. Yoon, J. Yoon, Convergence of increasingly flat radial basis interpolants to poly-

24

(31]
(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]
(42]
[43]
[44]
[45]

[46]

nomial interpolants, STAM J. Math. Anal. 39 (2) (2007) 537-553.

P.-O. Persson, G. Strang, A simple mesh generator in Matlab, STAM Rev. 46 (2) (2004) 329-345.

R. Schaback, Multivariate interpolation by polynomials and radial basis functions, Constr. Approx.
21 (3) (2005) 293-317.

C. Shu, H. Ding, K. S. Yeo, Local radial basis function-based differential quadrature method and
its application to solve two-dimensional incompressible Navier—Stokes equations, Comput. Methods
Appl. Mech. Eng. 192 (2003) 941-954.

M. Tillenius, Leveraging multicore processors for scientific computing, Licentiate thesis, Department
of Information Technology, Uppsala University (Sep. 2012).

M. Tillenius, SuperGlue: A shared memory framework using data-versioning for dependency-aware
task-based parallelization, Tech. Rep. 2014-010, Department of Information Technology, Uppsala
University, to appear (Apr. 2014).

M. Tillenius, E. Larsson, An efficient task-based approach for solving the n-body problem on
multicore architectures, in: PARA 2010: State of the Art in Scientific and Parallel Computing,
University of Iceland, Reykjavik, 2010, 4 pp.

M. Tillenius, E. Larsson, R. M. Badia, X. Martorell, Resource-aware task scheduling, ACM Trans.
Embed. Comput. Syst. 14 (1) (2015) 25 pp.

M. Tillenius, E. Larsson, E. Lehto, N. Flyer, A task parallel implementation of a scattered node
stencil-based solver for the shallow water equations, in: Proc. 6th Swedish Workshop on Multi-Core
Computing, Halmstad University, Halmstad, Sweden, 2013, pp. 33-36.

A. 1. Tolstykh, On using RBF-based differencing formulas for unstructured and mixed structured-
unstructured grid calculations, in: Proceedings of the 16th IMACS World Congress on Scientific
Computation, Applied Mathematics and Simulation, Lausanne, Switzerland, 2000, p. 6 pp.

D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob, P. N. Swarztrauber, A standard test set for
numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys.
102 (1) (1992) 211-224.

R. S. Womersley, I. H. Sloan, How good can polynomial interpolation on the sphere be?, Adv.
Comput. Math. 14 (3) (2001) 195-226.

R. S. Womersley, I. H. Sloan, Interpolation and cubature on the sphere, website http://web.maths.
unsw.edu.au/~rsw/Sphere/ (2003).

G. B. Wright, Radial basis function interpolation: numerical and analytical developments, Ph.D.
thesis, University of Colorado, Boulder (2003).

G. B. Wright, N. Flyer, D. A. Yuen, A hybrid radial basis functionpseudospectral method for
thermal convection in a 3-d spherical shell, Geochem. Geophys. Geosys. 11 (7) (2010) Q07003.

G. B. Wright, B. Fornberg, Scattered node compact finite difference-type formulas generated from
radial basis functions, J. Comput. Phys. 212 (1) (2006) 99-123.

A. Zafari, M. Tillenius, E. Larsson, Programming models based on data versioning for dependency-
aware task-based parallelisation, in: Proc. 15th International Conference on Computational Science
and Engineering, IEEE Computer Society, 2012, pp. 275-280.

25

