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The aim of the BENCHOP project is to provide the finance community with a common suite of
benchmark problems for option pricing. We provide a detailed description of the six benchmark
problems together with methods to compute reference solutions. We have implemented fifteen different
numerical methods for these problems, and compare their relative performance. All implementations
are available on line and can be used for future development and comparisons.
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1. Introduction

The research on numerical methods for option pricing problems has been extensive over
the last decades and there is now a plethora of methods targeting various types of options.
However, there is a lack of cross comparisons between methods and a similar lack of
common benchmarks to evaluate new approaches.

The aim of BENCHOP is to provide the finance community with a set of common
benchmark problems that can be used both for comparisons between methods and for
evaluation of new methods. Furthermore, in order to facilitate comparisons, MATLAB
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implementations of a wide range of existing methods for each benchmark problem will
be made available through the BENCHOP web site www.it.uu.se/research/project/

compfin/benchop.
We also aim for BENCHOP to serve as a takeoff for future development of methods

in option pricing. We expect future papers in the field to use the BENCHOP codes and
problems to evaluate performance. In this way, we can contribute to a more uniform and
comparable evaluation of the relative strengths and weaknesses of proposed methods.

The benchmark problems have been chosen in such a way as to be relevant both
for practitioners and researchers. They should also be possible to implement with a
reasonable effort. We have selected problems with respect to a number of features that
may be numerically challenging. These are early exercise properties, barriers, discrete
dividends, local volatility, stochastic volatility, jump diffusion, and two underlying assets.
We have also included evaluation of hedging parameters in one of the problems, as this
adds additional difficulties.

In this paper, we present the benchmark problems with sufficient detail so that other
people can solve them in the future. We also provide analytical solutions where such are
available or methods for computing accurate reference solutions otherwise. Each problem
is solved using MATLAB implementations of a number of already existing numerical
methods, and timing results are provided as well as error plots. For details of the methods,
we refer to the original papers and additional notes at the BENCHOP web site. The
codes are not fully optimized, and the numerical results should not be interpreted as
competition scores. We rather see it as a synoptical exposition of the qualities of the
different methods.

In Section 2 we state and motivate the benchmark problems while the numerical meth-
ods are briefly presented in Section 3. Section 4 is dedicated to the presentation of the
numerical results and finally in Section 5 we discuss the results. In Appendix A we present
how the reference values are computed for the different problems and in Appendix B we
discuss how the local volatility surface is computed for one of the problems.

2. Benchmark problems

In this section we state each of the six benchmark problems. In the mathematical for-
mulations, we let S represent the actual (stochastic) asset price realization, whereas s is
the asset price variable in the PDE formulation of the problem, t is the time (with t = 0
representing today), r is the risk free interest rate, σ is the volatility, W is a Wiener
process, u is the option price as a function of s, K is the strike price, and T is the time of
maturity. The payoff function φ(s) is the value of the option at time T . In Problem 4, V
is the stochastic variance variable, and v is the variance value in the PDE-formulation.

In practice, the asset value today, S0, is a known quantity, while the strike price K can
take on different values. In the benchmark problem descriptions below we have chosen to
fix all parameters, and then solve for different values of S0 to simulate pricing of options
that are ‘in the money’, ‘at the money’ and ‘out of the money’. The initial values are not
given in the problem descriptions, but for each table and figure in the numerical results
section, the values that were used are listed.
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2.1 Problem 1: The Black–Scholes–Merton model for one underlying asset

The celebrated Black–Scholes–Merton [4, 39] option pricing model, developed in the
early 70’s, is arguably the most successful quantitative model ever introduced in social
sciences, even initiating the new field of Financial Engineering, which occupies thousands
of researchers in financial institutions and universities across the world.

A key property of the model is that by building on so-called no-arbitrage arguments,
it allows the price of plain vanilla call and put options to be calculated using variables
that are either directly observable or can be easily estimated. The model is still widely
used as a benchmark, although more advanced models have been developed over the
years to take into account real-world features of asset prices dynamics, such as jumps
and stochastic volatility (see below).

The Black–Scholes–Merton model has the advantage that closed form solutions exist
for prices, as well as for hedging parameters, for some types of options. It has therefore
been extensively used to test numerical methods that are then applied to more advanced
problems. The computation of the hedging parameters (Greeks) is included in this bench-
mark problem as they are of significant practical interest and can be expensive and/or
difficult to compute for some numerical methods.

Mathematical formulation

SDE-setting: dS = rSdt+ σSdW. (1)

PDE-setting:
∂u

∂t
+

1

2
σ2s2∂

2u

∂s2
+ rs

∂u

∂s
− ru = 0. (2)

Deliverables

The pricing problem should be solved for three types of options; a) a European call
option, b) an American put option, and c) a barrier option. For the European option

also the most common hedging parameters ∆ = ∂u
∂s , Γ = ∂2u

∂s2 and ν = ∂u
∂σ should be

computed.

Parameter and problem specifications

For this problem we have two sets of model parameters, representing less and more
numerically challenging situations, respectively.

Standard parameters: σ = 0.15, r = 0.03, T = 1.0, and K = 100. (3)

Challenging parameters: σ = 0.01, r = 0.10, T = 0.25, and K = 100. (4)

The three types of options are characterized by their exercise properties and payoff
functions.
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a) European call: φ(s) = max(s−K, 0).

b) American put: φ(s) = max(K − s, 0),
u(s, t) ≥ φ(s), 0 ≤ t ≤ T .

c) Barrier call up-and-out: φ(s) =

{
max(s−K, 0), 0 ≤ s < B
0, s ≥ B , B = 1.25K.

2.2 Problem 2: The Black–Scholes–Merton model with discrete dividends

A shortcoming of the classical Black-Scholes formula is that it is only valid if the underly-
ing stock does not pay dividends, invalidating the approach for many stocks in practice.
In some special cases, e.g., when dividend yields are constant and paid continuously
over time, closed form solutions can be derived for dividend paying stocks too, see [39].
Usually, however, numerical methods are needed to calculate the option’s value.

In practice, dividends are paid at discrete points in time, and the size of the dividend
payments depends on the performance of the firm. For example, a firm whose performance
has been poor may be capital constrained and therefore choose not to make a dividend
payment, as may a company that needs its capital for a new investment opportunity.
Fairly advanced stochastic modeling may therefore be needed in practice to capture the
dividend dynamics of a company. In numerical tests, it is common to abstract away
from these issues and simply assume that the firm makes discrete proportional dividend
payments (i.e., has a constant dividend yield).

Mathematical formulation

SDE-setting: dS = rSdt+ σSdW − δ(t− τ)DS dt. (5)

PDE-setting:
∂u

∂t
+

1

2
σ2s2∂

2u

∂s2
+ rs

∂u

∂s
− ru = 0, (6)

In the SDE case, the (single) dividend at time τ enters explicitly, whereas in the PDE
case, it is implicitly taken into account by enforcing

u(s, τ−) = u(s(1−D), τ+). (7)

Deliverables

Prices should be computed for a) a European call option and b) an American call option.

Parameter and problem specifications

The dividend is defined by τ = 0.4 and D = 0.03. We use the standard parameters (3)
except for the expiration time, set to T = 0.5, together with standard payoff function
φ(s) = max(s −K, 0) and European and American exercise properties respectively, see
Problem 1.
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2.3 Problem 3: The Black–Scholes–Merton model with local volatility

As mentioned earlier, the Black–Scholes–Merton model with a constant volatility does not
reproduce market prices very well in practice. One discrepancy is the so-called volatility
smile (which after the October 1987 crash is known to have turned into a smirk). If the
implied volatility—the volatility in the Black–Scholes–Merton model that is consistent
with the observed option price—is calculated for several options with the same exercise
date but different strike prices, all options should under the classical assumptions of
Black–Scholes–Merton have the same implied volatility. Instead, when plotted against
the different strike prices, the curve is usually that of a U-shaped smile (or an L-shaped
smirk).

As discussed in [10], an approach to address this discrepancy between model and data
is to assume local volatility, i.e., to allow the volatility of the underlying asset to depend
instantaneously on the stock price s, and time t, generating a whole volatility surface. It
is shown in [10] how to reverse engineer such a volatility surface from observed option
prices.

Given a volatility surface, the general Black–Scholes–Merton no-arbitrage approach
can be used to derive the option price, although closed form solutions will typically no
longer exist. We provide two volatility surfaces with different properties in order to see
how the numerical methods handle such variable volatility coefficients.
Mathematical formulation

The equations for the option price are identical to (1) and (2) except that here σ = σ(s, t).

Deliverables

The price for a European call option should be computed in each case.

Parameter and problem specifications

The first local volatility surface is given by an explicit function

σI(s, t) = 0.15 + 0.15(0.5 + 2t)
(s/100− 1.2)2

(s/100)2 + 1.44
. (8)

The second local volatility surface σII(s, t) is based on market data and does not have
an explicit form. The local surface is computed from a parametrization of the implied
volatility data. The exact steps in the computation and the specific parametrization are
given in Appendix B.

In both cases, we use K = 100 and r = 0.03, but the expiration times are different,
with T = 1 for σI , and T = 0.5 for σII . The payoff function for a European call option
is as before φ(s) = max(s−K, 0).

2.4 Problem 4: The Heston model for one underlying asset

The local volatility model allows for perfect matching of prices of European-style options
but, just like the Black–Scholes–Merton model, also has its weaknesses. It does not per-
form very well for path dependent options and, moreover, there is clear evidence that
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in practice the volatility of asset prices is in itself random, beyond what can be simply
be described as a function of time and underlying strike price [9, 32, 45]. The Heston
model [20] assumes that in addition to the risk-factor that drives the value of the under-
lying asset, there is a another risk-factor that determines the underlying’s instantaneous
variance, V . The PDE formulation of the model is therefore two-dimensional. Note that
in contrast to the previous models, the market in Heston’s model is incomplete, and
therefore additional assumptions about the market price of volatility risk are needed to
determine the option price. The specific assumptions in [20] leads to the model below.

Mathematical formulation

SDE-setting:

dS = rSdt+
√
V SdW1,

dV = κ(θ − V )dt+ σ
√
V dW2,

(9)

where W1 and W2 have correlation ρ.
PDE-setting:

∂u

∂t
+

1

2
vs2∂

2u

∂s2
+ ρσvs

∂2u

∂s∂v
+

1

2
σ2v

∂2u

∂v2
+ rs

∂u

∂s
+ κ(θ − v)

∂u

∂v
− ru = 0. (10)

Deliverables

The price for a European call option should be computed.

Parameter and problem specifications

The model parameters are here given by r = 0.03, κ = 2, θ = 0.0225, σ = 0.25,
ρ = −0.5, K = 100, and T = 1. The payoff function for the European call option is
φ(s, v) = max(s−K, 0). With these parameters, the Feller condition is satisfied.

2.5 Problem 5: The Merton jump diffusion model for one underlying asset

The Merton model [40] addresses another difference between real world asset price dy-
namics and the (local volatility) Black–Scholes–Merton model. What was identified early
on, is that stock prices occasionally experience dramatic movements over very short time
periods, i.e., they sometimes ‘jump’. Such jumps make return distributions heavier-tailed
than for pure diffusion processes, also in line with empirical observations and, as in the
Heston model, causes the market to be incomplete, necessitating additional assumptions
to price the option. The assumption used in [40] is that the underlying stock price follows
a jump-diffusion process, where there is no risk-premium associated with jump risk. Un-
der these conditions, the option price can be computed from a Partial-Integro Differential
Equation (PIDE).
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Mathematical formulation

SDE-setting:

dS = (r − λξ)Sdt+ σSdW + SdQ, (11)

where Q is a compound Poisson process with intensity λ > 0 and jump ratios that are

log-normally distributed as p(y) = 1√
2πyδ

e−
(log y−γ)2

2δ2 [50].

PIDE-setting:

∂u

∂t
+

1

2
σ2s2∂

2u

∂s2
+ (r − λξ)s∂u

∂s
− (r + λ)u+ λ

∫ ∞
0

u(sy, τ)p(y)dy = 0. (12)

Deliverables

The price for a European call option should be computed.

Parameter and problem specifications

The parameters to use are r = 0.03, λ = 0.4, γ = −0.5, δ = 0.4, ξ = eγ+δ2/2−1, σ = 0.15,
K = 100, and T = 1. The payoff function is φ(s) = max(s−K, 0).

2.6 Problem 6: The Black–Scholes–Merton model for two underlying assets

As an example of an option with more than one underlying, we use a spread option,
which for K = 0 is called a Margrabe option [38]. This classic rainbow option has a
payoff function that depends on two underlying assets, so the option price dynamic
therefore depends on two risk-factors (as long as the two stocks’ returns are not perfectly
correlated). In contrast to the Heston and Merton models, the model is still within the
class of complete market models, and the option price is therefore completely determined
without further assumptions. The reason that the market is complete in this case, in
contrast to the other multi risk-factor models we have introduced, is that two underlying
risky assets may be used in the formation of a hedging portfolio, whereas only one such
asset is available with the Heston and Merton Models.

Mathematical formulation

SDE-setting:

dS1 = rS1dt+ σ1S1dW1,
dS2 = rS2dt+ σ2S2dW2,

(13)

where W1 and W2 have correlation ρ.
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PDE-setting:

∂u

∂t
+

1

2
σ2

1s
2
1

∂2u

∂s2
1

+ ρσ1σ2s1s2
∂2u

∂s1∂s2
+

1

2
σ2

2s
2
2

∂2u

∂s2
2

+ rs1
∂u

∂s1
+ rs2

∂u

∂s2
− ru = 0. (14)

Deliverables

The price for a European spread call option should be computed.

Parameter and problem specifications

The model parameters to use are r = 0.03, σ1 = σ2 = 0.15, ρ = 0.5, K = 0, and T = 1.
The payoff function for the European call spread option is φ(s1, s2) = max(s1−s2−K, 0).

3. Numerical methods

In Table 1 we display all methods that we have used. We also provide references to the
original papers describing the methods. More information about the particular implemen-
tations used here can be found at www.it.uu.se/research/project/compfin/benchop.

4. Numerical results

For each benchmark problem, we have decided on three (or five) evaluation points si (or
(si, sj)). Each method must be tuned such that it delivers a solution u(si) with a relative
error less than 10−4 in these points. We have not put any restrictions on the error in
the rest of the domain. Due to this freedom, some codes have been tuned to narrowly
target these points, while others (sometimes automatically) are tuned to achieve an
evenly distributed error. Then the codes are run (on the same computer system) and the
execution times are recorded. Each code is run 4 times, and the execution time reported
in the tables below is the average of the last three runs. This is because the first time a
MATLAB script is executed in a session it takes a bit longer.

In the tables, we also show the approximate number of correct digits p in the result.
This quantity is computed as p = [− log10 er], where er is the maximum relative error
and [·] indicates rounding. The maximum relative error is computed as

er = max
i

∣∣∣∣u(si)− uref(si)

uref(si)

∣∣∣∣ .
For the Monto Carlo methods where the error is not deterministic, the errors are averaged
over the different runs. In some cases, a method was not able to reach a relative error
of 10−4 within reasonable time (1 hour), but a lower target 10−3 was attainable. These
results are marked with a * in the tables. The execution time we report in the tables for
Monte Carlo methods is the time to compute the result for one evaluation point, whereas
for other methods it is the time to compute the result for all evaluation points.
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Table 1. List of methods used with abbreviations, marker symbol used in figures, and references

Abbr. Symbol Method References

Monte Carlo methods

MC ∗ Monte Carlo with Euler-Maruyama in time [16]

MC-S 4 Monte Carlo with analytical solution / Euler-
Maruyama / quadratic scheme in time and
stratified sampling

[16], [17], [42], [50], [36], [2]

QMC-S × Quasi Monte Carlo with analytical solution /
Euler-Maruyama / quadratic scheme in time,
stratified sampling, and precomputed quasi ran-
dom numbers

[16], [17], [42], [50], [36],
[2], [21], [44]

Fourier methods

FFT � Fourier method with FFTs [6], [33], [31]

FGL × Fourier method with Gauss-Laguerre quadra-
ture

[1, Page 890], [7], [18], [31],
[34, Section 2.1–2.2], [35]

COS ◦ Fourier method based on Fourier cosine series
and the characteristic function.

[11], [12], [52], [53]

Finite difference methods

FD Finite differences on uniform grids with Ran-
nacher smoothed CN in time

[64, Chapter 78], [51], [23],
[59]

FD-NU Finite differences on quadratically refined grids
with Rannacher smoothed CN / IMEX-CNAB
in time

[22], [49], [51], [55], [56]

FD-AD Adaptive finite differences with discontinuous
Galerkin / BDF-2 in time

[46], [47], [26], [62], [22],
[19]

Radial basis function methods

RBF × Global radial basis functions with non-uniform
nodes and BDF-2 in time

[48], [19]

RBF-FD � Radial basis functions generated finite differ-
ences with BDF-2 in time

[41], [63], [58], [19], [13],
[14], [65]

RBF-PUM 4 Radial basis functions partition of unity method
with BDF-2 in time

[54], [57], [19]

RBF-LSML ∗ Least-squares multi-level radial basis functions
with BDF-2 in time

[28], [27], [19]

RBF-AD ◦ Adaptive RBFs with CN in time [43], [8], [24]
RBF-MLT � Multi-level radial basis functions treating time

as a spatial dimension
[25], [30], [60]

In order to see how the errors behave away from the evaluation points, solutions are
also plotted for a range of values. The figures below show the absolute errors evaluated
at the integer values between s = 60 and s = 160. No figure is shown for the second local
volatility case in Problem 3, because there the local volatility result is only valid for a
particular S0, not over a range. The vertical axis range in the figures is adjusted to the
values that are plotted, but the lower limit is not allowed to be lower than 10−20. Errors
falling below that value are not visible in the figures.

The experiments have been performed on the Tintin cluster at Uppsala Multidisci-
plinary Center for Advanced Computational Science (UPPMAX), Uppsala University.
The cluster consists of 160 dual AMD Opteron 6220 (Bulldozer) nodes. All codes are im-
plemented (serially) in MATLAB. The names of the respective codes for each problem are
indicated by the boldfaced heading over each (group of) plot(s). This generic name is then
combined with an acronym for the particular method as for example BSeuCallUI RBF.m.
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Table 2. Problem 1. Computational time to compute a solution u that has a relative error < 10−4 at t = 0 and

s = 90, 100, 110 for the standard parameters and at s = 97, 98, 99 for the challenging parameters. The numbers
within parentheses indicate the approximate number of correct digits in the result. A ’−’ indicates not implemented,

while ’×’ means implemented, but not accurate.

Standard parameters Challenging parameters

Method a) European b) American c) Up-and-out a) European b) American c) Up-and-out

MC ∗5.7e+02 (3) − − × − −
MC-S 1.5e+01 (4) × × 1.6e+01 (4) 9.8e−02 (16) ×
QMC-S 5.7e−01 (5) × − 6.3e−01 (6) 1.2e+02 (16) −

FFT 1.3e−03 (6) − − 1.3e−03 (7) − −
FGL 3.5e−03 (14) 7.6e−01 (5) − 1.8e−02 (13) 2.2e+00 (16) −
COS 1.8e−04 (5) 2.7e−02 (4) 1.8e−02 (4) 2.6e−04 (4) 2.3e−01 (5) 2.5e−04 (4)

FD 1.8e−02 (4) 7.6e−02 (4) 2.5e−02 (4) 5.1e+01 (4) 1.1e−02 (11) 5.1e+01 (4)
FD-NU 9.2e−03 (4) 5.8e−02 (4) 1.6e−02 (4) 5.0e−02 (5) 6.0e−03 (11) 5.2e−02 (5)
FD-AD 9.7e−03 (4) 4.3e−02 (4) 9.6e−03 (4) 1.0e+01 (4) 9.1e−03 (4) 2.0e+00 (4)

RBF 6.2e−02 (4) 4.6e+00 (4) 1.4e−01 (4) 7.7e+01 (4) − 6.6e+01 (4)
RBF-FD 2.9e−01 (4) 1.3e+00 (4) 2.8e−01 (4) 3.3e+01 (5) 9.6e−01 (4) 5.1e+00 (4)
RBF-PUM 2.8e−02 (4) 3.6e+00 (4) 5.4e−02 (4) 3.4e+00 (5) 4.5e+00 (4) 1.9e+00 (4)
RBF-LSML 4.2e−02 (4) − 3.0e−02 (4) 7.5e+00 (5) − −
RBF-AD 7.9e−01 (4) 1.7e+01 (5) 2.4e+01 (5) 3.3e+00 (4) 1.2e+00 (7) 1.6e+01 (4)
RBF-MLT 1.6e+01 (4) − 2.4e+02 (4) ∗3.3e+02 (4) − ∗1.9e+03 (3)

Table 3. Problem 1. Computational time to compute hedging parameters ∆ = ∂u
∂s

, Γ = ∂2u
∂s2

and V = ∂u
∂σ

that have

a relative error < 10−4 at t = 0 and s = 90, 100, 110 for the standard parameters and at s = 97, 98, 99 for the
challenging parameters. The numbers within parentheses indicate the approximate number of correct digits in the

result. A ’−’ indicates not implemented, while ’×’ means implemented, but not accurate.

Standard parameters Challenging parameters

Method ∆ = ∂u
∂s

Γ = ∂2u
∂s2

V = ∂u
∂σ

∆ = ∂u
∂s

Γ = ∂2u
∂s2

V = ∂u
∂σ

MC-S 3.0e+00 (5) ∗5.7e+01 (4) 1.7e+01 (4) 3.3e+00 (5) × ∗1.8e+01 (3)
QMC-S 5.7e−01 (5) ∗1.0e+00 (4) 6.3e−01 (5) 6.3e−01 (6) × ∗6.7e−01 (4)
FFT 1.3e−03 (6) 1.2e−03 (5) 2.1e−03 (5) 1.2e−03 (7) 1.2e−03 (5) 2.5e−03 (6)
FGL 3.2e−03 (14) 2.9e−03 (14) 2.9e−03 (14) 1.8e−02 (14) 1.8e−02 (11) 2.2e−02 (11)
COS 1.8e−04 (4) 2.4e−04 (5) 2.6e−04 (5) 2.8e−04 (4) 4.4e−04 (5) 4.6e−04 (5)

FD 1.9e−02 (5) 1.4e−02 (5) 2.8e−02 (4) 4.9e+01 (5) 2.5e+02 (4) 5.0e+02 (5)
FD-NU 7.8e−03 (4) 8.9e−03 (4) 1.8e−02 (4) 6.5e−02 (4) 5.0e−01 (4) 1.6e+00 (4)
FD-AD 1.0e−02 (4) 9.9e−03 (4) 2.4e−02 (4) 1.0e+01 (4) 4.9e+01 (4) 9.0e+01 (4)

RBF 6.6e−02 (4) 6.9e−02 (4) 7.9e−02 (4) 9.3e+01 (4) 3.1e+02 (5) 7.0e+02 (4)
RBF-FD 3.0e−01 (4) 2.5e−01 (4) 5.6e−01 (4) 3.4e+01 (4) 3.7e+01 (4) 1.0e+02 (4)
RBF-PUM 2.7e−02 (4) 3.2e−02 (4) 1.0e−01 (4) 3.1e+00 (5) 6.2e+00 (4) 1.1e+01 (4)
RBF-LSML 1.3e−01 (4) 2.7e−01 (4) 7.1e−02 (5) − − −
RBF-AD 3.4e+00 (4) 3.4e+01 (4) 5.0e+01 (4) 3.6e+00 (5) 1.8e+01 (4) 2.1e+01 (4)
RBF-MLT 1.8e+01 (4) 1.8e+01 (4) ∗3.2e+01 (4) 4.2e+02 (4) ∗3.4e+02 (3) ×

5. Discussion

Monte Carlo methods. MC methods are easy to implement in any number of dimensions,
but the slow convergence rate, O(1/

√
N) for standard MC, makes it computationally

expensive to reach the requested tolerance of 10−4. The most challenging problems for
the MC methods were the path dependent options, the hedging parameter Γ, and the
local volatility.

Because MC methods scale linearly with the number of dimensions, they are increas-

10
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Table 4. Problems 2 and 3. Computational time to compute a solution u that has a

relative error < 10−4 at t = 0 and s = 90, 100, 110. The numbers within parentheses
indicate the approximate number of correct digits in the result. A ’−’ indicates not

implemented, while ’×’ means implemented, but not accurate.

Discrete dividends Local volatility
Method European call American call Smooth Implied

MC-S ∗6.0e+01 (3) − × ×
QMC-S 1.6e+00 (4) − − −

FFT 1.5e−03 (7) − − −
FGL 3.6e−03 (14) 8.1e−02 (6) − −
COS 8.8e−04 (5) 2.4e−03 (4) 1.7e−02 (4) −

FD 2.0e−02 (4) 1.5e−02 (4) 2.2e−02 (4) 1.2e+00 (4)
FD-NU 1.6e−02 (4) 1.5e−02 (4) 3.7e−02 (4) 8.9e−01 (4)
FD-AD 2.1e−02 (4) 2.3e−02 (5) 3.6e−02 (4) 8.8e−01 (4)

RBF 2.3e−01 (4) 1.1e−01 (4) 5.5e−02 (4) 2.4e+00 (4)
RBF-FD 4.2e−01 (4) 2.7e+00 (4) 2.2e+01 (4) 1.1e+02 (4)
RBF-PUM 3.3e−02 (4) 3.0e−02 (4) 1.4e−01 (4) 9.0e−01 (4)
RBF-LSML 5.0e−01 (4) 1.2e+00 (4) 1.7e−01 (4) 4.0e+00 (4)

Table 5. Problems 4, 5, and 6. Computational time to compute a solu-

tion u that has a relative error < 10−4 at t = 0 and s = 90, 100, 110
for the Heston and Merton models, and to compute a solution u that

has a relative error < 10−4 at t = 0 and (s1, s2) = (100, 90), (100, 100),

(100, 110), (90, 100), (110, 100) for the spread option. The numbers within
parentheses indicate the approximate number of correct digits in the re-

sult. A ’−’ indicates not implemented, while ’×’ means implemented, but

not accurate.

Method Heston Merton Spread

MC-S × 1.6e+01 (4) ∗2.9e+01 (4)
QMC-S − 3.4e−01 (4) 1.8e+00 (5)

FFT 3.3e−03 (5) 2.1e−03 (5) −
FGL 3.8e−03 (14) 3.1e−03 (13) 3.1e−03 (14)
COS 3.4e−04 (4) 2.2e−04 (4) 1.5e−03 (4)

FD − − −
FD-NU 4.3e+00 (4) 1.4e−01 (4) 7.4e+01 (4)
FD-AD − − 4.7e+01 (4)

RBF 1.9e+01 (4) − 7.7e+01 (4)
RBF-FD − − 2.2e+03 (4)
RBF-PUM 4.3e+00 (4) − 1.3e+01 (5)

ingly competitive in higher dimensions. Furthermore, there are a lot of specialized tech-
niques that can be applied to improve performance. An example of this is the QMC-S
method that is comparable to some of the other methods already in one dimension,
and the fastest method apart from the Fourier methods for the two-dimensional spread
option.

Fourier methods. Fourier methods (FM) rely on the availability of the characteristic
function (ChF) of the underlying stochastic process. These are available for all problems
except Problem 3, local volatility. However, in the recent publication [53], the stochastic
process is approximated by a second order weak Taylor scheme, for which there exists
an analytic solution for the ChF. This method was applied to the smooth local volatility
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Figure 1. Problem 1a) European call option (top group), 1b) American put option (middle group), and 1c) Up-
and-out call option (bottom group). For each problem, results for standard parameters are shown to the left, and
for challenging parameters to the right. Absolute error in the solution u for t = 0 and 60 ≤ s ≤ 160 when the

relative error in u is less than 10−4 at t = 0 and s = 90, 100, 110 for standard parameters and s = 97, 98, 99 for
challenging parameters. For the barrier option, results are shown up to the barrier at s = 125.

function, but could not easily be used for the implied local volatility. Apart from Problem
3, the problems that were most challenging for the FM were the American and Up-and-

12
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out options.
The FM are all very fast and especially the FGL-method is also highly accurate. The

fastest FM, the COS method, is the overall fastest method in all cases but two. The
competitiveness of the FM is even more pronounced for the two-dimensional problems,
the Heston model and the spread option.

Finite difference methods. FD methods rely on the use of structured (possibly non-
uniform) grids and are straightforward to implement. The FD-NU is the only BENCHOP
method that solved all the problems. The computational times are low in all cases, and
for two problems FD-NU or FD-AD is the overall fastest method. For the FD methods
in general the challenging parameter set in Problem 1 is the most difficult feature to
handle.

For Problem 1 the usage of a nonuniform grid, FD-NU and FD-AD, is superior to using
a uniform grid (FD) but for Problems 2 and 3, using a uniform grid is sometimes faster.
The FD method has not been implemented for the two-dimensional problems, but we
believe that FD-NU and FD-AD would be faster than FD in these cases thanks to the
possibility of local refinement.

Radial basis function methods. RBF methods are flexible with respect to node locations
and choice of basis function. This makes it possible to tune the methods to achieve well for
particular targets, but it can also be hard to make a good choice. Problem 5, Merton jump
diffusion has not been implemented in any RBF method, but this could be done. The
problems that are challenging for RBF methods have non-smooth solutions or very sharp
gradients, such as American options and the challenging parameter set in Problem 1.

The RBF methods as a group are slower than the FD methods for the one-dimensional
problems. However, the results of the fastest RBF method, RBF-PUM, is in the favorable
cases of the same order as those of the FD methods. In two dimensions the RBF-PUM
method is as fast as or faster than the implemented FD methods. Potentially, the RBF-
PUM method will be even more competitive in higher dimensions.
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Figure 2. Problem 1a) European call option. Errors in the hedging parameters ∆ (top group), Γ (middle group),
and V (bottom group). For each problem, results for standard parameters are shown to the left, and for challenging

parameters to the right. Absolute errors in the hedging parameters for t = 0 and 60 ≤ s ≤ 160 when the relative
error is less than 10−4 at t = 0 and s = 90, 100, 110 for standard parameters and s = 97, 98, 99 for challenging

parameters.
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Figure 3. Problem 2 a) European call with dividends (left) and 2b) American call with dividends (right). Error
in the solution u for t = 0 and 60 ≤ s ≤ 160 when the relative error in u is less than 10−4 at t = 0 and s = 90,

100, 110.
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Figure 4. Problem 3 Local volatility, smooth function (top left), Problem 4 Heston (top right), Problem 5 Merton
(bottom left), and Problem 6 Spread option (bottom right). Absolute error in the solution u for t = 0 and 60 ≤
s ≤ 160 when the relative error in u is less than 10−4 at t = 0 and s = 90, 100, 110 for Local volatility and Merton,

and for Heston with variance v = 0.0225. For the spread option, the error is measured in (s1, s2) = (100, 90),
(100, 100), (100, 110), (90, 100), (110, 100), and is plotted for 60 ≤ s1 ≤ 160, and s2 = 100.
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Appendix A. The methods used for computing the reference values used in
the comparisons

For many of the benchmark problems here, there are analytical or semi-analytical solu-
tions. For these cases, we state the closed form expressions. For the cases lacking ana-
lytical solutions, we describe the numerical method that was used for accurate enough
computation of a reference solution. MATLAB codes for each problem are available at
the BENCHOP web page.

A.1 Problem 1: The Black–Scholes–Merton model for one underlying asset

For the European call option, the closed form expression for the option price is given
in [4]

Πc
BS(t, S,K, T, r, σ2) = SN(d+(S/K, T − t))−Ke−r(T−t)N(d−(S/K, T − t)), (A1)

where

d+(x, y) =
1

σ
√
y

(
log(x) +

(
r +

σ2

2

)
y

)
, (A2)

d−(x, y) =
1

σ
√
y

(
log(x) +

(
r − σ2

2

)
y

)
, (A3)

and where N(x) is the cumulative distribution function for the standard normal distri-
bution. The hedging parameters can be found through differentiation, leading to

∆BS =
∂Πc

BS

∂S
= N(d+(S/K, T − t)), (A4)

ΓcBS =
∂2Πc

BS

∂S2
=
φ(d+(S/K, T − t))
S
√

(T − t)σ2
, (A5)

νcBS =
∂Πc

BS

∂σ
= Sφ(d+(S/K, T − t))

√
T − t, (A6)

where φ(x) = (2π)−1/2 exp(−x2/2) is the density of the standard normal distribution.
For the American put option, there is no closed form solution. Different analytical

and semi-analytical approximations to the location of the early exercise boundary are
analyzed and compared in [29]. Here, we use a relation from [5, Theorem 1.1], where it
is shown that the American put price can be decomposed into a European put price and
the early exercise premium. The general European put price is defined by

Πp
BS(t, S,K, T, r, σ2) = −SN(−d+(S/K, T − t))+Ke−r(T−t)N(−d−(S/K, T − t)), (A7)
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The American put price becomes

Πp
BS−A(t, S,K, T, r, σ2) = Πp

BS(t, bp(t),K, T, r, σ
2)

+ rK

∫ T

t
e−r(u−t)N

(
−d−(bp(t)/bp(u), u− t)

)
du, (A8)

where bp(t), 0 ≤ t < T is the (unknown) optimal exercise level at time t, and bp(T ) = K.
The location of the exercise boundary is determined by solving the following non-linear
integral equation numerically:

Πp
BS−A(t, S,K, T, r, σ2) = K − bp(t). (A9)

This equation is solved by an implicit trapezoidal method, where the implicit step due
to the monotonicity in bp(t) can be found by binary search. This leads to a robust albeit
slow method for obtaining the optimal exercise level bp on a fine time grid from t = T
to t = 0. Then, for arbitrary initial stock values satisfying S(0) > bp(0), (A8) provides
the option value. For S(0) ≤ bp(0) the value is set to the exercise value K − S(0).

For the barrier call up–and–out option, a closed form expression for the option price
can be found in [3, Theorem 18.12 p. 271].

Πc
BS−UO(t, S,K, T, r, σ2) = Πc

BS(t, S,K, T, r, σ2) − Πc
BS(t, S,B, T, r, σ2)

−
(
B
S

) 2r

σ2
−1 (

Πc
BS(t, B2/S,K, T, r, σ2) − Πc

BS(t, B2/S,B, T, r, σ2)
)
.

(A10)

A.2 Problem 2: The Black–Scholes–Merton model with discrete dividends

For the European call option with one proportional discrete dividend payment, there is
a closed form solution [3, Proposition 16.6 p. 235]. Assuming that the dividend is paid
out at time τ , where t < τ < T , we have

Πc
BS−EDD(t, S,K, T, r, σ2) = Πc

BS(t, S(1−D),K, T, r, σ2). (A11)

Note that the option price is independent of when during the contract period the dividend
occurs.

The American Call option with one dividend payment at τ = αT , where 0 < α < 1,
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can be valuated semi analytically [61].

Πc
BS−ADD(0, S,K, T, r, σ,D, α) =

(1−D)SN2

(
−d+

(
S

S∗τ
, αT

)
, d+

(
(1−D)S

K
, T

)
, −
√
α

)
− Ke−rTN2

(
−d−

(
S

S∗τ
, αT

)
, d−

(
(1−D)S

K
, T

)
, −
√
α

)
+ Πc

BS((1− α)T, S, S∗τ , T, r, σ
2) (A12)

where N2(x, y, ρ) is the cumulative distribution function for the bi-variate normal distri-
bution with zero mean and covariance matrix

Σ =

(
1 ρ
ρ 1

)
.

The above formula depends on the unknown variable S∗t , which can be estimated from
the following nonlinear problem:

S∗τ −K = Πc
BS(T − τ, (1−D)S∗τ ,K, T, r, σ

2).

A.3 Problem 3: The Black–Scholes–Merton model with local volatility

For a general local volatility function, there is no closed form solution. The reference val-
ues have in this case been computed to high accuracy by a selection of the contributed
deterministic methods with different numerical approximations in space, different treat-
ments of the boundary, and different approximations in time. In this way, we can be
reasonably certain that numerical bias has been eliminated.

A.4 Problem 4: The Heston model for one underlying asset

The (almost exact) Heston price is computed through inverse Fourier transform using the
Gauss-Laguerre quadrature method (FGL) with 1000 quadrature points in combination
with an optimized choice of integration path in the complex plane stock value for stock
value. The integration path is chosen so that is goes through the uniquely given saddle
point of the integrand (see [34] and [37]).
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A.5 Problem 5: The Merton jump diffusion model for one underlying asset

From [40] we have that the price under Merton jump diffusion is given by a weighted
sum of modified Black-Scholes prices

Πc
ME(t, S,K, T, r, λ, γ, δ2, σ2) =

∞∑
n=0

e−λ(T−t) (λ(T − t))n

n!
Πc
BSE(t, (ξ + 1)ne−λ(T−t)ξS,K, T, σ2 + δ2 n

T − t
), (A13)

where ξ = eγ+δ2/2 − 1. By using a few hundred terms, a highly accurate price approxi-
mation can be computed.

A.6 Problem 6: The Black–Scholes–Merton model for two underlying
assets

For the particular case of K = 0, a closed form solution for the European call spread
option is given in [38] as

Πc
BS−SO(t, S1, S2, T, σ1, σ2, ρ) = Πc

BS(t, S1, S2, T, 0, σ
2
1 − 2ρσ1σ2 + σ2

2). (A14)

Appendix B. The second local volatility function used in Problem 3

The second local volatility function is based on a stochastic volatility inspired (SVI)
parametrization [15] of the implied volatility surface. This approach to local volatility is
widely used by practitioners, because it is relatively easy to calibrate to data, and there
are techniques to eliminate different modes of arbitrage.

B.1 The given SVI parametrization

The global total implied variance surface in terms of the time of maturity T and the log
moneyness x = log K

FT
in the forward price FT = S0e

rT is given by

wg(T, x) = a+
r − `

2
(x−m) +

r + `

2

√
(x−m)2 + p2, (B1)

where a, r, `, m, p are parameters that depend on T . Here, the calibrated parameters
are given by

a = 0.01 + 0.03
√
T + 0.04,

` = 0.31(1− 0.7
√
T ),

p = 0.15(0.4 + 0.6
√
T + 0.04).

r = 0.06(1− 0.87
√
T ),

m = 0.03 + 0.01T,
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B.2 Constructing the local volatility surface

In order to compute the local surface, we apply a transformation that corresponds to
Dupire’s formula [10] for the SVI parametrization.

wlocal(x, T ) =
wg(T, x) + T ∂wg

∂T (T, x)(
1− x

∂wg

∂x

2wg

)2

−
(

∂wg

∂x

2wg

)2((
wgT

2 + 1
)2
− 1

)
+

T
∂2wg

∂x2

2

. (B2)

This gives us a local volatility surface in terms of T and x.

B.3 Using the local volatility surface

When we use the local volatility surface, we replace K by s and T by t. In order to see
what that implies for the log moneyness, we need to go back to the definition. There we
had x = log K

FT
, then when we use the local volatility surface

x(s, S0, t) = log
s

Ft(S0)
= log

s

S0ert
.

The local volatility is now given by

σ(s, t) =
√
wlocal(x(s, S0, t), t). (B3)

Note that σ(s, t) cannot be directly evaluated for very small values of s. A function that
evaluates this volatility surface can be downloaded from the BENCHOP web site.
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[29] M. Lauko and D. Ševčovič, Comparison of numerical and analytical approximations of the early

exercise boundary of American put options, ANZIAM J. 51 (2010), pp. 430–448, Available at http:
//dx.doi.org/10.1017/S1446181110000854.

[30] Q.T. Le Gia, I.H. Sloan, and H. Wendland, Multiscale approximation for functions in arbitrary
Sobolev spaces by scaled radial basis functions on the unit sphere, Appl. Comput. Harmon. Anal. 32
(2012), pp. 401– 412.

[31] R.W. Lee, Option pricing by transform methods: Extensions, unification, and error con-
trol, J. Comput. Finance 7 (2004), pp. 51–86, an augmented version is available at
http://www.math.uchicago.edu/˜rl/dft.pdf.

[32] E. Lindström, H. Madsen, and J. Nielsen, Statistics for Finance, Chapman & Hall/CRC Texts in

21



November 3, 2015 International Journal of Computer Mathematics postprint

Statistical Science, Taylor & Francis, 2015.
[33] E. Lindström and H. Wu, A Fourier method for valuation of options under parameter uncertainty,

submitted for publication .
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