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Radial basis function partition of unity methods for pricing vanilla
basket options

Victor Shcherbakova,∗, Elisabeth Larssona
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Abstract

Mesh-free methods based on radial basis function (RBF) approximation are becoming widely used
for solving PDE problems. They are flexible with respect to the problem geometry and highly
accurate. A disadvantage of these methods is that the linear system to be solved becomes dense
for globally supported RBFs. A remedy is to introduce localisation techniques such as partition
of unity. RBF partition of unity methods (RBF–PUM) allow for a significant sparsification of the
linear system and lower the computational effort. In this work we apply a global RBF method as
well as RBF–PUM to problems in option pricing. We consider one- and two-dimensional vanilla
options. In order to price American options we employ a penalty approach. A penalty term, suitable
for American multi-asset call options, has been designed. RBF–PUM is shown to be competitive
compared with a finite difference method and a global RBF method. It is as accurate as the global
RBF method, but significantly faster. The results for RBF–PUM look promising for extension to
higher-dimensional problems.

Keywords: radial basis function, partition of unity, option pricing, basket option, penalty method
2010 MSC: 65M70, 35K15

1. Introduction

Option contracts have been used for many centuries, but trading of options, as well as academic
research on option pricing, increased dramatically in volume after 1973, when Black and Scholes
published their market model [1]. Nowadays a variety of options are traded at the world exchanges,
starting with simple vanilla options and continuing to multi-dimensional index options. Therefore,
there is a high demand for correct option prices. Moreover, option prices play an important role in
risk management, hedging, and parameter estimation.

In this paper we consider the problem of pricing so called vanilla basket options, i.e., European
and American options, with several underlying assets. A European option is a contract with a fixed
exercise date, while an American option can be exercised at any time before maturity. Among the
different available models of the underlying behaviour, such as the Heston model with stochastic
volatility or the Merton model with jump diffusion, we select the standard Black-Scholes model,
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since it is a basic test case. Under the Black-Scholes model the price of European and American op-
tions can be determined by solving either a partial differential equation or a stochastic differential
equation [2]. In the case of a single-asset European option the price is known analytically, while
for multi-assets options the prices have to be computed numerically. The American option is more
difficult due to the opportunity to exercise the option at any time. Such an opportunity introduces
a free exercise boundary, which complicates the problem. The price for an American option needs
to be computed numerically even in the single-asset case.

There are several techniques to handle the free exercise boundary. The most commonly used
technique consists in rewriting the free boundary problem as a linear complementarity problem
(LCP) and then solving it by a standard method, such as projected successive over-relaxation
(PSOR) [3]. The drawback of this method is that it is relatively slow. Another method, that is
used in industry, is the operator splitting (OS) method [4]. It is fast and effective for one-dimensional
problems. Alternatively, a penalty approach can be taken as proposed in [5], and further developed
in [6, 7, 8]. A penalty term designed to approximately enforce the early exercise condition is added
to the PDE, which allows for removing the free boundary and solving the problem on a fixed domain.
In combination with radial basis function (RBF) methods, variations of the penalty approach have
been popular for handling American options, see [9, 10, 11, 12, 13]. It is also possible to in which
in each time step ignore the free boundary and then apply the American constraint explicitly. This
has been done for RBF methods in [14, 15, 16]. In this paper, we evaluate the performance of the
penalty approach in the RBF setting with respect to accuracy and computational cost.

There are various numerical methods, which are used for option pricing in industry as well as
in academia. Perhaps the most popular methods are Monte-Carlo (MC) methods [17] and finite
difference (FD) methods [3]. Both of them have their own strengths and weaknesses. MC methods
converge slowly but are effective for pricing high-dimensional options, because the computational
cost scales linearly with the number of underlying assets. On the other hand, FD methods have
a better convergence rate, while the computational cost grows exponentially with the number of
underlying assets. Other types of methods that are used are binomial tree methods [18] and Fourier
expansion based methods [19].

We aim to construct a method for option pricing, based on radial basis function approxima-
tion, that can be competitive for low-dimensional to moderately high-dimensional problems. RBF
methods can achieve high order algebraic, or for some problems even exponential, convergence rates
[12, 20]. It means that in order to get the same accuracy the problem size will be smaller than with
FD, which is crucial if we work in a many-dimensional space. A global RBF method was shown to
compare favourably with an adaptive FD method in [21] in one and two dimensions.

Another advantage of RBF methods is that they are meshfree and therefore can accommodate
non-trivial geometries. In financial applications, the computational domains that are used in the
literature are often regular. For example, squares, cubes or hypercubes can easily be used. However,
depending on the nature of the contract function, using another shape of the domain can lead to
substantial computational savings, see, e.g., [21], where a simplex domain is used instead. Further-
more, with a meshfree method, the discretization can easily be adapted to resolve local features in
the solution.

A drawback of global RBF methods is that the linear system that needs to be solved is dense
and often ill-conditioned. The situation can be improved by introducing localisation techniques.
One way to introduce locality is to employ a partition of unity framework, which was proposed
by Babuška and Melenk in 1997 [22]. A partition based formulation is also well suited for par-
allel implementation. Some work on parallisation for localised RBF methods has been done, see
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for example [23, 24, 25]. The ill-conditioning can be addressed by, for example, the RBF-QR
technique [26, 27, 28].

In this paper we consider the problem of pricing dividend paying vanilla basket call options. In
order to solve the problem we use global RBF and RBF partition of unity methods (RBF–PUM).
We show that RBF based methods provide a good alternative to already existing methods. All
comparisons of the solutions are made against a standard FD solution for European options an
FD-OS solution for American options.

The outline of the paper is as follows. In Section 2, we introduce the Black-Scholes model for
European and American basket call options. In Section 3, we discuss the penalty approach for
American options and its form in the case of call options. Then in Section 4, we give an overview of
RBF methods and RBF–PUM. Section 5 contains numerical experiments and comparisons. Finally,
Section 6 concludes the paper.

2. The Black-Scholes model

The multi-dimensional Black-Scholes equation takes the form

∂V

∂t
= LV, x ∈ Ω, t ∈ (0, T ] , (2.1)

where V is the value of the option, x = (x1, . . . , xd) defines the spot prices of the d underlying
assets, Ω is the domain of definition, t is the backward time, i.e., time to maturity, and T is the
maturity time of the option. The spatial operator L takes the form

L =
1

2

d∑
i,j=1

Σijxixj
∂2

∂xi∂xj
+

d∑
i=1

(r −Di)xi
∂

∂xi
− r, (2.2)

where Di is the continuous dividend yield paid out by the ith asset, the matrix Σ = [σσ∗], where
σ is the volatility matrix, and r is the risk-free interest rate.

The payoff function for the call option is given by:

Φ(x) = max

(
d∑
i=1

αixi −K, 0

)
, (2.3)

where K is the strike price and αi is the weight of the ith asset in the portfolio. This is the value
of the option at the time of maturity, but since we use backward time the initial condition becomes

V (x, 0) = Φ(x), x ∈ Ω. (2.4)

2.1. The European case

In the case of the European option Ω = ΩE = Rd+, but in order to enable numerical simulations
we truncate Rd+ sufficiently far away from the origin that asymptotical results hold to high accuracy.

We denote the truncated domain by Ω̂E and the far-field (truncation) boundary is given by ΓF =⋃d
i=1 ΓFi , where ΓFi = {x | x ∈ ΩE , xi = x∞}. The near-field boundary can be seen as the single

point x = 0, and there we have the condition

V (0, t) = 0, t ∈ [0, T ] , (2.5)
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and at the far-field boundary we use the asymptotic condition

V (x, t) =

d∑
i=1

αixie
−Dit −Ke−rt, x ∈ ΓF , t ∈ [0, T ] . (2.6)

At the boundaries Γi = {x |x ∈ ΩE ,x 6= 0, xi = 0}, the spatial operator (2.2) is degenerate and
reduces to a (d − 1)-dimensional operator. Fichera [29] derived general conditions for when to
impose boundary conditions for parabolic PDEs with degenerate diffusion operators (see also the
Feller condition [30]). In the case of the Black-Scholes operator, boundary conditions should not
be imposed at Γi unless required for numerical purposes.

2.2. The American case

In the case of the American option, Ω = ΩA is a subdomain of Rd+, which falls inside the free
early exercise boundary Γ(x, t). We use the same near-field boundary condition as for the European
option

V (0, t) = 0, t ∈ [0, T ] . (2.7)

At the free-boundary we have

V (x, t) = Φ(x), x ∈ Γ(x, t), t ∈ [0, T ] , (2.8)

∂V

∂xi
(x, t) = αi, x ∈ Γ(x, t), t ∈ [0, T ] . (2.9)

Outside the free boundary the solution is given by V (x, t) = Φ(x).

3. The penalty method

Penalty methods can be used for solving boundary value problems. An early reference to the
penalty method appears in 1943 in Courant’s work on motion in a bounded domain [31]. In
relation to option pricing, the penalty method was introduced by Zvan et al. in [5], where a penalty
approach for a Black-Scholes model with stochastic volatility for American options is discussed.
Then, Nielsen et al. [7] proposed a new form of the penalty term for American put options, which
has subsequently been used by several authors, combined with finite differences [32] and radial basis
functions [9, 10, 11, 12, 13].

In this paper we consider a penalty method for pricing American basket call options. In the
case of call options, dividends must be present, otherwise the American call is equivalent to the
European call [33], while in the case of put options dividends may be zero. Hence, we propose a
penalty term for the American basket option with dividends,

P =
e
(
rK −

∑d
i=1 αiDixi

)
V + e− q

, (3.1)

where e is the penalty parameter, which has to be chosen sufficiently small, and q(x) is the barrier
function,which is the non-zero part of the payoff function,

q(x) =

d∑
i=1

αixi −K. (3.2)
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Adding the penalty term to the Black-Scholes equation allows us to convert the free boundary
problem to a fixed domain problem. The error introduced by the penalty is expected to be O(e).
The modified equation takes the form

∂V

∂t
= LV − P (V ), x ∈ Ω̂E , t ∈ (0, T ] , (3.3)

where Ω̂E is the same domain as for the European option, since the free boundary has been removed
and the modified problem is defined on the entire extended domain Ω̂E . The equation is subject to
the following initial and boundary conditions

V (x, 0) = Φ(x), x ∈ Ω̂E , (3.4)

V (0, t) = 0, t ∈ [0, T ] , (3.5)

V (x, t) = Φ(x), x ∈ ΓF , t ∈ [0, T ] . (3.6)

3.1. Substantiation of the form of the penalty term

In this subsection, we will show why our choice of the form of the penalty term for the American
basket call option is motivated.

The value of an American call option must be larger or equal to the payoff value in order to
exclude all arbitrage opportunities. The penalty function is designed in a way that it is negligible
(of order e) when the solution is away from the barrier q, but it increases and penalises when the
solution approaches the barrier. Now we want to show that the solution of such a penalised equation
does not fall below the payoff and does not permit arbitrage opportunities. Moreover the solution
will stick to the payoff after crossing the free boundary, that is, it will mimic the behaviour of the
true solution. We consider the single-asset case. Equation (3.3) takes form

∂V

∂t
=

1

2
σ2x2 ∂

2V

∂x2
+ (r −D)x

∂V

∂x
− rV − e (rK −Dx)

V + e− q
. (3.7)

We assume that the solution V is close to the payoff function, i.e., V ≈ x−K, or we can write it as
V = x−K + δ, for some 0 < δ < e. Inserting this representation of V into the right part of (3.7)
we obtain

∂V

∂t
= (r −D)x− r(x−K + δ)− e(rK −Dx)

x−K + δ + e− (x−K)
. (3.8)

We reorganise the terms

(e+ δ)
∂V

∂t
= −Dxδ + rKδ − rδ2 − reδ (3.9)

and use the fact that Dx > rK when x is above the free boundary [33], thus we get

(e+ δ)
∂V

∂t
= −(Dx− rK)δ − rδ2 − reδ < 0, (3.10)

which as e + δ > 0 implies ∂V
∂t < 0. That is, positive perturbations are quickly recovered and

the solution is pulled down to the payoff. Now doing a similar analysis we show that the solution
is not able to fall below the payoff. We assume that V experiences negative perturbations, i.e.,
V = x −K − δ, for some 0 < δ < e. Inserting this form of V into the right hand side of (3.7) we
obtain

∂V

∂t
= (r −D)x− r(x−K − δ)− e(rK −Dx)

x−K − δ + e− (x−K)
. (3.11)
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Rearranging the summands and using the same fact that Dx > rK when x is above the free
boundary we get

(e− δ)∂V
∂t

= (Dx− rK)δ + rδ(e− δ) > 0. (3.12)

This as well shows that negative perturbations are immediately recovered with time, and therefore
the solution of the penalised equation with such a choice of a penalty function is not allowed to fall
below the payoff, that is, V ≥ q after the free boundary. However, going to (3.10) and (3.12) we see
that for the region where Dx− rK < 0 a solution that comes close to q is repelled from q, meaning
that whether the solution is repelled from or attracted to q, it will never cross the barrier function
q, and thus as the initial condition is above q, we conclude that V ≥ q in the entire domain. We
use this result for deriving an energy estimate of the error.

Now we are going to derive an estimate for the error η(x, t) = V (x, t)−Va(x, t), where V (x, t) is
the solution of the one-dimensional penalised equation (3.7) and Va(x, t) is the analytical solution of
the Black–Scholes which is prolonged by the payoff after the free boundary. We know that Va(x, t)
satisfies the homogenous Black–Scholes equation in ΩA, and if we plug in the payoff function into the
Black–Scholes equation we will see that it will satisfy the non-homogeneous Black-Scholes equation
in Ω̂E\ΩA with the right hand side f(x, t) = Dx − rK. Thus in the entire Ω̂E we can write that
Va is the solution of{

Vt = 1
2σ

2x2Vxx + (r −D)xVx − rV, if x ∈ ΩA,

Vt = 1
2σ

2x2Vxx + (r −D)xVx − rV + f, if x ∈ Ω̂E\ΩA,
(3.13)

and Va has a continuous first derivative in Ω̂E due to the smooth pasting condition for the American
option (2.9).

The error fulfils the following differential equation{
ηt = 1

2σ
2x2ηxx + (r −D)xηx − rη − e(rK−Dx)

Va+η+e−q , if x ∈ ΩA,

ηt = 1
2σ

2x2ηxx + (r −D)xηx − rη − e(rK−Dx)
Va+η+e−q + f, if x ∈ Ω̂E\ΩA,

(3.14)

subject to initial and boundary conditions

η(x, 0) = 0, x ∈ Ω̂E , (3.15)

η(0, t) = 0, t ∈ [0, T ], (3.16)

η(x, t) = 0, x ∈ ΓF , t ∈ [0, T ], (3.17)

and it is a C1(Ω̂E)-function due to the smoothness properties of the analytical and approximate
solutions (Va and V ).

Thus, now we can write out an energy estimate for the error in L2(Ω̂E)-norm taking into account
that in the weak form we are able to combine the two domains despite of the discontinuity in the
second derivative of Va

d
dt ||η||

2 = 2(ηt, η) =

(σ2x2ηxx, η) + 2 ((r −D)xηx, η)− 2(rη, η)− 2(F, η)− 2
(
e(rK−Dx)
Va+η+e−q , η

)
, (3.18)

where

F =

{
0, if x ∈ ΩA,

f, if x ∈ Ω̂E\ΩA.
(3.19)
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We take a closer look at each term individually.

1. Integrating the first summand by parts gives us

(σ2x2ηxx, η) = −σ2(2xηx, η)− σ2(xηx, xηx) ≤ −2σ2(xηx, η). (3.20)

If we then integrate 2(xηx, η) by parts we see that

2(xηx, η) = (η, η), (3.21)

Therefore,
(σ2x2ηxx, η) ≤ σ2||η||2. (3.22)

2. Using (3.21) the second summand becomes

2 ((r −D)xηx, η) = −(r −D)||η||2. (3.23)

3. The third term
−2(rη, η) = −2r||η||2. (3.24)

4+5. The last two terms we consider in two parts: before and after the free boundary, which for
the one-dimensional case we denote as x∗.

(a) Before the free boundary we have

Q1 = −2

∫ x∗

0

Fη dx− 2

∫ x∗

0

e (rK −Dx)

Va + η + e− q
η dx =

−2

∫ x∗

0

0 · η dx+ 2

∫ x∗

0

e (Dx− rK)

Va + η + e− q
(V − Va) dx. (3.25)

Applying the Cauchy-Schwarz inequality we obtain

Q1 ≤ 2

(∫ x∗

0

(
e (Dx− rK)

Va + η + e− q

)2

dx

)1/2(∫ x∗

0

(V − Va)
2
dx

)1/2

. (3.26)

Since Va ≥ q, V ≥ q, we have that |V − Va| ≤ |V − q| and we get

Q1 ≤ 2

(∫ x∗

0

(
e (Dx− rK)

Va + η + e− q

)2

dx

)1/2(∫ x∗

0

(V − q)2
dx

)1/2

. (3.27)

Noting that Va + η− q = V − q ≥ 0 and e ≥ 0 and using the fact that (a+ b)2 ≥ a2 + b2

if a ≥ 0, b ≥ 0 we obtain that

[(Va + η − q) + e]2 ≥ (Va + η − q)2 + e2 ≥ (Va + η − q)2 = (V − q)2. (3.28)

Extending the integration region to ΩE we have

Q1 ≤ 2||e(Dx− rK)|| 1

||V − q||
||V − q||, (3.29)

simplifying we obtain

Q1 ≤ 2e||(Dx− rK)|| ≤ 2e||Dx− rK||∞ ≤ 2e(Dx∞ − rK). (3.30)
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(b) After the free boundary we have

Q2 = −2

∫ x∞

x∗
Fη dx− 2

∫ x∞

x∗

e (rK −Dx)

Va + η + e− q
η dx =

−2

∫ x∞

x∗
(Dx− rK)η dx+ 2

∫ x∞

x∗

e (Dx− rK)

Va + η + e− q
η dx. (3.31)

As V ≥ q and Va = q in this region we know that η ≥ 0. Furthermore, Dx − rK ≥ 0.
Therefore, we can write

Q2 = −2

∫ x∞

x∗
|(Dx− rK)||η| dx+ 2

∫ x∞

x∗

∣∣∣∣ e (Dx− rK)

Va + η + e− q

∣∣∣∣ |η| dx. (3.32)

Since Va = q and η ≥ 0
e

Va + η + e− q
≤ 1. (3.33)

Applying this fact to (3.32) we obtain that

Q2 ≤ −2

∫ x∞

x∗
|(Dx− rK)||η| dx+ 2

∫ x∞

x∗
|(Dx− rK)||η| dx = 0. (3.34)

Thus, summing up all the terms we get an estimate

d

dt
||η||2 ≤ (σ2 − 3r +D)||η||2 + 2(Dx∞ − rK)e, (3.35)

or after integration taking into account that ||η(0)|| = 0

||η||2 ≤

{
µe
ν (exp(νt)− 1), if ν 6= 0,

2µet, if ν = 0,
(3.36)

where ν = σ2 − 3r + D and µ = 2(Dx∞ − rK). We have a dependence of the error on the
penalty parameter size. That is, as e → 0 the solution of the penalised problem will converge to
the solution of the original problem. This dependence is investigated numerically in section 6.4.
A similar analysis could be done in the multi-dimensional case, but an estimate in line with the
result in [33] would be needed.

4. Radial basis function methods

RBF methods are mesh-free and based on scattered nodes, therefore they are very flexible in
terms of the geometry of the computational domain. Given N scattered nodes x1, . . . ,xN ∈ Ω ⊂ Rd,
the RBF interpolant of a function with values u(x1), . . . , u(xN ) defined at those points takes the
form

Ju(x) =

N∑
j=1

λjφ(‖x− xj‖), x ∈ Ω, (4.1)

where λj is an unknown coefficient, ‖ · ‖ is the Euclidian norm and φ(r) is a real-valued radial basis

function, such as the Gaussian φ(r) = e−(εr)2 or the multiquadric φ(r) =
√

1 + (εr)2, which we use
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for our numerical experiments. In order to determine λj , j = 1, . . . , N , we enforce the interpolation
conditions Ju(xj) = u(xj) and as a result we obtain a linear system

Aλ̄ = ū, (4.2)

where Aij = φ(‖xi − xj‖), λ̄ = [λ1, . . . , λN ]T , ū = [u(x1), . . . , u(xN )]T .
When we approximate a time dependent function u(x, t), we let λj be time-dependent, such

that

Ju(x, t) =

N∑
j=1

λj(t)φ(‖x− xj‖), x ∈ Ω, t ≥ 0. (4.3)

4.1. RBF partition of unity methods

In spite of the many advantages of RBF methods, there is one computationally expensive dis-
advantage. The interpolation matrix A becomes dense when globally supported RBFs are used.
Employing a partition of unity method (PUM) is one way to introduce locality and sparsity. A
collocation RBF–PUM is introduced in the forthcoming paper [34] for elliptic PDEs, and applied
to option pricing problems in [12]. The main idea is to subdivide a larger domain into smaller
overlapping subdomains. Then a local RBF approximation is used within each subdomain. Local
approximations in neighbouring subdomains are coupled, but the overall matrix structure is sparse
and the computational complexity is reduced. Furthermore, there is an opportunity for parallel
implementation.

We define a partition of unity {wi}Mi=1, subordinated to the open cover {Ωi}Mi=1 of Ω, i.e.,

Ω ⊆
⋃M
i=1 Ωi, such that

M∑
i=1

wi(x) = 1, x ∈ Ω. (4.4)

Now, for each subdomain we construct a local RBF interpolant J iu, and then form the global
interpolant for the entire domain Ω:

Ju(x) =

M∑
i=1

wi(x)J iu(x) =

M∑
i=1

wi(x)

Ni∑
j=1

λijφ(‖x− xij‖), x ∈ Ω. (4.5)

The partition of unity functions wi can be constructed using Shepard’s method [35] as follows:

wi(x) =
ϕi(x)∑M
k=1 ϕk(x)

, i = 1, . . . ,M, (4.6)

where ϕi(x) is a function that is compactly supported on Ωi, which we choose to be a C2 compactly
supported Wendland function [36]

ϕ(r) =

{
(1− r)4(4r + 1), if 0 ≤ r ≤ 1

0, if r > 1.
(4.7)

The elements Ωi of the open cover of Ω will be chosen as circular patches. Therefore, the
Wendland functions will be scaled to get

ϕi(x) = ϕ

(
‖x− ci‖

ri

)
, i = 1, . . . ,M, (4.8)

where ri is the radius of the patch Ωi and ci is its center point.
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5. Time discretization and space approximations

When we solve the option pricing problem numerically, we collocate the different RBF approxi-
mations in space as described below in sections 5.2 and 5.3. In time we use a standard ODE solver.
We define the discrete times tn, n = 0, . . . , Nt and denote the approximate solution at time tn by
V n(x) ≈ V (tn,x).

5.1. The BDF-2 time stepping scheme

For the time discretisation we choose the second order backward differential scheme (BDF-2).
That is, for the European option the time discretisation is entirely implicit. A fully implicit time
discretisation for the American option will lead to unconditional stability, but we will need to solve
a non-linear system of equations at each time step, and the total computational cost may become
high. Another option is to use either an explicit scheme or a semi-implicit scheme with the penalty
term evaluated explicitly at the middle time level, see equations (5.1–5.2). We have chosen to use
the semi-implicit scheme. We show the discretisation for the American option only, as the scheme
for the European option is identical, except for the presence of the penalty term.

We divide the time interval [0, T ] into Nt steps of length kn = tn − tn−1, n = 1, . . . , Nt. The
BDF-2 scheme has the form [37, p. 401]

(E − βn0L)V 1
I = V 0

I , (5.1)

(E − βn0L)V nI = βn1 V
n−1
I − βn2 V n−2

I − βn0 P (V n−1
I ), n = 2, . . . , Nt, (5.2)

where V nI is the solution in the interior, E is an identity operator and

βn0 = kn
1 + ωn
1 + 2ωn

, βn1 =
(1 + ωn)2

1 + 2ωn
, βn2 =

ω2
n

1 + 2ωn
, (5.3)

where ωn = kn/kn−1, n = 2, . . . , Nt. In [38] it is shown how the time steps can be chosen in such
a way that βn0 ≡ β0. Then the coefficient matrix is the same in all time steps and only one matrix
factorization is needed.

The boundary conditions are enforced at each new time level through

V nB = fnB , n = 1, . . . , Nt. (5.4)

This leads to a linear system for each time step of the form(
EI − β0LII −β0LIB

0 EB

)(
V nI
V nB

)
=

(
fnI
fnB

)
, (5.5)

where
fnI = βn1 V

n−1
I − βn2 V n−2

I − βn0 P (V n−1
I ). (5.6)

The semi-implicit scheme will put a restriction on the time step size of the following form:

∆t ≤ Ce∣∣∣rK −∑d
i=1 αiDixi,∞

∣∣∣ , (5.7)

where ∆t = max{kn}Nt
n=1, xi,∞ is the point, at which we truncate the domain in the direction of

i-th asset and C is some constant. This condition is obtained empirically, but performing a simple
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linearisation of the penalty term and some heuristic calculations we can obtain a similar result with
C = kn/βn0 = 3/2 for the BDF-2 scheme on a uniform time grid. This aligns with the condition
∆t ≤ e

rK , which can be found in [7] for the case when finite differences are used to price an American
put without dividends. Condition (5.7) does not depend on the grid, therefore for some choices of
e it is less severe than the condition imposed by the explicit scheme.

In section 6.4 we will see that condition (5.7) holds numerically with an observed constant that
is larger than 3/2.

5.2. Approximation in space using RBF

When using a collocation approach, we work with the nodal solution values vnj = V nε (xj) ≈
V (tn,xj). We build the approximation at time tn according to (4.3)

V nε (x) =

N∑
j=1

λnj φ(ε‖x− xj‖). (5.8)

The nodal values vnj and the coefficients λnj fulfil the following relation:

Aλ̄n = v̄n, (5.9)

where the interpolation matrix A has elements apq = φ(ε‖xp − xq‖) and

λ̄n = [λn1 , . . . , λ
n
N ]T , v̄n = [vn1 , . . . , v

n
N ]T .

For RBFs such as Gaussians, multiquadrics, and inverse multiquadrics, A is non-singular as long
as the node points are distinct. Hence, we can invert the relation to get

λ̄n = A−1v̄n. (5.10)

This allows us to construct differentiation matrices to evaluate derivatives of the RBF approximation
in terms of the nodal values

∂v̄n

∂xk
= A(k)λ̄n = A(k)A−1v̄n,

∂2v̄n

∂xk∂xm
= A(km)λ̄n = A(km)A−1v̄n, (5.11)

where A(k) and A(km) are matrices of derivatives of radial basis functions with elements a
(k)
pq =

φ′xk
(ε‖xp − xq‖) and a

(km)
pq = φ′′xkxm

(ε‖xp − xq‖) respectively.
Thus,

Lv̄n =

1

2

d∑
k,m=1

ΣkmxkxmA
(km) +

d∑
k=1

(r −Dk)xkA
(k) − rA

A−1v̄n, (5.12)

where L is a matrix representation of the spatial operator L and

P (vnj ) =
e
(
rK −

∑d
k=1 αkDkxk

)
vnj + e− q

. (5.13)

These expressions are then used for populating the blocks in the system of form (5.5).
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5.3. Approximation in space using RBF–PUM

We define the nodal solution values vnj = V nε (xj) ≈ V (tn,xj). For the RBF partition of unity
method we build an interpolant as described in (4.5)

V nε (x) =

M∑
i=1

wi(x)V i,nloc (x) =

M∑
i=1

wi(x)

Ni∑
j=1

λi,nj φ(ε‖x− xij‖). (5.14)

Now as in the global case we can enforce interpolation conditions and obtain a linear system

v̄n =

M∑
i=1

RiWiAiλ̄
i,n, (5.15)

where Ri is a permutation operator which maps the local index set Ii = {1, . . . , Ni} corresponding
to the nodes in the i-th partition into the global index set I = {1, . . . , N}, Wi is a diagonal matrix
with element wi(xj) on it, and Ai is a local RBF matrix.

By requiring the local nodal values vi,nj to coincide with the global nodal values vnj , we simplify
the coupling together of the local solutions (otherwise, there would be more unknown values than
equations, requiring extra conditions). Through the local interpolation property we have

v̄i,n = Aiλ̄
i,n, ⇒ λ̄i,n = A−1

i v̄i,n. (5.16)

Then we construct approximations for the derivatives

∂v̄n

∂xk
=

M∑
i=1

Ri

[
W

(k)
i Ai +WiA

(k)
i

]
λ̄i,n =

M∑
i=1

Ri

[
W

(k)
i Ai +WiA

(k)
i

]
A−1
i v̄i,n,

∂2v̄n

∂xk∂xm
=

M∑
i=1

Ri

[
W

(km)
i Ai +W

(k)
i A

(m)
i +W

(m)
i A

(k)
i +WiA

(km)
i

]
λ̄i,n =

M∑
i=1

Ri

[
W

(km)
i Ai +W

(k)
i A

(m)
i +W

(m)
i A

(k)
i +WiA

(km)
i

]
A−1
i v̄i,n,

where W
(k)
i , W

(km)
i are diagonal matrices containing the derivatives of wi and A

(k)
i , A

(km)
i are

local derivative RBF matrices. Note that the partition of unity {wi}Mi=1 must be at least two times
differentiable.

Thus,

Lv̄n =

M∑
i=1

Ri

1

2

d∑
k,m=1

Σkmxkxm

(
W

(km)
i Ai +W

(k)
i A

(m)
i +W

(m)
i A

(k)
i +WiA

(km)
i

)
+

+

d∑
k=1

(r −Dk)xk

(
W

(k)
i Ai +WiA

(k)
i

)
− rWiAi

]
A−1
i v̄i,n,

and

P (vnj ) =
e
(
rK −

∑d
k=1 αkDkxk

)
vnj + e− q

.
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Figure 1: Left: Price of an option on one underlying dividend paying asset. Right: Price of a basket
option on two underlying dividend paying assets.

6. Numerical results

In order to solve the option pricing problems numerically, we truncate the domain where the
problem is defined. For call options we truncate the domain at x∞ = 4dK in each direction, at
this distance the true solution is close enough to the asymptotic value. Therefore we will carry
out numerical experiments on Ω = [0, 4dK]d. Figure 1 displays typical solutions for European and
American options on one and two underlying dividend paying assets.

For the numerical experiments we use the semi-implicit discretisation described in the previous
section. The type of basis functions we select is the multiquadric RBF φ(r) =

√
1 + ε2r2. It is

infinitely smooth and less sensitive to the choice of the shape parameter than, e.g., the Gaussian
RBF. We use the following set of parameters: K = 1, T = 1, r = 0.1, D = 0.05, σ = 0.3 for one
underlying asset, and α1,2 = 0.5, D1,2 = 0.05 and

σ =

(
0.3 0.05
0.05 0.3

)
for two underlying assets.

In order to assess the errors in the numerical solutions the results were compared with accurate
reference solutions. In the one-dimensional case for the European call option we use the closed-form
solution and for the American call option we use an operator splitting finite difference solution with
2048 discretisation points in space and 8192 points in time. In the two-dimensional case for the
European call we use a finite difference solution on a 256 × 256 grid with 2000 steps in time, and
for the American call we use an operator splitting solution on the same 256 × 256 grid with 2000
time steps. The error in the uniform norm was measured over the around-strike area U , which in
the one-dimensional case is U = [K3 ,

5K
3 ] and for the two-dimensional case U = [K3 ,

8K
3 ]× [K3 ,

8K
3 ].

These are the relevant regions from the financial point of view.
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All methods were implemented in MATLAB R2014b. The codes can be downloaded from
http://www.it.uu.se/research/project/rbf/software/rbfpu amop penalty. All experiments
were performed on a laptop with a 2.3 GHz Intel Core i7 processor.

6.1. Choice of shape parameter ε

The accuracy of RBF methods highly depends upon the shape parameter ε of the basis functions,
which is responsible for the flatness of the functions. For smooth functions, the best accuracy is
typically achieved when ε is small, but then the condition number of the linear system becomes very
large. In this section we try to find the best compromise for the size of ε for our problem. Figure
2 displays the dependence of the error on the size of the shape parameter for European options
issued on one and two assets. In 1D the error is measured against the analytical solution, while in
2D a finite difference solution on a fine grid is used as the reference.
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Figure 2: Left: Error in the price of the European option on one underlying asset against the shape
parameter ε. Right: Error in the price of the European option on two underlying assets against the
shape parameter ε. RBF denotes the global RBF method and PUM denotes RBF–PUM.

For the rest of the experiments in this paper, for each method, we use the ε that was optimal
for the finest grid that was used. For example to study the convergence of the global RBF method
for the European option on two underlying assets we choose ε = 1, because our finest grid in that
experiment is 40× 40 nodes, and it turns out that ε = 1 is the optimal choice for that grid.

Error bounds in terms of the number of nodes and the number of partitions for RBF–PUM
were derived in [12] based on the results in [20]. These are valid in the case of constant ε. That is,
if for the global RBF method we refine the grid and keep ε = ε0 then we can expect exponential
convergence; if we seek the optimal ε for each grid then the convergence behaviour is less clear.

We use ε = 1 for all European option experiments, ε = 1.4 for the American option on one asset
with the global RBF method, ε = 1.7 for the American option on one asset with RBF–PUM, and
ε = 1 for the American option on two assets with both methods.
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6.2. Refinement strategies for RBF–PUM

For the global RBF method exponential convergence in space with respect to the number of
nodes can be expected [20, 12]. For RBF–PUM there are two general methods of refinement: the
number of partitions is kept fixed, this means that the number of nodes per partition is increasing
under refinement, or the number of points per partition is kept fixed, this means that the number
of partitions is growing under refinement. Error estimates were found in [12] of the form:

‖E(t)‖∞ ≤ CHm− d
2−2 max

0≤τ≤t
max
i
‖u(τ)‖N (Ωi), (6.1)

‖E(t)‖∞ ≤ Ce−γ/
√
h max

0≤τ≤t
max
i
‖u(τ)‖N (Ωi), (6.2)

where H is the distance between partition centers, h is the distance between nodes, m is the maximal
polynomial degree which can be supported by the number of nodes located in each partition and
determines the algebraic convergence order, and γ determines the exponential convergence order.
Inequality (6.2) identifies an exponential convergence rate for the case when the number of partitions
is fixed, while inequality (6.1) identifies an algebraic convergence rate when the number of points
per partition is fixed.
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Figure 3: Left: Error in the price of the European option on two underlying assets against the
problem size with respect to the number of partitions. Right: Error in the price of the European
option on two underlying assets against the problem size with respect to the number of points per
partition. Shape parameter ε = 1.

In Figure 3 we test the above estimates for the basket European option on two underlying assets.
In the right plot we can see the convergence rate h1.6 for nearly 16 points in each partition and
h3.5 for nearly 33 points per partition; expected convergence rates are h2 and h4 respectively. In
the left plot we see an exponential convergence with γ = 2 for 36 partitions over the domain, and
γ = 2.1 for 64 partitions.

15



This leads us to a reasonable question of what number of partitions (points per partition) is
optimal in the sense of computational efficiency? From Figure 3 we can conclude that the fewer
the number of partitions (points per partition) the lower (higher) the error becomes. However, the
linear system becomes denser (sparser) and requires more (less) time to solve. This trade-off we
study in the following subsection.

6.3. Number of partitions
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Figure 4: Left: Error in the price of the European option on 2 underlying assets against the number
of partitions in one spatial dimension. Center: Computational time against the number of partitions
in one spatial dimension. Right: Efficiency computed as product between the error and CPU time.
Shape parameter ε = 1.

In the case of RBF–PUM there is a freedom to choose the number of partitions that will cover
the domain. A cover with smaller partitions will lead to worse approximation results, but will on
the other hand be computationally cheaper, because the linear system will be more sparse.

In Figure 4 the error in the price of the European option on two underlying assets versus the
number of partitions in one spatial dimension is shown on the left, the corresponding computational
time is shown in the center, and computational efficiency as a product of the two on the right. The
efficiency gives us a flavour of which number of partitions is optimal in terms of error–time.

From the figure we see for example that for 100 partitions the computational time is low while
the error is large. Then the product will be moderately large. For four partitions it is the other way
around, the time is high and the error is low. The optimum is found at 36 partitions, where the
error is the lowest and the computational time is average. Based on this we select

√
M = 6 for our

two-dimensional experiments. This leads to about 100 nodes in each partition for the finest grid
(40 × 40 nodes) and about 10% non-zero elements in the linear system. For the one-dimensional
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experiments we choose M = 4. Note that the optimal RBF shape parameter is not sensitive to the
number of partitions and for this experiment ε = 1.

6.4. Penalty parameter

In this section we study the dependence of the solution and the numerical scheme on the penalty
parameter e. We have already mentioned that the error is expected to decay linearly with the
penalty size. Figure 5 confirms our expectations. The dependence is roughly linear in both the
one-dimensional and two-dimensional case.

Penalty parameter e
10

-5
10

-4
10

-3
10

-2

||
E

||
∞

10
-4

10
-3

10
-2

1D
2D

Penalty parameter e
10

-6
10

-5
10

-4
10

-3
10

-2

∆
 t

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Experemental
Analytical

slope = 0.97

slope = 0.86

Explicit, N = 32

Explicit, N = 64

Explicit, N = 128

Figure 5: Left: Error measured in the region U against the penalty parameter size for the one
asset and two asset cases. Right: Stable time step size for different sizes of the penalty parameter.
Analytical – obtained from inequality (5.7) with C = 3/2, Experimental – experimentally obtained
maximal time step for which stability holds. The three black lines show the time step size required
for stability with the fully explicit scheme.

When we designed the numerical scheme we mentioned that the semi-implicit scheme may
impose a less severe condition on the time step size than a fully explicit scheme. This is true for
some choices of e. In the right part of Figure 5, we show the dependence of the time step size on
the penalty parameter size together with the level of the time step for the explicit scheme. Here
we should not forget that there is no sense in using a small penalty parameter for coarse grids and
vice versa, because the two types of errors should be balanced.

The experiment shows that the use of the semi-implicit scheme does not always have an advan-
tage in terms of time step size for the RBF methods, because the condition imposed by treating
only the penalty explicitly is more severe than the condition in the fully explicit scheme, which
depends on the space discretisation. As RBF methods have high convergence rates, few points are
needed in space and hence a relatively large time step can be used also in the explicit scheme.

The right part of Figure 5 also displays that the time step should be chosen according to
condition (5.7). The purple line indicates the analytical time step limit obtained from (5.7) with
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C = 3/2, and the turquoise line indicates the largest time step for which a stable numerical result
was computed.

6.5. Convergence study: European option

Here we study the convergence rates of the global RBF method and RBF–PUM and compare
them with a standard second order central finite difference (FD) method on a uniform grid. In one
dimension a closed-form solution for the European option exists, whilst in two dimensions it does
not, and we have to use a reference solution obtained by the FD method on a fine enough (256×256)
grid to compare with. For this experiment we choose a large number of discretisation points in time
(Nt = 1000) in order to avoid any influence of the time discretisation on the convergence rates of
the methods.

As expected, in Figure 6, we observe a second order algebraic convergence rate for the FD
method and exponential convergence for both RBF methods with γ = 1.5 for the global method,
and γ = 1.5 in 1D and γ = 2 in 2D for RBF–PUM.
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Figure 6: Left: Error convergence in l∞-norm for a European option on one underlying asset. Right:
Error convergence in l∞-norm for a basket European option on two underlying asset.

For the European option pricing problem, the initial condition is only a C0 function. Hence
exponential approximation accuracy at the initial time is not possible as this requires smoothness of
the solution [20]. However, due to the smoothing properties of parabolic problems, the solution can
be approximated with high accuracy at larger times [12]. It has been proved in [39], that solutions
of parabolic problems with non-smooth initial condition can be approximated with optimal order
when time is positive.

For financial applications an error of the size 10−4 is considered to be precise enough, and it is
clear that to reach the desired accuracy the FD method requires a larger number of node points. In
order to reach this error level, the global RBF method and RBF–PUM require 40 nodes (40 in each
direction in 2D), while the FD method needs 100 nodes (112 in each direction in 2D). However, the
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computational cost per time-step is very different for the three methods and a time-comparison is
therefore performed in section 6.7.

A property of the global RBF method and RBF–PUM is that they can easily reach error
levels of 10−4 − 10−5, but then the system becomes ill-conditioned and lower error levels cannot
be reached [28]. To overcome this problem the RBF-QR method was invented. It allows stable
computations when the shape parameter ε→ 0 and it allows for achieving higher accuracy. We do
not employ the RBF-QR technique because our error target can be attained without it, but it can
be useful when a low price of an option is expected and a higher precision in the result is required.
More details about RBF-QR can be found in [26, 27, 28].

6.6. Convergence study: American option
Here we study the convergence rates of the global RBF and RBF–PUM penalty methods and

compare them with the FD penalty method. Since no closed-form solution exists in the case of
American options, as a reference to measure the error we use a solution obtained by second order
central finite differences combined with the operator splitting (OS) method [4] on a fine enough
grid (2048 points in 1D and 256 × 256 points in 2D). Note that the OS method approximates the
original PDE, and therefore the error introduced by the penalty term is not present. The number
of required discretisation points in time is governed by the stability condition (5.7), for example if
the chosen e = 10−5, then to maintain stability the required Nt ≈ 104.

In the case of American options, the second derivative of the solution has a discontinuity at the
free boundary. This will limit the order of convergence.
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Figure 7: Left: Error convergence in l∞-norm for an American option on one underlying asset.
Right: Error convergence in l∞-norm for a basket American option on two underlying asset. All
the three methods use the penalty approach.

As we said before, we aim for error of the order 10−4 which is sufficient for financial applica-
tions. The error introduced by the penalty term is O(e). Therefore we have to choose the penalty
parameter e smaller than 10−4.
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In Figure 7 we see that all the three methods reach the specified error limit, but the FD-penalty
method requires a smaller penalty parameter (which leads to a larger number of time steps to fulfil
the stability condition) as well as a higher number of computational nodes in space.

As expected, the discontinuity in the second derivative of the solution does not allow for ex-
ponential convergence, but for the error range investigated here we get a high order algebraic
convergence rate both for the global RBF method and RBF–PUM.

6.7. Computational efficiency

As we mentioned previously, RBF methods require fewer computational nodes than standard
FD methods, but the cost of each time step is higher. Table 1 shows computational times needed to
achieve a certain level of accuracy for the FD method, the global RBF method, and RBF–PUM for
pricing a double-asset European option. The number of time steps is adjusted to be nearly optimal
(in terms of computational time and accuracy) for each run. We can see that in order to get to
the error level 10−4, RBF–PUM requires 40 times less time than the standard FD method and 26
times less time that the global RBF method. The main reason for the significant time gain with
RBF–PUM is that the number of time steps needed is much lower than for the global RBF method.
We cannot fully quantify this effect, but an advantage of RBF–PUM compared with the global
method is that we avoid at least parts of the high frequency oscillations induced in the strike region
and at the boundaries when using a global RBF approximation [40]. As low frequency components
in a parabolic PDE propagates at a slower time scale, we can then use a lower resolution in time.

For the experiments we measured only the time corresponding to the time-stepping loop, while
the setup cost is not included. For RBF–PUM, the computations of the local matrices and the
assembly can easily be parallelised and will not greatly affect the overall time. Therefore we do not
take it into account.

Table 1: European double-asset option. The CPU time (sec) required to achieve the given error
levels and the discretisation parameters used. Shape parameter ε = 1 for the global RBF method
and RBF–PUM.

FD RBF RBF–PUM

||E||∞ Time
√
N × Nt Time

√
N × Nt Time

√
N × Nt

1e–2 0.0028 19 × 20 0.0024 12 × 40 0.0026 12 × 3
5e–3 0.0076 39 × 30 0.0034 14 × 40 0.0033 14 × 3
1e–3 0.0684 47 × 200 0.0374 22 × 100 0.0043 22 × 4
5e–4 0.3439 67 × 300 0.1581 26 × 200 0.0050 22 × 5
1e–4 4.1762 119 × 680 2.6778 42 × 500 0.1044 42 × 10

Table 2 displays computational times for the double-asset American option. The number of time
steps Nt is chosen to be as small as possible while preserving stability. It is different for different
methods, because some methods require a smaller penalty size, therefore they need a larger Nt to
still remain stable. As we can see, to reach a 10−4 error level RBF–PUM requires roughly 4 times
less time than the standard finite difference method and 2 times less time than the global RBF
method.
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Table 2: American double-asset option. The CPU time (sec) required to achieve the given error
levels and the discretisation parameters used. Shape parameter ε = 1 for the global RBF method
and RBF–PUM.

FD RBF RBF–PUM

||E||∞ Time
√
N × Nt Time

√
N × Nt Time

√
N × Nt

1e–2 0.0026 15 × 30 0.0036 12 × 50 0.0053 12 × 50
5e–3 0.0088 23 × 70 0.0054 14 × 60 0.0061 14 × 50
1e–3 0.1640 43 × 600 0.1527 22 × 500 0.2155 28 × 800
5e–4 1.1127 59 × 1500 0.9032 30 × 800 0.4825 32 × 1000
1e–4 87.552 115 × 15000 42.996 42 × 10000 24.238 46 × 10000

7. Summary

RBF methods provide an alternative to already existing methods for solving problems in financial
applications. RBF–PUM allows to overcome the high computational cost associated with the global
RBF method, while maintaining high accuracy. RBF–PUM also allows to reach a given level of
accuracy with significantly less computational effort than the standard FD method and the global
RBF method for both European-style and American-style multi-asset options. One way to reduce
the computational time even more is to use the geometrical flexibility of RBF methods. For example,
the two-dimensional problem can be easily solved on a triangular domain instead of a square domain,
thus, halving the problem size.

The fact that RBF methods are mesh-free allows an easy implementation of adaptive grids,
which can be clustered around critical regions such as the strike area or the free boundary, in order
to improve accuracy or reduce overall computational cost. In the case of RBF–PUM, refinements
can be made independently within the partitions, increasing the flexibility.

With either of the RBF methods, solutions with errors of the order 10−4 can be stably computed
with the direct RBF evaluation method described here. If lower errors are required, a different
evaluation method, such as for example the RBF–QR method, is needed. However, in the case of
American options the accuracy is also limited by the size of the penalty parameter.

The penalty method combined with RBFs is a good approach for pricing American options. It
allows for removing the free boundary and transforming the problem to a fixed boundary problem.
It facilitates the computations, in the sense that we do not have to track the free boundary location.
It can be used in high dimensions and the introduced error can easily be adjusted to a desirable
level.
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