
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2015

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 1280

Population Genetic Methods and
Applications to Human Genomes

LUCIE GATTEPAILLE

ISSN 1651-6214
ISBN 978-91-554-9319-6
urn:nbn:se:uu:diva-260998



Dissertation presented at Uppsala University to be publicly examined in Lindahlsalen,
Norbyvägen 18A, Uppsala, Thursday, 22 October 2015 at 13:15 for the degree of Doctor
of Philosophy. The examination will be conducted in English. Faculty examiner: Associate
Professor Kevin Thornton (Department of Ecology and Evolutionary Biology, University of
California, Irvine).

Abstract
Gattepaille, L. 2015. Population Genetic Methods and Applications to Human Genomes.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and
Technology 1280. 63 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9319-6.

Population Genetics has led to countless numbers of fruitful studies of evolution, due to its
abilities for prediction and description of the most important evolutionary processes such as
mutation, genetic drift and selection. The field is still growing today, with new methods and
models being developed to answer questions of evolutionary relevance and to lift the veil on the
past of all life forms. In this thesis, I present a modest contribution to the growth of population
genetics. I investigate different questions related to the dynamics of populations, with particular
focus on studying human evolution. I derive an upper bound and a lower bound for FST, a
classical measure of population differentiation, as functions of the homozygosity in each of the
two studied populations, and apply the result to discuss observed differentiation levels between
human populations. I introduce a new criterion, the Gain of Informativeness for Assignment,
to help us decide whether two genetic markers should be combined into a haplotype marker
and improve the assignment of individuals to a panel of reference populations. Applying the
method on SNP data for French, German and Swiss individuals, I show how haplotypes can
lead to better assignment results when they are supervised by GIA. I also derive the population
size over time as a function of the densities of cumulative coalescent times, show the robustness
of this result to the number of loci as well as the sample size, and together with a simple
algorithm of gene-genealogy inference, apply the method on low recombining regions of the
human genome for four worldwide populations. I recover previously observed population size
shapes, as well as uncover an early divergence of the Yoruba population from the non-African
populations, suggesting ancient population structure on the African continent prior to the Out-of-
Africa event. Finally, I present a case study of human adaptation to an arsenic-rich environment.

Keywords: Population genetics, Human evolution, Genetic diversity, Genetic differentiation,
Adaptation, Population structure, Effective population size

Lucie Gattepaille, Department of Ecology and Genetics, Evolutionary Biology, Norbyvägen
18D, Uppsala University, SE-75236 Uppsala, Sweden.

© Lucie Gattepaille 2015

ISSN 1651-6214
ISBN 978-91-554-9319-6
urn:nbn:se:uu:diva-260998 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-260998)



"I know one thing: that I know nothing."
Socrates
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1. Introduction

Evolutionary biology is a scientific discipline aimed at studying species in the
light of the ancestral relationships existing among them, at characterizing the
forces leading to the divergence of subspecies into clear distinct species and at
understanding life that we observe in all its diversity. Within the discipline, the
field of population genetics provides mathematical tools to study how genetic
variation evolves over time within a population and to quantify the effects of
different evolutionary forces on the frequency of mutations within species.

Population genetics was born in the 1920s as a result of the successful at-
tempt to reconcile the apparently separate two schools of thought regarding
inheritance (Provine, 2001). On one side, the biometricians, focusing on con-
tinuous traits and relying heavily on statistical modelling, were viewing inher-
itance as the mixing of the parental traits into the offspring. On the other side,
the Mendelians, influenced by the rediscovery of Mendel’s work, considered
the transmission from parent to offspring to be done via discrete characters,
segregating with equal probability. While both sides could appreciate the ar-
guments in support of each theory, they could not overcome the respective
counter-arguments. Indeed, if characters are transmitted in a discrete fashion,
with a chance of a half from parent to offspring, why do we observe apparently
continuous traits such as height, and offspring being taller or smaller than their
parents? If offspring are merely a blend of their parents, how would one ex-
plain the existence of discrete qualitative traits, such as the color of peas in
Mendel’s famous experiment?

By demonstrating how multiple genes of small quantitative effects could
segregate according to Mendel’s laws of inheritance but still create seemingly
continuous traits (Fisher, 1919), Fisher added the first and strongest nail in
the coffin of the long-standing debate on the means of evolution and hered-
ity, leading later to the Modern Evolutionary Synthesis (Olby, 1989). The
gene could finally be accepted as the unit of parent-offspring transmission, and
phenotypes explained by the effects of one or multiple genes. It took, how-
ever, several decades after Fisher’s work before the actual biological makeup
of genes was found and before genetic variation could be investigated at the
molecular level. The first assessment of genetic variation at a large number of
loci (Lewontin and Hubby, 1966) revealed much more genetic variation within
populations than previously anticipated. This surprising result challenged the
view that natural selection was the main driving force of evolution. Under
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such a view, high genetic homogeneity among individuals of the same species
is expected, as most mutations that eventually prevail in a species would be
adaptive while the other mutations would be purged out. In a seminal pa-
per (Kimura et al., 1968), Kimura showed that the large amount of genetic
variation found within populations could only be explained by the abundance
of neutral or nearly neutral mutations and set later the mathematical founda-
tion of the neutral theory of evolution. Evolution was then re-defined in the
light of the mutation process creating variation and the fate of different alle-
les in populations, subject to both selective and neutral processes. Population
genetics thus arrived at the center of evolutionary biology by providing means
to study the evolution of allele frequencies over time with mathematical mod-
els. Thanks to its abilities for prediction and description of the most important
evolutionary processes such as mutation, genetic drift and selection, popula-
tion genetics has led to countless numbers of fruitful studies of evolution. The
field is still growing today, with new methods and models being developed to
answer questions of evolutionary relevance and to lift the veil on the past of
all life forms. In this thesis, I present a modest contribution to the growth of
population genetics, with a particular focus on human evolution.

1.1 Brief introduction to coalescent theory
The theory of the coalescent provides a simple mathematical description for
the ancestral relationship between gene-copies sampled from a homogenous
population. Derived by Kingman in 1982 (Kingman, 1982), it provides a use-
ful alternative to the more complicated models at the time, such as diffusion
theory where allele frequencies are modelled according to a brownian motion
and followed forward in time in a large population (Watterson et al., 1962).
The coalescent is a structure that follows ancestral relationships backward in
time, hence removing the need for following all lineages, which is the down-
side of all forward in time approaches. Since its derivation and the subse-
quent large body of work fostering its development (e.g. Tavaré, 1984; Kaplan
et al., 1988; Hudson and Kaplan, 1988; Griffiths and Tavare, 1994, among
others), it has been widely used in population genetic studies. I give here a
brief overview describing what a coalescent is, how it arises from the study
of a sample and why it is an interesting structure for studying genetic data.
Beforehand however, we need to introduce the Wright-Fisher model, a sim-
ple model describing a population generation after generation. The coalescent
emerges naturally from the Wright-Fisher model as the population size grows
large.
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1.1.1 Wright-Fisher Model
The Wright-Fisher model is a model for describing the transmission of haploid
gene-copies from a pool of parental gametes to the next generation. It assumes
non-overlapping generations of constant size. Every new generation is formed
by randomly sampling gene-copies in the parental generation (figure 1.1). It
is, classically, the most used model of reproduction and leads to simple equa-
tions for describing ancestral relationships. In particular, if we define N as the
population size, the probability of two particular gene-copies coming from the
same parental gamete in the previous generation is 1/N. More generally, the
probability for two particular gene-copies to share their first common ancestor
at exactly k generations back in time is (1−1/N)k−1×1/N. We recognize the
geometric probability distribution, with success probability 1/N. For a sam-
ple of n gene-copies, the probability that none of the gene-copies come from
a common parent in the previous generation is the probability α:

α = (1− 1
N
)(1− 2

N
) . . .(1− n−1

N
), (1.1)

so the probability that no common ancestor is shared within a sample of n
gene-copies for exactly k − 1 generations in the past and that at least a pair
of gene-copies from the sample have a common ancestor at generation k is
αk−1 × (1−α). This, once again, describes a geometric process, this time
with a probability of success 1−α (at least one common ancestor is found).
Note that because the size of the population is finite and offspring are chosen
at random from the parental generation, some parental gametes do not con-
tribute to the next generation, while others contribute multiple times. The loss
of some parental gene-copies at every generation due to random sampling is
called genetic drift. Consequently, after a certain number of generations, all
gene-copies in the population are descendants of a single ancestral gene-copy.

Parents

Offspring

Figure 1.1. Example of parent and offspring generations. Offspring are produced
by randomly sampling gene-copies from the parental generation, with the parent cho-
sen indicated by a linking solid line. Three of the parent gene-copies do not contribute
to the next generation. By chance, the number of red allele-copies is increased by one
in the offspring generation.

Thanks to the simplicity of the reproduction process in the Wright-Fisher
model, we can easily simulate a population over time and observe the fate of
different alleles in the population. For example, if there are white and red alle-
les segregating in a population of N haploid gene-copies, as in figure 1.1, the

11



probability of observing a given number of white and red alleles depends only
on the number of white and red alleles in the preceding generation. To be more
precise, if there are k red and N − k white alleles in the parental generation,
the probability of observing exactly j red alleles in the offspring generation
is
(N

j

)( k
N

) j (N−k
N

)N− j
, which represents a binomial distribution. By chance,

the number of red and white alleles varies from one generation to the next.
Genetic drift thus represents a fundamental concept in population genetics, as
it can greatly affect the frequency of alleles over time. Another important con-
sequence of genetic drift is that, in the absence of additional mutations at the
locus, one allele will eventually make up all gene-copies while the other al-
lele is permanently removed from the population. This event is called fixation
and when it occurs, the remaining allele is characterized as fixed. Different
populations from the same species, if they are sufficiently isolated from one
another, might accumulate fixed differences over time. Such differences can
lead to reproductive isolation and eventually evolution of the two populations
into separate species.

The Wright-Fisher model can be used beyond the realm of haploid individu-
als into polyploids and it can accommodate for sex as well. When generalized
to diploid and sexually reproducing individuals, the random sampling step can
be achieved by what is called random mating: parents make pairs at random
and each parent contributes to one gamete selected randomly from their two
gametes to form the offspring. This treatment is similar to considering the pool
of gametes the individuals are harboring instead of the individuals themselves
and using the standard haploid Wright-Fisher as described above on the pool
of gametes.

1.1.2 From Wright-Fisher to the coalescent
In population genetic studies, we rarely (if ever) have access to genetic data
from the entire population. Instead, we sample a number of individuals and
by studying their genetic data, we hope to understand the processes that have
shaped the entire population. It is therefore useful to mathematically model
the information that can be extracted from a sample. Under the Wright-Fisher
model, we computed the probability that the gene-copies from a sample of
n gene-copies would have exactly n parent gene-copies in the previous gen-
eration (α in equation 1.1). If we consider N being large and n being small
relative to N, then α is approximately equal to 1−

(n
2

)
/N. This approximation

implies that we neglect the probability that more than one pair of gene-copies
can share a common parental gene-copy in the previous generation, as such an
event occurs with a probability in the order of 1/N2. In addition, the probabil-
ity β that a common ancestor is found for the first time at generation k back in
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time becomes

β = (1−
(

n
2

)
/N)k−1 ×

(
n
2

)
/N. (1.2)

When the ancestral lineages of two gene-copies meet in a common ancestor,
we say that they coalesce and such an event is called a coalescence (figure
1.2). Because N is considered large, the probability of the first coalescence in
the sample is approximately exponentially distributed with mean

(n
2

)
/N. So if

the time is rescaled in units of N generations, the probability of coalescence
becomes independent of the population size and only dependent on the sample
size, according to an exponential distribution with mean

(n
2

)
.

E ( )4
2( )

E ( )3
2( )

E ( )2
2( )

Figure 1.2. Realization of a coalescent, for a sample size of 4. Individuals from
the sample are shown as dark red dots. Light grey dots represent individuals from the
population that are not ancestors to the sample. Dark grey dots represent individuals
that are ancestors to the sample and in beige we highlight ancestors where lineages
coalesce. The waiting time for the first (second and third respectively) coalescence to
occur follows an exponential distribution with mean

(4
2

)
(
(3

2

)
and

(2
2

)
resp.) when time

is rescaled in units of N generations.

It might seem anecdotal at first but the consequence of the independence of
the process from population size is important: all samples taken from popu-
lations following the assumptions of the Wright-Fisher model have the same
underlying mathematical structure to describe their ancestral relationships, re-
gardless of the population size (provided that the size is large). Thus, there is
only one process to study: the coalescent. By rescaling the time appropriately,
it can be used to study populations that can be quite different in size. The
second advantage of the coalescent is its simplicity: waiting times to coales-
cence are modelled by exponential variables that only depend on the number
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of lineages considered. The third advantage of the coalescent is its inherent
property of following the lineages backward in time. This allows for fast sim-
ulation of samples because we do not have to keep track of the transmission
patterns of the entire population, only the lineages leading to the sample at
present are simulated.

1.1.3 Demography and effective population size
If the coalescent would be limited to populations following the assumptions of
the Wright-Fisher model exactly, its use would also be rather limited, as such
populations are likely to be rare. Populations usually experience a number
of violations of those assumptions: generations can be overlapping, the size
might not be constant over generations, and individuals might not reproduce
at random, instead within smaller groups of proximity. Those demographic
factors complicate the modelling of the population’s evolution. However, in
many cases, the coalescent still emerges from the model, when rescaling by an
appropriate factor that integrates the violation of the Wright-Fisher model’s as-
sumptions and re-establishes the exponential distributions of the waiting times
to coalescence. This factor is called effective population size.

The term effective population size has multiple definitions in population ge-
netics. A population not following the ideal assumptions of the Wright-Fisher
model will not behave according to the expectations of the model. We can of-
ten recover some expectations of the model by considering that the population
has a different size (Sjödin et al., 2005). If the property that we want to fit the
model’s expectations with is the change in probability of identity by descent,
we talk about inbreeding population size (Crow and Kimura, 1970). If the
property is the change in variance of allele frequencies, we talk about variance
effective size (Hartl and Clark, 1997). If the property is the waiting time for co-
alescence between individuals, we talk about coalescent effective size (Nord-
borg, 2001), as we do in the previous paragraph. If the property is the rate of
loss of heterozygosity, we talk about eigenvalue effective size, in relation to
the leading non-unit eigenvalue of the transition matrix in allele frequencies
which equates to the loss of heterozygosity in one generation (Ewens, 1982).
Note that we can rarely recover expectations of the Wright-Fisher model for
all properties at once, so we have to be careful as to what type of effective size
we are considering, i.e. which property has been chosen to fit the model’s ex-
pectation. From this point on, effective population size will refer specifically
to the coalescent effective size.
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1.2 Genetic variation
Most of what makes us us is encoded in our DNA. We are different from
our neighbours, our siblings, our parents, because our DNA is different from
theirs. Those differences arise thanks to mutations. When DNA is replicated
during meiosis (when reproductive cells are made), the copying process is
not without error. Despite repair mechanisms, some errors make it into the
gametes we transmit to our offspring, creating genetic variation. Over gen-
erations, mutations are passed on, lost because of genetic drift, get fixed by
chance or with help of selective pressures, new mutations are constantly being
produced, and pairing of particular alleles are being shuffled via recombina-
tion. All of these processes create a landscape of genetic diversity that is the
testimony of the population’s evolution. One aim of population genetics is to
harness the information carried by the genetic data and unveil the demographic
and/or selective processes that have given rise to the patterns observed.

1.2.1 Types of genetic data
Changes in DNA can occur at multiple levels, from large changes (e.g. genome
duplications, copies or inversions of large portions of DNA), to small changes
of a single base pair. Small changes are more common as they are less likely
to cause serious damage to the offspring. Among all existing mutations, we
only review here Single Nucleotide Polymorphisms (SNPs). A SNP mutation
occurs when a single nucleotide is replaced by another. Because of the com-
plementary structure of DNA, each strand can be used as a template for repli-
cation by pairing each nucleotide with its complement (A and T are comple-
mentary, as are C and G). Sometimes however, the DNA-polymerase perform-
ing the pairing makes an error and the template nucleotide does not get paired
with its complement. This error is later detected by other enzymes which re-
pair the mistake, either by replacing the incorrect complement nucleotide by
the right complement nucleotide and thus restoring the original state (no mu-
tation occurs then), or by replacing the template nucleotide (thereby creating
a mutation). When comparing the DNA sequences of multiple individuals, we
can observe these differences and use them to answer various questions, from
finding potentially harmful variants, to reconstructing the demographic history
of the population the individuals are from.

Thanks to the International HapMap Project, an audacious joint effort from
the early 2000s between 6 countries (United Kingdom, Canada, Japan, China,
Nigeria and United States) to map the genetic variants of humans using in-
dividuals sampled from Nigeria, China, Japan and U.S.A., many SNPs have
been discovered (Gibbs et al., 2003). Those SNPs have since been used to de-
velop SNP arrays: DNA microarrays that are designed to target the particular
positions of the genome where SNPs have been observed. SNP arrays have
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grown large over the years, from 1494 targeted positions in 1998 (LaFram-
boise, 2009; Wang et al., 1998), to more than 5 million positions on today’s
human SNP arrays. Over the years, the cost per SNP on arrays has decreased
greatly, facilitating access to the technology for numerous research groups
worldwide. These advances have resulted in a large body of fruitful genetic
studies, and will continue to make this type of genetic data accessible to many.
Nevertheless, SNP arrays are not without disadvantages. The main source
of complications in genetic studies based on SNP arrays is ascertainment
bias (Clark et al., 2005). SNPs are discovered on a sample of individuals,
so if those individuals are not taken at random in the entire population or
species, the SNP array will not give a representative picture of the genetic di-
versity in non-sampled groups. In particular, variants that are private to the
non-sampled groups are going to be missed entirely and this may bias genetic
studies of these groups. In humans, most SNP arrays contains many SNPs that
have been ascertained in samples of European, Asian or West African ancestry.

In recent years, the cost of genome sequencing has gone down tremen-
dously, from about 100 million dollars per human genome in 2001 to around
5,000 dollars in 2014 (Wetterstrand, 2014). Unlike SNP arrays, sequences do
not suffer from ascertainment bias, as they capture all genetic variation present
in the sampled individuals. Sequence data represent the ultimate form of ge-
netic data, as it encompasses all DNA variation. However, there is still a rather
high rate of sequencing error and some genomic regions are still very difficult
to sequence (highly repetitive regions for example).

Haplotypes are another type of genetic data used in genetic studies. A hap-
lotype is a rather generic term, but in all cases it represents a combination of
alleles physically linked to each other on the DNA strand. When the zygote is
formed at conception, the nucleus of the egg and the nucleus of the sperm fuse
together into a diploid nucleus. The new genome is then composed of pairs of
chromosomes: one set of chromosomes from the mother and one homologous
set from the father. This implies that the alleles coming from a given parental
chromosome are physically sitting on the same DNA strand. When genotyp-
ing using SNP arrays or when sequencing with the usual techniques, we only
know whether the individual is homozygous or heterozygous at a given po-
sition but not how two heterozygous positions are physically linked to each
other. Separating the maternal alleles from the paternal alleles is called phas-
ing. For many studies of genetic data it is necessary to know the phase of
the individual. Algorithms have been developed to perform statistical phasing
(their principles are described in the method section) and recently, efforts have
been made to obtain the phase molecularly, by sequencing longer stretches of
DNA so as to capture the pairing of heterozygous positions (see e.g. Kitzman
et al., 2011). Haplotype data can represent the combination of alleles in se-
quences of a given physical or genetic length, or a given number of variant

16



positions. The variant positions can be SNPs on a SNP array, or can be vari-
ants in sequences. What matters is that the alleles are phased, so that alleles
are paired according to the gametes they are coming from, paternal or mater-
nal.

1.2.2 Recombination and linkage disequilibrium
During meiosis, homologous chromosomes exchange genetic segments due
to chromosomal crossovers and, therefore, the four gametes produced at the
end of the meiosis of one reproductive cell contain haploid genomes that are
mosaics of the paternal and maternal haploid genomes of the individual. This
process of exchange of genetic material between homologous chromosomes is
called recombination. Recombination breaks the association between alleles
from the same parent and allows the creation of new combinations. The further
two genes are on a chromosome, the higher the probability that a recombina-
tion event will occur between them in the formation of gametes. By looking at
the transmission of allele combinations in studies of trios or in pedigrees, we
can build a map indicating how likely recombination is to occur in a certain
region at each meiosis. Such a map is called genetic map or recombination
map.

Instead of investigating the transmission patterns in trios and pedigrees, we
can also look at the statistical association between alleles at different positions
in unrelated individuals sampled from a population. The dependent associ-
ation of alleles at different positions in the genome is referred to as linkage
disequilibrium. Comparably to genetic maps, linkage disequilibrium can give
an idea of how strong the recombination probability is at a given position.
However, it also depends on the local genetic ancestry of the samples at the
particular position. Thus, the relationship to the probability of recombina-
tion is not a simple one. When looking at two physically close regions in
the genome, we often observe a non-random pairing of alleles between those
regions because they tend to be transmitted together without recombination.
The further apart two genes are, the less likely it is for their alleles to be corre-
lated because recombination breaks the association. There are different ways
to measure linkage disequilibrium, but one popular statistic is r2 (r-squared).
It measures the statistical squared correlation between the alleles at the two
positions. We generally observe a decay in r2 values with physical distance.
However, the strength of the decay varies among species and populations. It is
affected both by the local recombination probabilities and by the demographic
history of the sampled population, making it an interesting statistic to study
recombination rate and demography.
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Sometimes correlation between alleles can cause problems for certain anal-
yses, as this violates the assumption of independence between sites that some
population genetic methods require. In such cases, the problem can be ad-
dressed by extracting a subset of sites for which the correlation of alleles from
one site to the next is below a chosen threshold. This procedure is called prun-
ing. It usually results in a significant reduction in number of variable sites (see
e.g. Novembre et al., 2008), but the remaining sites can be treated as inde-
pendent and methods requiring independence can be applied to them. In con-
trast, some population genetic methods actually benefit from linkage disequi-
librium. In association studies for instance, where genome-wide genetic data
is scanned for association to a given phenotype, often a disease phenotype, cor-
relation between alleles at neighbouring sites can lead to a local genetic signal
of association, even when the causal variant is not genotyped in the sample,
as can be the case when using a SNP array. Numerous genome-wide associa-
tion studies have been performed using thousands of individuals thanks to the
relatively low cost of SNP arrays and multiple genetic associations with dis-
eases have been found (see e.g. Harold et al., 2009; Schizophrenia Psychiatric
Genome-Wide Association Study (GWAS) Consortium and others, 2011).

1.2.3 Genetic variation in Humans
In humans, the genome-wide rate of single nucleotide mutations has been es-
timated to around 2.5×10−8 per base pair per generation when calibrated by
the divergence time from chimpanzee, and to around 1.2×10−8 per base pair
per generation when studying trios and pedigrees. On average, a human is het-
erozygous at a site approximately every 1000 base pairs (Prado-Martinez et al.,
2013) and differs from a chimpanzee at around 1.2% of all sites (The Chim-
panzee Sequencing and Analysis Consortium, 2005). It has often been said
that 85% of the genetic variation in humans is accounted for by differences
between individuals and the remaining 15% by differences among popula-
tions (Lewontin, 1972). While this is correct for the variable sites taken sepa-
rately, there is information about population membership and shared ancestry
among groups in the correlation between sites (Edwards, 2003) so that defin-
ing broad human groups has meaning for population genetic studies. In fact,
surveys of genetic variation in individuals sampled worldwide have revealed
a clear genetic structure among human populations, at different geographic
scales (see e.g. Rosenberg et al., 2002; Jakobsson et al., 2008; Wang et al.,
2007; Schlebusch et al., 2012). A study of mitochondrial DNA haplotypes in
a worldwide sample of individuals revealed that mitochondrial genetic varia-
tion outside of Africa is a subset of the variation within Africa (Cann et al.,
1987), suggesting an African origin of today’s human populations. Support
for the Out-of-Africa model of human demographic history has been further
strengthened by the study of the Y chromosome (Hammer et al., 2001) and au-
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tosomes (Goldstein et al., 1995), with patterns of genetic diversity that are con-
sistent with serial founder events (DeGiorgio et al., 2009). Both genome-wide
homozygosity and linkage disequilibrium increase with the distance from Afri-
ca (Jakobsson et al., 2008), consistent with an African origin of all modern hu-
man populations today. However, the origin of anatomically modern humans
within Africa is still under debate, and some have argued that there may be no
single geographic origin to begin with (Schlebusch et al., 2012).

1.3 Mapping genotype and phenotype
We are all the product of our genes, of our environment and the interaction
between them. Disentangling the different factors contributing to observed
phenotypic diversity is one of the main goals of genetic studies and has major
applications notably in the field of human health (Visscher et al., 2008). Twin
studies and other pedigree-based studies can give estimates of the heritability
of a given phenotype, namely the proportion of phenotypic variance in a pop-
ulation that can be attributed to additive genetic effects (Lynch et al., 1998).
Some traits, such as height, are found to be highly heritable, thus influenced
greatly by genetic factors (Macgregor et al., 2006; Yang et al., 2010), while
other traits are mainly influenced by the environment (Price and Schluter,
1991), leaving genes only a small role to play in their variance. Once it has
been established that genetic factors contribute significantly to the phenotype
of interest (often a disease status or a health-related quantitative trait, such as
blood pressure or lipid levels), it is of great interest to identify the particular
genes that influence the phenotype. A number of study designs have been de-
veloped to address this problem, such as candidate-gene association studies,
linkage mapping, admixture mapping and Genome-Wide Association Studies
(GWAS) (Hirschhorn and Daly, 2005). I briefly provide in the methods sec-
tion an overview of the main concepts behind GWAS, as it was the approach
chosen for identifying genetic contributors to arsenic metabolism in the study
presented in paper IV of this thesis.

1.4 Selection
The immense diversity of life on Earth is undeniable. If one takes notice of
this fact, one may wonder about the forces that have shaped the multitude of
species observed today and in fossil records, and why do we see so many dif-
ferences among species and yet so many similarities as well. In his seminal
book On the Origin of Species (Darwin, 1859), Charles Darwin provided an
answer: all life forms are related to one another via ancestral species (explain-
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ing the similarities) and every species has taken its own evolutionary path
under the constraints of natural selection (explaining the differences). This
revolutionary idea, very controversial at the time of publication and sadly still
challenged despite the large body of evidence supporting it, had profound im-
plications in the study of life. Due to mutations, individuals carry different
genetic make-up, which in turn leads to a variety of different phenotypes. If
the phenotype of an individual grants it a reproductive advantage, the underly-
ing genetic factor causing the phenotype is passed onto the next generation
with higher probability, thus increasing the frequency of the advantageous
phenotype in time. The process by which the succession of generations in
a population is made up of individuals that are increasingly fit to live in their
environment is called adaptation. Adaptation is one of the driving forces of
evolution and species diversification.

When a given genetic variant grants a reproductive advantage to its carri-
ers, the variant is said to be under positive selection. In humans, a handful
of examples of positive selection have been identified. Some are examples of
adaptation to the environment (Yi et al., 2010; Ruff, 1994; Perry and Dominy,
2009; Norton et al., 2007; Hamblin and Di Rienzo, 2000, see also paper IV),
some are driven by dietary practices (Enattah et al., 2008), and some even by
cultural practices (Asante et al., 2015). Nevertheless, it is still unclear how
much positive selection has participated in shaping the evolution of mankind.
Genetic drift is likely to play an important role as well, especially in small
populations. Disentangling evolution due to genetic drift from adaptive evo-
lution is a great challenge in evolutionary biology (Stajich and Hahn, 2005).
The field is marked by a long-lasting debate between the neutralists who be-
lieve that species and populations mostly evolve due to genetic drift randomly
bringing alleles to fixation or eliminating them (Kimura et al., 1968), and se-
lectionists who believe that, on the contrary, evolution occurs mostly under
selective constraints (Gillespie, 2010). Everyone nowadays agrees that both
processes of genetic drift and natural selection are acting, but the degree to
which they participate in the evolution of species is still hotly debated. Cur-
rently however, most methods aimed at detecting or measuring the amount of
selection assume that most of the variation in the genome is neutral or nearly
so, and that sites under positive selection are the exception. Hence, by look-
ing at properties of variants, the genome-wide distributions of those properties
represent the neutral expectation and outlier regions might be the result of se-
lective processes (Nielsen, 2005). In the methods section, I provide examples
of genome-scans to detect regions under positive selection.

New mutations can also be disadvantageous. The life of an organism is built
on a complex and delicate mechanism and there are many places where it can
fail when altered. Mutations in coding regions for example might alter a pro-
tein’s conformation and hence, disrupt its function. Some mutations are lethal

20



and are immediately purged from the population. Some mutations are deleteri-
ous and lead to a survival or reproductive disadvantage for the individual. The
frequency of such an allele is thus likely to decrease over time because of pu-
rifying selection, potentially also eliminating other variants that are physically
linked to it. Purifying selection is likely to play an important role in creating
the patterns of genetic diversity we observe, especially in genetic regions of
central importance, but I do not address its effects in this thesis.

1.5 Population structure
As I mentioned previously, individuals in populations rarely reproduce at ran-
dom. Instead, the pairing of individuals can depend on various factors, such
as geographical proximity, sexual selection or cultural practices. The depar-
ture from random mating is referred to as population structure. There can be
different reasons as to why random mating is hindered. Geography is an im-
portant contributor to population structure in humans for example, as people
tend to pair with individuals that live in their vicinity. In time, this creates
a particular pattern of genetic diversity, where the genetic similarity of indi-
viduals is correlated with the geographical distance that separates them. This
model, called isolation by distance, seems to be holding well in Europe for
example, where genetic data has been shown to mirror geography surprisingly
well (Novembre et al., 2008). Sexual selection is another factor that can cause
population structure, when individuals choose their mates according to the
amount of similarity (assortative mating) or dissimilarity (disassortative mat-
ing) they have with them. In humans, the choice of a mate can be influenced
by cultural factors, such as education level, religious views (Hur, 2003) or
cooperativeness (Tognetti et al., 2014). Preferences for mates with different
HLA alleles have also been shown (Wedekind et al., 1995).

Population structure complicates genetic analyses as it violates the impor-
tant assumption of random mating of most population genetic models. In as-
sociation studies for instance, if the cases are more related to each other due
to cryptic population structure, variants that correlate with the disease sta-
tus are more likely to be the result of shared ancestry than to be causing the
phenotype, creating large amounts of false positive associations (Cardon and
Palmer, 2003). To account for population structure, some corrections can be
applied (e.g. Price et al., 2006). It is however difficult to characterize the extent
of population structure in a population as, in general, many factors influence
the choice of a mate. Sometimes, the difficulties caused by population struc-
ture in genetic analyses can be alleviated by applying some genomic control
to the data, in the example of genome-wide association studies (Clayton et al.,
2005). Population structure can also sometimes lead to valuable information.
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In the case of population structure based on geography, the correlation of ge-
netic data to spatial coordinates can help shed light on the movement of people
or animals in time. It can also help in determining the geographical origin of
a DNA sample of unknown origin, a useful piece of information in forensic
science for instance.
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2. Methods

Now that I have presented some key concepts of population genetics, I will
present in the following section the key methods I have used to investigate
questions of population genetic relevance.

2.1 Measuring genetic diversity and differentiation
Mutation and recombination processes create variation among individuals or
among populations, but there are various ways to quantify the actual amount.
We review here three statistics of interest that are used in the studies presented
in this thesis: heterozygosity, r2 and FST , which are measures of genetic diver-
sity, linkage disequilibrium and differentiation respectively.

2.1.1 Heterozygosity
When looking at a single position in the genome where a variant is known to
exist in a population, individuals can either be homozygous (carrying the same
allele at both the paternally and maternally inherited chromosomes) or het-
erozygous (paternal and maternal alleles are different). Observed heterozygos-
ity is defined as the proportion of heterozygous individuals in the population.
Since genetic information can almost never be collected for all individuals,
heterozygosity has to be estimated using a sample from the population. Under
the assumption of random mating, with no other evolutionary forces at play,
heterozygosity can also be computed using allele frequencies. More precisely,
for a bi-allelic locus with allele frequencies p and q = 1− p, the expected
proportion of heterozygous individuals in a randomly mating population is
2pq, which represents the probability of randomly sampling two different al-
leles from the population. When the observed heterozygosity is equal to the
expected heterozygosity, the population is said to be under Hardy-Weinberg
Equilibrium, named after Godfrey Harold Hardy and Wilhelm Weinberg who
independently worked out the frequencies for each genotype under the equilib-
rium. Evolutionary processes such as mutation, selection, drift and population
structure can lead to a discrepancy between the expected and observed geno-
type frequencies. Tests for deviation from the Hardy-Weinberg equilibrium
have been built and they are often used in the context of revealing the pres-
ence of population structure or detecting selection.
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Considering now an entire sequence of DNA, if the mutation rate per site
per generation is small enough, most sites are monomorphic and polymorphic
sites are likely to segregate for only two alleles. The average heterozygosity
H over the sites of the sequence is expected to be:

H = 4Neµ, (2.1)

with Ne the diploid effective population size and µ the mutation rate per site
per generation. Thus, if the mutation rate is known, the effective population
size can be computed from estimates of heterozygosity. In human populations,
estimates of effective population size based on heterozygosity are in the order
of 10,000 (Yu et al., 2004), with African population sizes larger than non-
African sizes due to the founder effects of the Out-Of-Africa event and sub-
sequent colonization of the entire world. This type of computation provides a
single estimate for the effective population size, which then represents an av-
erage of the effective population size over the entire history of the population.
Recently, methods have been developed to harness information contained in
the rates of coalescence within samples and provide estimates of the effective
population size over time (see for example paper III and Li and Durbin, 2011;
Sheehan et al., 2013), which gives a finer insight into the population’s history
than the simplistic Ne estimate from heterozygosity.

2.1.2 r2

As a measure of the non-random association of alleles at different sites, r2

can be a measure of haplotypic diversity. A genomic region where all sites are
heavily correlated contains less haplotype-alleles than a genomic region where
sites are independent, as many more combinations of alleles can be observed
in the latter case. For two biallelic genetic markers of minor allele frequency
p and q, having a frequency x for the haplotype-allele formed by minor alleles
at each marker, r2 can be computed as:

r2 =
(x− pq)2

p(1− p)q(1−q)
. (2.2)

The term x− pq in the numerator of r2 represents another statistic for measur-
ing linkage disequilibrium, called D. D measures the deviation between the
observed haplotype frequency x and the expected haplotype frequency if the
two loci are independent, which is the product of the frequencies of the alleles
at each locus, namely pq.

2.1.3 FST
Characterizing the amount of differentiation between populations is important
in population genetics, as it carries information about how long ago the popu-
lations shared common ancestors and when they started to diverge. Variation
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in the amount of genetic differentiation at the genome level can also be infor-
mative on levels of admixture since divergence, or identify particular regions
of accelerated evolution that represent putative evidence for positive selection
acting on the region. One of the most used statistics to characterize differentia-
tion is FST , one of the three fixation indices introduced by Sewall Wright. FST
aims at measuring the correlation of alleles of two homologous gene-copies
randomly sampled from a sub-population relative to alleles randomly sampled
from the entire population (Excoffier, 2008). There are different estimators
of FST (Hudson et al., 1992; Nei, 1986; Weir and Cockerham, 1984), but one
very often used is Nei’s FST (Nei, 1973) which is computed as follows:

FST =
HT −HS

HT
, (2.3)

where HT represents the heterozygosity of the total population and HS the het-
erozygosity averaged across subpopulations, with each subpopulation given
an equal weight in the summation.

2.2 Inferring the phase
As diploid individuals, humans receive half of their autosomal genomes from
their mother and the other homologous half from their father. Most sequencing
technologies today produce sequencing reads that are a couple of hundred base
pairs long, hence variant positions are likely to sit on different reads and in-
formation on the joint origin (paternal or maternal) of alleles at different sites
is lost. However, constructing the maternal and paternal haplotypes within
one individual may be necessary for some genetic analyses. This procedure
is called phasing. Accurate phase estimation in samples is becoming more
and more important because phase information improves applications to dis-
ease association studies (Tewhey et al., 2011), imputation of untyped genetic
variation (Marchini et al., 2007), inference of demographic history (Harris and
Nielsen, 2013), identification of recombination breakpoints (Kong et al., 2008)
or detection of regions under positive selection (Sabeti et al., 2002). Phase can
be obtained either empirically, by sequencing long stretches of DNA, or statis-
tically, by building methods that pair alleles at consecutive heterozygous sites
using sample information. Only a few full genomes have been phased with
molecular methods (e.g. Kitzman et al., 2011; Suk et al., 2011) as the cost of
such techniques is two- to five-fold higher than the regular sequencing meth-
ods that produce unphased genetic data (Browning and Browning, 2011). In
contrast, statistical phasing is rather inexpensive but can be computationally
costly if the sample and the number of variant positions are large (Browning
and Browning, 2011).
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There are primarily two large classes of statistical phasing methods. Identity-
by-descent methods are most often used on known pedigrees. They aim at
detecting the long stretches of DNA that are shared via a very recent common
ancestor - typically first to third degree relationships (Kong et al., 2008). In a
parent-offspring comparison for example, ignoring all the de novo mutations
in the offspring, both individuals share at least one allele identical-by-descent
at every site. When the second parent is included, the phase within each of
the three individuals can be inferred at all positions, except sites where all
are heterozygous. To resolve such sites, one can turn to the second class of
statistical phasing methods: the haplotype-frequency based methods. Such
methods rely on computing the frequency of the haplotypes observed in the
sample or a reference panel, using the frequencies to determine the likelihood
of a given haplotypic configuration within an individual, and choosing the final
configuration either by the help of a rule (like choosing the most likely config-
uration in parsimonious methods) (e.g. Wang and Xu, 2003; Gusfield, 2003)
or according to a stochastic model (e.g. Scheet and Stephens, 2006; Browning
and Browning, 2007; Williams et al., 2012). The latter way of choosing is
the most commonly observed in phasing algorithms today. In many cases, it
uses the posterior distribution of haplotypes given the genotypes, with the hap-
lotypes being the hidden states of an underlying Hidden Markov Model that
models the approximate coalescent with recombination. Haplotype-frequency
based phasing algorithms can be used on any dataset of individuals, even when
the dataset contains cryptic relatedness between individuals - such related-
ness has been shown to actually improve the accuracy of the result (Browning
and Browning, 2011) - but performs best in large samples, when computing
time is not prohibitive. However, as new advances in sequencing technologies
emerge, we may have to rely less and less on statistical phasing, obtaining
haplotype information directly from molecular data. Empirical phasing re-
mains the only method to address the issue of phasing de novo mutations and
really rare variants, a problem that seems important for disease association
studies (Bansal et al., 2010).

2.3 Visualizing and inferring population structure
2.3.1 Principal Component Analysis
Principal Component Analysis (PCA) is a convenient statistical tool to ob-
serve multi-dimensional data in a space of fewer dimensions (usually in 2D)
and at the same time preserving most of the features of the data. For genetic
data, individuals are represented by points in the orthogonal space defined by
each variable site. For example, let us consider 10 individuals genotyped on a
5 million SNP array. For each SNP, a reference allele can be defined so that
the genotype of an individual is encoded as 0 if it is homozygous for the ref-
erence allele, 1 if heterozygous or 2 if homozygous for the other allele. The
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encoded genotype represents the individual’s coordinate on the axis defined by
the SNP. The data representing all 10 individuals is thus a cloud in a space of 5
million dimensions. Despite the reduced number of individuals, it is difficult
to picture the data as is because spaces of dimension higher than 3 are hard
to visualize. PCA performs a rotation of the axes so that most of the varia-
tion in the data is captured on the first rotated axes which are called principal
components (hence the name of the method). To be more precise, the first prin-
cipal component represents the direction of the space where the data has the
most variance. Then, in the space defined orthogonally to the first component,
the second principal component is the direction that captures the most of the
remaining variance. By sequentially projecting the data onto the orthogonal
spaces of previously defined principal components and identifying the direc-
tion of highest variance in the data, PCA produces a new rotated set of axes,
of which the first axes are most informative about the data. When sampling
individuals from a population containing population structure (which can be
from spatial constraints or other factors), a PCA can visually reveal the struc-
ture (figure 2.1).

Figure 2.1. Example of a PCA on genetic data. We simulate a five island model us-
ing ms (Hudson, 2002), with 20 haploid individuals sampled from each island and
100,000 independent sites segregating among the 100 individuals. A) The island
model. Solid arrows indicate a scaled mutation parameter of 20 and dashed arrows
a scaled mutation parameter of 4. B) Results of the PCA applied to the 100 haploid
individuals, for the 2 first principal components. The colors indicate the origin of each
individual according to the model shown in A).

PCA is neither a data transformation technique nor a statistical test; it is
merely a visualization tool that can be helpful to generate hypotheses about
the data. Proper hypothesis testing is required to confirm or reject the hy-
potheses that were derived from looking at PCA results. The computation
of the principal components can be sensitive to outliers and to the sampling
scheme, when investigating spatial genetic correlation for example. When
sampling from two diverged populations, a difference in the coordinates of in-
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dividuals on the first principal component has been shown to be related to the
average coalescence time between the individuals (McVean, 2009).

2.3.2 Bayesian inference of population structure
In the previous section, we presented PCA in the context of visualizing genetic
data. As an exploratory tool, PCA may reveal structure in the studied sample
but by no means does it model that structure formally, in a way that would
make the structure quantifiable. In contrast, methods that model population
structure explicitly have been developed (Pritchard et al., 2000; Alexander
et al., 2009). One of the most cited programs that implement such methods is
STRUCTURE (Pritchard et al., 2000; Falush et al., 2003; Hubisz et al., 2009).
In the original version, Pritchard et al. (2000) use a Bayesian framework to
estimate the membership of individuals in a given number of clusters using
genetic data at unlinked loci. In general terms, STRUCTURE attempts to
account for Hardy-Weinberg and linkage disequilibria by introducing a struc-
ture formed by clusters in which genotype frequencies and linkage are close
to equilibrium. More formally, using the genotypes of the individuals as ob-
served data, it estimates the allele frequencies within each cluster and the ad-
mixture proportions of each individual (the relative membership of individuals
to each cluster) by computing their posterior distribution given the data via a
MCMC Gibbs sampler. They use uninformative priors and assume Hardy-
Weinberg equilibrium within each cluster. STRUCTURE has been widely
used to study population structure in humans (e.g. Rosenberg et al., 2002) and
many other organisms (e.g. Harter et al., 2004; Rosenberg et al., 2001). Exten-
sions have been developed to include new aspects in the model such as linkage
between loci (Falush et al., 2003), dominance and null alleles (Falush et al.,
2007) and sample information (Hubisz et al., 2009). Another program called
ADMIXTURE (Alexander et al., 2009) uses the same principles as STRUC-
TURE but improves computational speed greatly by the use of a quasi-Newton
convergence acceleration method (Dennis and Moré, 1977).

2.4 Genome-Wide Association Studies
The principle behind Genome-Wide Association Studies (GWAS) is to survey
the genome for association between the observed genotypes and a phenotype
measured on the individuals in a study sample (Hirschhorn and Daly, 2005).
The phenotype can be discrete (a disease status) or continuous (blood pres-
sure for instance). The variants that are causing the phenotype might not be
represented in the data (they may have not been genotyped). However, be-
cause of linkage disequilibrium, neighboring variants for which individuals
have been genotyped might present an association to the phenotype due to the
correlation of their alleles to the unobserved causal site. Thus, GWAS have
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benefited greatly from the technological advances in high throughput geno-
typing (McCarthy et al., 2008). As the number of SNPs on arrays has in-
creased over the years, better resolution has been achieved at the local level,
providing hopes for identifying particular genes contributing to the phenotype.
Population structure or cryptic relatedness in the sample can lead to false pos-
itives (Hirschhorn and Daly, 2005) and needs to be accounted for, either by
direct modelling or by statistical correction of the effects, with genomic con-
trol for example (Price et al., 2010). Also, as the number of genotyped sites
increases thanks to ever growing size of SNP arrays, more stringent signifi-
cance thresholds for association need to be used to keep the number of false
positives low.

Since 2005, more than 2,000 regions have been robustly associated with
complex diseases and traits (Manolio, 2013). Nonetheless, the heritability of
many common complex diseases or traits remains poorly explained by the
variants found in association studies. One potential explanation is the rela-
tively small effect of each variant on the phenotype (Hirschhorn and Daly,
2005). Complex traits and diseases might involve a large amount of genomic
regions, each of them contributing only a small amount to the total variance
in phenotypic values. Another explanation lies in the potential contribution of
rare variants, which are very likely to be absent from SNP arrays or may be
poorly correlated with neighboring genotyped sites (Bansal et al., 2010).

2.5 Detecting selection
When a new mutant allele is introduced in a population and is highly bene-
ficial, it tends to increase rapidly in frequency, dragging along the particular
haplotype it appeared in, so that the alleles forming the haplotype also increase
rapidly in frequency (Nielsen, 2005). This effect is called genetic hitchhiking.
The high frequency of those neutral alleles is mainly due to their proximity
with a beneficial allele, and not due to an inherent positive effect on fitness.
The phenomenon of an entire haplotype increasing in frequency due to pos-
itive selection on a de novo mutation and eventually reaching fixation is re-
ferred to as a hard selective sweep. The genetic variation gets swept away
around the beneficial allele. When an allele that is already present in a pop-
ulation becomes beneficial (perhaps due to a change in environment), all the
different haplotypes that the allele sits in tend to increase in frequency, cre-
ating a soft selective sweep. Soft sweeps are usually harder to detect as they
resemble more the expected patterns of diversity under neutrality. In humans,
only a handful of hard selective sweeps have been identified and it is believed
that most selective events act on standing variation, thus causing soft selective
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sweeps (Pritchard and Di Rienzo, 2010).

I describe here three statistics that can be used to detect signals of pos-
itive selection. The three statistics can be computed for every variable site
in the genomes of a given sample. The main assumption of these types of
genomic-scans are that most sites are evolving neutrally. Regions with high
values compared to the genome average background level suggest potential
candidate regions for positive selection. These outlier approaches are not well
defined statistical tests per se, unless a formal computation or simulation of the
distribution of background values under the neutral null model is performed.
They can be useful however for generating hypotheses and can provide strong
additional evidence for selection when a particular region is identified by other
analyses prior to the scan (see paper IV for example).

2.5.1 iHS
The iHS statistic (Voight et al., 2006) aims at detecting signals of strong re-
cent positive selection on de novo variation, when the beneficial allele has not
yet reached fixation. It relies on the contrast between decays of haplotype ho-
mozygosity around either the ancestral or the derived allele and standardizes
this contrast at genome-wide level, within classes of derived allele frequency.
Indeed haplotypes around older alleles are more likely to be diverse, as recom-
bination has had time to break down and re-shuffle the haplotypic background
around the derived allele. By standardizing the iHS values within classes of
allele frequencies, we limit the potential effect of allele age. In particular,
within a class of derived allele frequency p, iHS is computed as

iHS =
ln( iHHA

iHHD
)−Ep[ln(

iHHA
iHHD

)]

SDp[ln(
iHHA
iHHD

)]
, (2.4)

with iHHA (resp. iHHD) the integrated value of the decay of homozygos-
ity in both directions around the ancestral (resp. derived) allele, Ep[ . ] and
SDp[ . ], the genome-wide average and standard deviation within the derived
allele frequency class p. As the value of iHS rather than its sign is important,
genome scans are usually performed using the absolute value of iHS. Any site
with a value of ln(iHHA/iHHD) that largely exceeds or largely falls below the
genome average will be considered, regardless of the direction.

2.5.2 FST and LSBL
I talked about FST earlier, in the context of measuring population differentia-
tion. The effect of population divergence on the genetic differences between
two populations is expected to be the same throughout the genome. However,
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if one of the two populations have experienced a selective event, targeting a
particular region of the genome, differences accumulate faster in the selec-
tive sweep than on another randomly selected region of the genome. So in a
genomic computation of local FST values, selected regions should appear el-
evated from the background level of neutral divergence. To detect signals of
selection using this method, the ideal situation occurs when using two popu-
lations that diverged somewhat recently, so that traces of the selective events
since divergence do not get lost in the background of FST values. A related
statistic also aimed at detecting signals of selection in the genome is the Locus
Specific Branch Length statistic (LSBL) (Shriver et al., 2004). Based on the
divergence between 3 populations, it uses FST as a proxy for the temporal dis-
tance between populations and tries to extract the length of the branch leading
to a particular population (figure 2.2).

Pop A

Pop B

Pop CFST(AB)

FST(AC)

FST(BC)

LSBL(A) = 
FST(AB) FST(AC) FST(BC)+ _

__________________________

2

A B

Figure 2.2. LSBL. A) Unrooted tree between three populations and the corresponding
FST . B) Equation for LSBL as function of the three FST values.

Positive selection that is private to one population should result in more
differences with the other two populations in the region targeted by selection,
thus locally the tree representing the ancestry between the three populations
should have a longer branch leading to the population under selection. Like in
the FST scan, it is by comparing to the background of typical branch lengths
that potential signals of selection can be found.

2.6 Inferring demographic parameters
Populations usually evolve in a complex manner. Their size can change over
time, as a result of climate changes (Ruzzante et al., 2008) such as glacial
cycles or of movements into new territories (DeGiorgio et al., 2011). They
can split into smaller groups for ecological or geographical reasons (Shapiro
et al., 2012). They might come into contact with other populations and ex-
change migrants (Wang et al., 2008). Understanding the demographic history
of given populations can shed light on the impact of these extrinsic and intrin-
sic factors on their evolution (Gattepaille et al., 2013). Inferring demography
is also important for deriving the neutral distribution of statistics of interest
for which outlier values can then be interpreted as potential signals for selec-
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tion (Nielsen, 2005).

Several methods have been developed to infer demographic parameters,
such as population size, divergence times, migration rates, admixture times
and proportions. Most methods assume a given parametric model, which can
be quite complex, including split times, migrations, admixture events, bottle-
necks and so on, and provide estimates for all parameters involved given the
observed data. Some methods use the full-likelihood of the data (e.g. Kuh-
ner et al., 2000; Beerli and Felsenstein, 2001) or the likelihood of summary
statistics (e.g. Gutenkunst et al., 2009; Naduvilezhath et al., 2011), others use
Approximate Bayesian Computation to estimate the parameters (e.g. Beau-
mont et al., 2002; Excoffier et al., 2005) or use a full Bayesian approach on
the data (e.g. Li and Durbin, 2011; Sheehan et al., 2013; Steinrücken et al.,
2013), coupled with the use of the Sequentially Markov Coalescent approxi-
mation (McVean and Cardin, 2005; Marjoram and Wall, 2006). I do not review
here all the different methods and their specificities, however I will give a brief
overview of PSMC (Li and Durbin, 2011), an approach to infer Ne over time,
as I use it for comparison to the method of inferring Ne over time that I develop
in paper III.

PSMC, which stands for Pairwise Sequentially Markovian Coalescent, is a
method for inferring variable population size over time. The population size is
modelled as a piecewise constant function whose breakpoints are defined by
the user on a logarithmic scale. PSMC can be employed on the entire genome
of one individual and utilizes the patterns of local heterozygosity to estimate
local gene-genealogies. It models a Hidden Markov Model on the times to co-
alescence between the paternal and maternal DNA sequences of the individual,
and uses the Sequentially Markovian Coalescent model (McVean and Cardin,
2005) to incorporate recombination into the method. The population sizes for
every defined period are computed via Expectation Maximization during the
course of the MCMC chain. The probabilities of the hidden states of times to
coalescence obtained at the end of the run can be used to estimate the local
gene-genealogies and the break-points between non-recombining segments.
Since its publication in 2011, PSMC has been used a great number of times
for various species, due to its simplicity, the little amount of parameters to
specify and its computational speed. It has been shown to perform relatively
well to estimate population size in ancient times, but performs poorly in the
very recent past (Li and Durbin, 2011). Extensions to include more individuals
have been developed (Sheehan et al., 2013; Schiffels and Durbin, 2014), which
could potentially alleviate the problem of recent population size inference.
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3. Research Aims

The main objective of this thesis was to develop new methods for providing
answers to various population genetic questions, with application to the inves-
tigation of human evolution. More specifically, the aims were:

I Investigating the mathematical relationship between FST and homozy-
gosity, by providing upper and lower bounds between the quantities,
and survey FST estimates among human populations in the light of
their homozygosities.

II Developing a criterion for deciding when to combine SNP markers
into a haplotype in order to improve the assignment of individuals of
unknown origin to populations represented in a reference panel, and
applying the criterion on human SNP data to separate populations
that cannot be distinguished by using the SNPs separately.

III Deriving an analytical correspondence between distributions of co-
alescence times and population size over time, verifying the robust-
ness of the mathematical result on simulations and using it to infer
past population sizes of different human populations.

IV Investigating human evolution in response to toxic environments, in
particular identifying genetic regions involved in metabolizing ar-
senic using the genome-wide association framework and explore the
potential presence of evidence for positive selection in the associated
regions.
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4. Summary of the papers

4.1 Paper I
Homozygosity Constraints on the Range of Nei’s FST

FST is a widely used statistic to characterize the amount of differentiation be-
tween populations or species. Potentially ranging from 0 to 1, many studies
have obtained estimates of FST that are typically lower than 0.2. It has been
shown that FST estimators are sensitive to the levels of genetic diversity within
populations which can explain why we rarely observe high values of FST in
nature. We investigate this issue by looking at the mathematical properties
of one estimator of FST , Nei’s GST , between two populations harboring fixed
levels of homozygosity, for loci carrying a given finite number of alleles. We
derive upper and lower bounds for FST as functions of the homozygosities and
the number of alleles. We illustrate our results on a human dataset of 131,834
haplotype-loci formed by combining 2,285,342 SNPs into windows of 20kb.
Samples from 3 populations are used, 101 individuals sampled in Utah (United
States) with European ancestry, 103 Yoruban individuals sampled in Ibadan
(Nigeria) and 30 individuals sampled from two Northern San populations, the
!Xun and Ju/’hoansi living close to the border of Namibia and Botswana.

The average homozygosity for these haplotypes was 0.31 for the European
individuals, 0.20 for the Yoruban individuals and 0.26 for the Northern San
individuals. The genome-wide averages of the haplotype FST were 0.092 be-
tween Europeans and Northern Sans, 0.061 between Europeans and Yorubans,
0.044 between Northern Sans and Yorubans, with average relative positions
within the admissible range predicted by our theorem of 0.48, 0.34 and 0.27
respectively. We investigate the values of FST between Northern San and Eu-
ropeans as well as between Northern San and Yoruba for three classes of
haplotype-loci depending on the value of homozygosity of these haplotype-
loci in Northern San: low homozygosity (0.05), intermediate homozygosity
(0.2) and high homozygosity (0.6).

All values are within the range predicted from our theoretical result, how-
ever all FST values are close to the upper bound in the class of low homozy-
gosity in Northern San, for both population comparisons. In addition, the
FST values in the class of high homozygosity, haplotype-loci are close to the
lower bound in the Northern San/Yoruba comparison while they are embracing
almost the full admissible range in the Northern San/Europeans comparison
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Figure 4.1. FST values within their constrained range. FST values for the North-
ern San vs. European comparison (left panel) and for the Northern San vs. Yoruba
comparison (right panel). Only haplotype-loci having homozygosity between 0.6 and
0.62 in Northern San were included (281 loci). Upper and lower bounds on FST are
indicated by orange solid and dashed lines.

(figure 4.1). We observe the least amount of differentiation between Yoruban
and Northern San individuals despite the early divergence of the ancestors of
Northern San populations from the ancestors of other extant humans found
in earlier studies, which suggests a complex demographic history in Africa,
possibly involving admixture events after the divergence of these two popu-
lations, confirming previous findings of admixture between !Xun and West
African populations. Additional explanations for this differentiation pattern
include potential effects of ascertainment bias on the SNP array for the African
samples (as the array might exclude a number of African variants on which
Yoruban and Northern San individuals could segregate), stronger differentia-
tion in the European population as a result of the Out-of-Africa event as well as
potential effects of archaic admixture in the European population. We believe
that discussing FST values in the light of their constrained range will generate
interesting hypotheses regarding the ancestral relationships between different
populations, help better characterize levels of differentiation and further our
understanding of the FST statistic and its dependency on genetic diversity.

4.2 Paper II
Combining markers into haplotypes can improve population
structure inference
With the advent of high-throughput genotyping and sequencing technologies,
the amount of genetic data available has tremendously increased. Today, SNP
arrays can provide genotype information for individuals at more than 5 mil-
lion positions in their genomes and the entire genomes themselves can be se-
quenced at a fairly low price compared to 10 years ago. This means that
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when considering variable sites in a collection of genomes or genome-wide
genotypes, many of the sites considered are in linkage disequilibrium and thus
carry somewhat redundant information. While the correlation of alleles at dif-
ferent sites might not be a problem in population genetic inference methods
that explicitly model this correlation, numerous methods actually do require
independence of the sites considered. In particular, most population structure
inference and genetic clustering methods are based on the genetic regions be-
ing independent and it is rather unclear how reliable the results can be if this
assumption is violated. To alleviate this issue and obtain a collection of sites
that are closed to independent, most studies perform pruning steps, where sites
are discarded according to a certain threshold of linkage disequilibrium, result-
ing in a loss of data that can be quite considerable. In this paper, we investigate
the feasibility of another strategy: combining the sites into larger segments
(haplotypes) and use them as multi-allelic genetic markers. We evaluate the
combining strategy for the problem of assigning individuals of unknown ori-
gin to a panel of already identified genetic groups.

Being able to correctly assign individuals to their group of origin can be of
great importance in conservation genetics and forensic science. We introduce
a new criterion, called the Gain of Informativeness for Assignment (GIA), that
allows us to decide when two genetic markers can be combined to form a new
haplotype marker and improve the assignment of individuals to groups. GIA
is derived from the Informativeness for Assignment (IA), a statistic based on
information theory which quantifies how helpful a given genetic marker is for
assigning individuals to groups (Rosenberg et al., 2003). Let us consider a
marker with multiple alleles: if the frequencies of the alleles are the same in
all groups, then the marker carries no information for assignment and IA is
zero; if all alleles are private to exactly one group, then the information car-
ried by the marker is maximal. Our approach to the problem of combining
markers is thus simple: we compute GIA as the difference between the in-
formativeness of the haplotype and the sum of the informativenesses for each
separate marker. If GIA is positive, meaning if IA for the haplotype is higher
than the sum of the IA of the two markers to be combined, then the haplotype
carries more information than the markers taken separately and combination
is advised, otherwise both markers should be considered separately.

After performing a study of GIA as a function of allele frequencies and
amount of LD, where we showed that there is no easy correspondence be-
tween the sign of GIA, the allele frequencies and the level of LD, but showed
however that independent markers lead to a negative GIA, we test the use-
fulness of our criterion for two simulated scenarii. In the first scenario, we
make a proof of concept for GIA where we generate 20 SNP pairs with given
allele frequencies in two populations and given amount of LD. We sample
100 individuals from each population. Since each SNP pair has the same
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characteristics in terms of LD and allele frequencies, they all have the same
value of GIA. We perform the assignment of the individuals using the soft-
ware STRUCTURE (Pritchard et al., 2000) under the unsupervised clustering
setting. We can then compare the ability of the software to correctly assign the
individuals to their group when using the 40 SNPs separately or when using
the pairs of SNPs merged into 20 independent haplotypes, and look at the re-
sult in the light of the GIA value. Out of the 11 cases where assignment with
haplotypes performed better, 9 cases had a positive GIA. For all of the 9 cases
where the assignment was better using the SNPs separately, GIA was negative.
This observation showed GIA’s ability to indicate whether markers should be
combined and improve the assignment.

In the second scenario, we generated genetic data for 200 individuals sam-
pled in equal proportions from two populations evolving under a two-islands
model with a proportion m of migrants per generation. The data consist in
1000 SNPs on a chromosome fragment where recombination can occur (two
scaled recombination rates were used: ρ = 150 and ρ = 1500). We perform
the assignment of individuals using STRUCTURE on different versions of the
data set, either using all 1000 SNPs separately, or by removing SNPs in LD,
or by combining SNPs into haplotypes either at random or with the help of
GIA or FST . As we increase the migration rate, the accuracy of the assign-
ment decreases as expected. Also, assignment was generally more difficult
when recombination was small. We found that the most accurate assignments
were obtained when SNPs were combined into haplotypes using GIA or FST ,
whereas randomly combining SNPs lead to worse results than the assignment
based on the separate SNPs. This observation showed that the improvement
obtained by combining SNPs did not originate from the sole process of build-
ing haplotypes, but in the guidance of GIA to choose which SNPs to combine.

Finally, we tested the effect of combining SNPs into haplotypes using GIA
on human genetic data from POPRES. In particular, we chose to perform a
cross validation study using genetic data from chromosomes 1 to 3 for 89
French and 70 German individuals, where half of the French individuals and
half of the German individuals were considered of known origin and used as
reference panel to compute all allele frequencies, representing thus a training
set, and all remaining individuals considered of unknown origin and constitut-
ing a validation set. Assigning individuals in the validation set using STRUC-
TURE under supervised clustering with the training set did not perform well,
regardless of the SNPs being used separately or combined, which might not be
so surprising in the light of the low genetic differentiation between the French
and German samples (FST = 0.00068). However assignment using the first
principal component of a Principal Component Analysis (PCA) on either the
SNP data or the GIA-combined data lead to interesting results. French and
German individuals from the validation set could not be separated when PCA
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was performed on separated SNPs (only 53.2% of individuals correctly as-
signed) but the assignment based on the GIA-combined dataset was markedly
improved (87.3% of individuals correctly assigned) (figure 4.2).
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Figure 4.2. Principal component analysis for French and German individuals
from the POPRES data. Each population sampled is divided into two samples of
equal size: a training sample and a validation sample. The French and German train-
ing samples are used to build haplotypes using GIA. 105,341 SNPs on chromosomes
1, 2, and 3 were converted into 54,762 haplotype loci. Upper panels show the two
first components of the PCA on the separate SNPs of the training set (panel A) and all
individuals (panel B). Lower panels show the same individuals when plotted onto the
two first principal component of the PCA based on the haplotypes. German individ-
uals are represented by triangles (blue for training, green for validation) and French
individuals by circles (red for training and orange for validation).

To take the application further, we used all French and German individu-
als as a two group reference panel (training set) to build the haplotypes using
GIA, and tried to assign Swiss-French and Swiss-German individuals to the
two clusters, to investigate the potential presence of assortative mating based
on language. Using GIA-combined haplotypes only lead to a slight decrease
(7%) in incorrect assignments suggesting that Swiss individuals do not sep-
arate on the base of French/German genetic differences. In a cross valida-
tion study of the Swiss samples alone, the decrease in incorrect assignments
was higher (28.6% decrease) with GIA-combined haplotypes, but the overall
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assignment remained difficult, probably due to the very low genetic differen-
tiation between Swiss-French and Swiss-German individuals (FST = 0.00012).

With this study, we have demonstrated that haplotypes contain additional
information about population structure and that using haplotypes instead of
single SNPs can improve assignment of individuals to populations, even for
difficult cases. The GIA statistic determines when it is possible to improve
the assignment of individuals to populations by combining markers into hap-
lotypes and it can be used as a tool for population structure inference methods
to capitalize on dense sets of genetic markers.

4.3 Paper III
Popsicle: a method for inferring past effective population size
from distributions of coalescent times
Natural populations rarely evolve under constant size. Instead, their size can
vary as a consequence of climatic changes such as glacial periods, epidemics,
founder effects when colonizing new territories, admixture when coming into
contact with other populations, or just by chance due to the stochasticity in
number of offspring produced and surviving. Investigating the effective size
of a population over time has received considerable interest in recent years,
with the introduction of new methods that utilize genomic data to reconstruct
the profile of past population sizes. Most methods of population size infer-
ence are dealing internally with two steps (sometimes circularly), one step
that uses genetic data to determine local ancestral relationships between gene-
copies sampled from the population, the other step that updates the population
size profile by maximizing the likelihood of the computed genealogies un-
der the model defined by the profile. In this paper, we facilitate the second
step by providing the analytical relationship between the population size over
time and the distributions of coalescence times. With this result, we can accu-
rately approximate the population size over time when given a large number
of independent gene-genealogies, that allows us to estimate the distributions
of coalescence times with good accuracy.

Our main result derives from inverting a previously found result where dis-
tributions of coalescence times were expressed as linear combinations of a
family of functions that depend on population size over time (Polanski et al.,
2003). From the inverted result, we can have access to the population size
over time using the distributions of coalescence times. Though this theoretical
result is exact and valid for continuous functions, the fact the genome sizes
are finite makes the distributions of coalescence times impossible to obtain in
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their continuity and we can only have access to approximate distributions. We
show on simulated data that our analytical result is stable, as using approx-
imate distributions of coalescence times generated by collecting 1,000,000
gene-genealogies under the population size model, leads to estimates of the
population size that are very close to the truth. In addition, we find that us-
ing much fewer loci (around 10,000) can still lead to good estimates of the
population size. The accuracy of the inferred population size improves signif-
icantly when increasing the sample size from 2 to 10, but further increasing
the sample size does not improve the accuracy much. We also simulated gene-
copies with recombination and found that when recombination is ignored, our
method can lead to biases in the estimated population sizes.

In reality, local gene-genealogies in the genome are unknown. The only
visible testimonies of the underlying gene-genealogies are the mutations that
arose onto the different ancestral lineages leading to the sample. In this pa-
per, we do not address the challenging problem of inferring the succession of
local gene-genealogies onto a recombining locus (inference of the ancestral
recombination graph), instead we use a simple algorithm of gene-genealogy
reconstruction for non-recombining loci, so as to evaluate the performance
of our population size inference method under a range of different muta-
tion rates and to apply the method to empirical data. Unsurprisingly, we
found that with increasing mutation rate, the method performs better, as the
gene-genealogies get inferred with better accuracy when the number of poly-
morphisms increases. For an empirical data application, we used phased se-
quences obtained from the Complete Genomics Trios data from the 1000
Genomes Project public data, and extracted 22,321 non-recombining regions
according to the Decode genetic map. We applied our method and compared
the results to the results of PSMC, a commonly used method for population
size inference.

We found that even for a small number of loci and a simple algorithm for
genealogy inference, our method was able to recover the general pattern of
population size observed by PSMC (figure 4.3, upper panel). We also note an
extra feature of an early divergence of the Yoruba population from the non-
African populations (figure 4.3, lower panel), suggesting a long standing pop-
ulation structure on the African continent prior to the Out-of-Africa event. Our
method is very fast compared to PSMC, as the computation of the population
size from the distribution of coalescence times is virtually instantaneous, and
the number of loci used is small. The main result presented here could po-
tentially be integrated in algorithms such as PSMC in order to decrease the
computing time and increase accuracy of the effective population size recon-
struction.
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Figure 4.3. Results of our effective population size inference method on human
sequences from Complete Genomics. Upper panel: comparison between effective
population size profiles computed with PSMC and our method on single individuals
(Popsicle 1) or on samples of 5 individuals (Popsicle 5), based on 64 European indi-
viduals. Lower panel: results of Popsicle 1 for four different populations, individuals
of European ancestry (CEU), Southern Han Chinese individuals (CHS), Peruvian in-
dividuals (PEL) and Yoruban individuals (YRI). Averages are indicated by solid lines.

4.4 Paper IV
Human Adaptation to Arsenic-Rich Environments
In humans, the extent of evolution that has been shaped via selective pres-
sure compared to neutral demographic processes remains unknown. In fact
even today, there are only a handful of well identified cases of human adapta-
tions. We know for example that some populations in Europe and Africa have
evolved lactose tolerance to adapt to milk drinking diets, that adaptation to
high altitude has been observed in Tibetans, that some people have developed
a resistance to Malaria in regions of the globe where the disease is rampant,
that lighter skin could have evolved from a need to produce more vitamin-D in
regions of high latitude where the incidence of the sun’s rays is reduced. The
study presented in paper IV is an addition to this small list of known human
adaptations to the environment, and offer a rather comprehensive view on the
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process, from the phenotypes to the biological mechanism and to the geno-
types.

The study deals with adaptation to arsenic-rich environments. In some vil-
lages in the Andes, it has been noticed previously that, despite a rather high
concentration of arsenic in the drinking water, the inhabitants seemed not to
suffer as much from the typical adverse effects of regular arsenic consump-
tion. In one of those villages, San Antonio de Los Cobres (SAC) in Argentina,
our collaborators collected blood and urine samples from 385 women liv-
ing in the area and having a family history of at least 2 generations back in
the region. Urine samples were analysed for inorganic arsenic and organic
compounds containing arsenic: monomethylarsonic acid (MMA) and diethy-
larsinic (DMA). MMA has been shown to be the most toxic compound of the
two and DMA to be more easily expelled from the body. Using the blood sam-
ples, we genotyped 124 of the women using a genome-wide dense SNP array
of around 5 million SNPs.

Figure 4.4. GWAS result for the MMA concentration phenotype.

We performed a Genome-Wide Association Study (GWAS) to identify re-
gions of the genome involved in arsenic metabolism and found a strong and
significant association on chromosome 10 for SNPs in a region upstream of the
gene encoding for the enzyme arsenic (+3 oxidation state) methyltransferase
(AS3MT) and both concentrations in MMA and DMA (figure 4.4). This re-
sult confirms previous findings regarding the central role of AS3MT in arsenic
metabolism. Other significant regions were found, one on chromosome 21
which was significant in the GWAS based on MMA as well as in the GWAS
based on DMA, and on chromosomes 2, 12 and 13, though significantly asso-
ciated either with MMA only or DMA only. None of these regions have been
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associated with arsenic metabolism previously and if the association signals
are true positives, functional studies would be required to identify how these
candidate genes influence the pathway of arsenic metabolism.

In addition to GWAS, we performed scans for selection using several types
of statistics: FST between the SAC individuals and a closely related Peru-
vian population, the Locus-Specific Branch Length (LSBL), which evaluates
the level of differentiation of a given site for a given population compared
the same level in two comparative populations, and the integrated Haplotype
Statistic (iHS) which uses patterns of homozygosity decay to identify puta-
tive regions under recent positive selection. We found elevated values of FST
(figure 4.5), LSBL and mean |iHS| in the region of AS3MT, providing strong
support for adaptation to a more efficient arsenic metabolism. In fact, out
of the 100 SNPs with highest LSBL value genome-wide, 13 are located in
the AS3MT region and the greatest 1Mb-window averaged |iHS| value in the
region was in the 97 percentile of the genome distribution of 1Mb-window
averaged |iHS| values.

Figure 4.5. FST values between the individuals from SAC and Peruvian individu-
als from the 1000 Genomes Project dataset.

Zooming in the AS3MT region, we identify a combination of SNP alleles
that is associated with higher level of DMA in urine (which is the more effi-
cient phenotype) and represents a protective haplotype. Investigating the same
haplotype-locus in other regions of the world reveals that the protective hap-
lotype, or very similar haplotypes, is present in some Native American and
East Asian samples. The sampled women of SAC were shown to have little
hispanic ancestry and their native ancestors, the Atacameños, seem to have
peopled the area as early as 11,000 years ago. This has left enough time for
natural selection to act on the resistance phenotype and increase the frequency
of the associated protective haplotype. The existence of the protective hap-
lotype in other parts of the world suggests that selection acted on standing

43



variation, but because our genetic data consists in ascertained SNPs and not
sequences, we cannot exclude the existence of a causal mutation explaining
the phenotype. We evaluated the selection coefficient of the beneficial vari-
ant to be between 0.003 and 0.005. This study shows that combining GWAS
to genome-scans for selection can yield interesting results and more power to
support evidence for positive selection in a population.
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5. Conclusions and future prospects

In this thesis, I have investigated different topics relative to human evolution,
by developing population genetic methods and applying them to genetic data
from human genomes. These topics include how differentiation between pop-
ulations is related to homozygosity in the populations, how assignment of in-
dividuals of unknown origin can be improved by combining markers into hap-
lotypes, how past population size can be computed using distributions of coa-
lescent times and how some individuals from a region in the Andes responded
genetically to the presence of arsenic in the drinking water. The breadth of the
topics presented in this thesis illustrates the richness of tools population genet-
ics has to offer for studying evolution. By bringing mathematical models into
the study of patterns of genetic diversity, population genetics together with the
advances in SNP genotyping and sequencing technologies have brought the
field of evolutionary biology into a new level where many hypotheses of eco-
logical or anthropological relevance can finally be tested.

In particular, with recent advances in sequencing techniques of ancient
DNA material, we can start to build a more refined picture of the major de-
mographic events of human history, using both present day and ancient sam-
ples. For instance, it has been shown that agriculture spread from the fertile
crescent to northern Europe via a demic diffusion followed by subsequent ad-
mixture of the agriculturalists with the local hunter-gatherers (Skoglund et al.,
2012). Also, ancient native American samples have been used to study the
peopling of the Americas (Raghavan et al., 2015). Archaeology can now ben-
efit from genetic analyses of discovered remains and I believe that incorpo-
rating multiple lines of evidence such as language phylogenies, movement of
ancient crops and livestock, ancient bacterial metagenomes and retroviruses
incorporated in the genomes, human history can be studied in great detail and
exciting results are to be expected in the near future. Such composite data will
require advances in modelling techniques to account for spatial and temporal
structure, as well as the multiplicity of the nature of the data.

Advances in molecular techniques are also expected. In particular, progress
in single cell genomics and molecular phasing will allow us to study the pro-
cess of recombination in more detail and build more accurate recombination
maps that do not rely on linkage disequilibrium for their computation. This
will prove very useful in numerous population genetic analyses, such as asso-
ciation studies or the inference of the ancestral recombination graph from mul-
tiple sequences, which contains all the ancestral information a sequence can
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harbor (Rasmussen et al., 2014). With increasing number of trios sequenced,
we can also hope for accurate mutational maps in the future. Indeed, we know
already that regions in the genome can have different mutation rates, as the
conservation constraints can vary from region to region (Smith et al., 2002),
and using a single mutation rate to calibrate times to coalescence (as we do
in paper III for example) might bias the result of the analysis at hand. In
addition, most human populations are growing super-exponentially since the
industrial revolution, resulting in a large number of rare genetic variation that
can only be observed by sequencing a sample, whose size becomes in the or-
der of the effective population size or even larger (Keinan and Clark, 2012).
Such large samples might not be suitable for analyses built on the coalescent
model, which assumes a sample of negligible size compared to the effective
size of the population. Models that account for the recent super-exponential
growth of human populations might be needed. In addition, rare variants are
believed to play an important role in health traits (Cirulli and Goldstein, 2010),
and increasing efforts are likely to be made in the future to study rare variation.
However, improvements in sequencing technologies are necessary to reliably
capture rare variants. In particular, the rate of sequencing errors remains to-
date too high for being able to call rare variants with good accuracy.

Data quality and quantity has drastically increased over the past decades,
allowing for models that used to be purely theoretical to be tested and creating
a need for new models as well. In this context, being a population geneticist is
quite exciting. The use of mathematics has been proven invaluable for study-
ing evolution, and there are surely numerous unforeseen fruitful outcomes that
are going to emerge from the trans-disciplinary field that population genetics
is. I am looking forward to see the future development of the field and eager
to add my modest participation to the associated endeavor.
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6. Svensk Sammanfattning

Populationsgenetik har tack vare sin förmåga att förutsäga och beskriva de vik-
tigaste evolutionära processerna såsom mutation, genetisk drift och naturligt
urval lett till ett stort antal viktiga studier av evolutionära processer. Nya
populationsgenetiska metoder och modeller utvecklas ständigt för att besvara
evolutionära frågor vilket ger oss nya pusselbitar om livsformers historia. I
den här avhandlingen presenteras nya populationsgenetiska verktyg och resul-
tat. Jag undersöker frågor angående populationers förändring över tid med
särskilt fokus på människans evolution. Dessa frågor inkluderar hur differen-
tiering mellan populationer är relaterad till homozygositet i populationer, hur
populationsassignment av individer av okänt ursprung kan förbättras genom
att kombinera markörer, hur en populationsstorlek över tid kan beräknas med
hjälp av fördelningarna av koalescenstider och hur vissa människor från några
regioner i Anderna med höga halter av arsenik i dricksvattnet nu bär på gen-
varianter anpassade till att delvis tåla arsenik.

Jag härleder en övre gräns och en undre gräns för FST , ett klassisk mått
på populationsdifferentiering, som funktioner av homozygositet i subpopula-
tioner. Jag tillämpar resultaten för att diskutera observerade populationsdiffer-
entieringar. Jag inför en ny statistik, Gain of Informativeness for Assignment
(GIA), som kan användas för att avgöra om två genetiska markörer bör kom-
bineras i en haplotyp för att förbättra assignment av individer till populationer
i en panel av referenspopulationer. Tillämpning av metoden på SNP-data
för franska, tyska och schweiziska individer visar hur haplotyper konstruer-
ade med hjälp av GIA kan leda till bättre assignment och en tydligare bild
av kryptisk populationsstruktur. Jag härleder också matematiska formler för
hur en populations historiska storlek över tiden är relaterad till fördelningarna
av koalescenstider; visar hur robusta dessa formler är för antal loci och an-
tal individer; och med hjälp av en enkel algoritm för att uppskatta en gens
koalescenttider tillämpar jag min metod på regioner av det humana genomet
med låg rekombinationstakt för fyra globalt spridda populationer. Jag visar att
metoden kan fånga tidigare observerade populationsstorleksförändringar långt
tillbaka i tiden och kan dessutom visa på nya populationsstorleksförändringar
i mer modern tid genom att basera analyserna på flera individer samtidigt.
Slutligen presenterar jag en studie av mäniskans anpassning till en arsenik-
rik miljö. Tillsammans med samarbetspartners från Karolinska Institutet och
Lunds universitet genotypade vi 124 kvinnor från San Antonio de los Cobres
(SAC) – en by i de argentinska Anderna där höga halter av arsenik i dricks-
vattnet har uppmätts men där de skadliga effekterna av arsenikkonsumtion är
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mindre än i andra utsatta områden. Eftersom bosättningen i regionen tros vara
åtminstone 10 000 år gammal tyder detta på att metabola mekanismer för att
tåla höga halter av arsenik har utvecklats hos många individer i den här grup-
pen. Vi använde fenotypinformation i form av koncentrationer av oorganisk
arsenik och organiska arsenikföreningar i urinen och utförde en association-
sstudie för att upptäcka regioner i genomet associerade med låga koncentra-
tioner av monomethylarsonic syra (MMA, en ganska giftig form av organisk
arsenikförening) och höga koncentrationer av dimethylarsinic syra (DMA, en
mildare form av organisk arsenikförening som är relativt lätt för kroppen att
göra sig av med). Vi hittade framför allt en association i en region på kro-
mosom 10, uppströms genen AS3MT, en gen som kodar för enzymet arsenik
(+3 oxidationstillståndet) metyltransferas som tidigare påvisats en nyckelroll
vid arsenik metylering. Dessutom fann vi förhöjda värden av iHS och LSBL
(statistika mått som är känsliga för selektion) i denna region, vilket ger en stark
indikation på att denna region har förändrats som ett led i anpassningen till en
arsenik-rik miljö. Den här studien representerar det idag enda kända exemplet
av mänsklig anpassning till giftiga miljöer.

Bredden av de ämnen som presenteras i min avhandling illustrerar en mång-
fald av verktyg som populationsgenetiken har att erbjuda för att studera evo-
lution. Genom att applicera matematiska modeller på mönster av genetisk
variation, har populationsgenetiken tillsammans med framstegen inom SNP
genotypning och sekvenseringsteknologi möjliggjort bättre och mer avancer-
ade evolutionsstudier där många hypoteser av ekologisk eller antropologisk
betydelse slutligen kan testas.
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7. Résumé en Français

Grâce à ses capacités de prédiction et de description des processus les plus im-
portants de l’Évolution, tels la mutation, la dérive génétique et la sélection, la
génétique des populations a généré un grand nombre d’études fructueuses sur
l’Évolution. Ce domaine de recherche est en expansion encore aujourd’hui,
avec de nouvelles méthodes et modèles en développement pour répondre à des
questions de grand intérêt au regard de l’Évolution et pour lever le voile sur le
passé des différentes formes de vie. Dans cette thèse, je présente ma modeste
contribution au développement de la génétique des populations. J’examine
différentes questions relatives à l’évolution de populations, en particulier de
populations humaines. Ces questions inclusent le lien entre la differentiation
génétique et l’homozygotie, comment l’assignement d’individus d’origine in-
connue peut être améliorée en combinant des marqueurs génétiques en haplo-
types, comment la taille des populations au cours du temps peut être calculée à
partir de la distribution des temps de coalescence et comment une population
des Andes a répondu génétiquement à la pression de sélection imposée par des
milliers d’années de haute teneur en arsenic dans l’eau courante.

Dans une première étude, en particulier, je calcule une borne supérieure et
une borne inférieure pour FST , une mesure classique de différentiation géné-
tique entre populations, comme fonctions de l’homozygotie dans chacune des
deux populations étudiées. J’applique ce résultat à des données humaines afin
de discuter les niveaux de différentiation observés entre différentes popula-
tions. Dans une seconde étude, j’introduis un nouveau critère, intitulé le Gain
d’Information pour l’Assignement (GIA), pour guider la décision de com-
biner deux marqueurs génétiques en un haplotype et améliorer l’assignement
d’individus d’origine inconnue à un panel de référence de populations. En ap-
pliquant cette méthode à des données de SNP sur un échantillon de Français,
d’Allemands et de Suisses, je montre comment l’utilisation des haplotypes
peut conduire à un assignement plus exacte lorsque les haplotypes sont con-
struits à l’aide de GIA. Dans une troisième étude, je calcule analytiquement la
taille de population au cours du temps en utilisant les fonctions de densité des
temps de coalescence. Je montre la robustesse de ce résultat mathématique
lorsque les densités ne sont plus connues dans leur continuité mais estimées
à partir d’un nombre fini de généalogies génétiques et lorsque l’on augmente
le nombre d’individus de l’échantillon. À l’aide d’un algorithme d’inférence
de généalogies à partir de données de séquences phasées, j’applique la méth-
ode sur des régions non ou peu recombinantes du génome humain pour qua-
tre populations de continents différents. Je retrouve dans le passé ancien des
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profils de taille de population similaires à ce qui à été observé à l’aide de
méthodes précédemment publiées, mais découvre de nouvelles charactéris-
tiques dans le passé récent, en particulier une séparation ancienne de la pop-
ulation Africaine échantillonnée dans l’étude (Yoruba) des populations non-
Africaines, ce qui pourrait suggérer une structure de population ancienne sur
le continent Africain. Enfin, dans une quatrième étude, je présente un exemple
d’adaptation humaine à un environnement riche en arsenic. Avec nos collab-
orateurs de l’Institut Karolinska et de l’Université de Lund, nous avons géno-
typé 124 femmes de San Antonio de los Cobres, un village dans les Andes
argentines où des niveaux d’arsenic conséquents ont été mesurés dans l’eau
courante alors que les effets sanitaires négatifs typiquements observés pour
de tels niveaux ne sont pas aussi prévalents qu’attendu. Ce fait est suggestif
de l’évolution d’un mécanisme métabolique pour surmonter les hauts niveaux
d’arsenic depuis l’établissement de la population dans la région, il y a plus
de 10,000 ans. Nous avons collecté des informations phénotypiques, sous
la forme de concentrations en composés organiques et inorganique d’arsenic
dans l’urine et nous avons réalisé une Étude d’Association Pangénomique pour
détecter les régions du génome associées avec de faibles concentrations en
acide monométhylarsonique (une forme organique assez toxique de l’arsenic)
et avec de fortes concentrations en acide diméthylarsinique (une autre forme
organique de l’arsenic qui est beaucoup moins toxique et plus facile à élim-
iner de l’organisme). Nous mettons en évidence une claire association avec
une region du chromosome 10, en amont du gène AS3MT, qui encode pour
l’enzyme arsenic (+3 oxidation state) methyltransferase dont le role dans la
méthylation de l’arsenic a précédemment été prouvé. En outre, nous avons
trouvé des valeurs élevées pour iHS et LSBL dans cette même région, qui
sont deux statistiques développées pour détecter la sélection positive. La cor-
respondance claire entre l’association de la region du gène AS3MT au phe-
notype de resistance à l’arsenic et des valeurs élevées des deux statistiques
au même endroit du génome tend fortement vers l’hypothèse d’une évolution
génétique sur des milliers d’années en réponse à la présence d’arsenic dans
l’eau courante. Cette étude présente le seul exemple à nos jours d’adaptation
humaine à un environment toxique.

La variété des sujets traités dans les études présentées dans cette thèse té-
moignent de la richesse des outils que la génétique des populations peut of-
frir pour étudier l’évolution. En apportant des modèles mathématiques dans
l’étude de la diversité génétique, la génétique des populations, avec l’aide du
développement téchnologique rapide en matière de génotypage et de séquençage,
a propulsé la biologie de l’Évolution dans une nouvelle ère, où de nombreuses
hypothèses à caractère écologique ou anthropologique peuvent enfin être testées.
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vie... Chloé et Al, merci aussi de votre visite! J’espère que la vie à quatre se
passe aussi bien sinon mieux que la vie à trois.

Du côté de ma famille, il y a plein de mercis et de câlins à donner. En
particulier, je voudrais faire un petit clin d’oeil à mes soeurs et mon frère.
Marie, Amélie, Anaïs, Natacha et Christophe. Je suis contente d’avoir une
famille aussi grande, même si toujours compliquée à expliquer au nouveau
venu. Tellement de beaux souvenirs nous relient, et malheureusement si peu
d’occasions d’en créer de nouveaux... Je vous aime et vous me manquez. Y’en
a quelques uns qu’il faudrait quand même qu’ils se mettent à Skype un de ces
jours! Ils (Elles ?) se reconnaîtront. Jean-Jacques, sans toi je ne suis pas sûre
que j’aurais connu l’ordinateur avant mes 18 ans! Merci donc pour ca, et pour
plein d’autres choses encore: ta patience, ta générosité, ta chaleur, ton énergie
et ton humour. Tu es une personne que j’estime énormément, humainement,
et je te remercie d’avoir été un réel parent pour moi pendant toutes ses années.
Et de m’avoir servi de supers apéros. Ma Titi, ma tata Titi, le M. de mon nom
sur chacun de mes articles publiés, que te dire sinon que je t’aime, que j’ai
chéri et chéris encore toutes ces conversations que nous avons tenues de vive-
voix ou par le truchement de quelqu’ appareil digital, que tu es une personne
formidable, d’intelligence et sensibilité rare, et que j’ai beaucoup appris de
toi. Merci pour tout ce que tu me donnes, j’espère pouvoir un jour t’en donner
tout autant.
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Papa, Maman, être devenue moi-même maman m’a donné beaucoup plus
de perspective quant à notre relation et j’ai l’impression de vous avoir redécou-
verts, sous un jour nouveau. Ça vous va bien d’être Mormor et Morfar! Merci
pour les millions de bisous que vous m’avez probablement donné, pour vous
être levés la nuit afin de calmer mes angoisses, pour m’avoir laissée grandir à
mon rythme, découvrir mon petit monde, pour m’avoir fait confiance dans ma
voie mais aussi montré parfois un autre chemin, pour m’avoir toujours aimée
sans condition, telle que je suis. Je vous dois, en grande partie, d’être qui je
suis, et normalement si tout va bien je suis docteur, ce qui n’est pas si mal
(même si c’est le genre de docteur qui ne sert à rien). Je vous aime énormé-
ment et je serai toujours profondément reconnaissante pour tout ce que vous
avez fait pour moi, dans des circonstances qui n’ont pas toujours été faciles.
Beau boulot, votre Lulu est heureuse, trrrlllttt trrrlllttt ! Papa, je te souhaite
le grand succès que tu mérites dans ta carrière de chanteur. Et j’espère que la
Suède cette fois-ci t’auras remercié de ta visite avec autre chose que du guano!
Hihi! Maman, profite bien de la vie trépidante Toulousaine ainsi que de ta re-
traite anticipée. On viendra vous voir avec plaisir.

Mon Pilou, tu n’aurais sans doute pas compris ce bouquin, surtout étant
donné qu’il est en Anglais, mais tu aurais apprécié son existence. Je pense
souvent à toi et je te remercie pour tous les bons souvenirs et les choses
merveilleuses que tu m’as apprises. Tu me manques.
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