
NESUS
Network for Sustainable Ultrascale Computing

IC1305

Nesus PhD Symposium 2016 • February 2016 • Vol. I, No. 1

Spatial and Temporal Cache Sharing
Analysis in Tasks

Germán Ceballos, David Black-Schaffer
Uppsala University, Sweden
firstname.lastname@it.uu.se

Abstract

Understanding performance of large scale multicore systems is crucial for getting faster execution times
and optimize workload efficiency, but it is becoming harder due to the increased complexity of hardware
architectures. Cache sharing is a key component for performance in modern architectures, and it has been
the focus of performance analysis tools and techniques in recent years. At the same time, new programming
models have been introduced to aid the programmer dealing with the complexity of large scale systems,
simplifying the coding process and making applications more scalable regardless of resource sharing. Task-
based runtime systems are one example of this that became popular recently. In this work we develop models
to tackle performance analysis of shared resources in the task-based context, and for that we study cache
sharing both in temporal and spatial ways. In temporal cache sharing, the effect of data reused over time by
the tasks executed is modeled to predict different scenarios resulting in a tool called StatTask. In spatial
cache sharing, the effect of tasks fighting for the cache at a given point in time through their execution is
quantified and used to model their behavior on arbitrary cache sizes. Finally, we explain how these tools
set up a unique and solid platform to improve runtime systems schedulers, maximizing performance of
execution of large-scale task-based applications.

Keywords Task-based runtime systems, cache sharing, performance analysis, NESUS

I. Introduction
Maximizing applications performance on the multi-cores
era is hard due to sharing resources, such as the caches,
as it can have a negative or positive impact on the total
execution time. To deal with this, newest programming
models simplify the coding process of large scale parallel
applications. Task based programming is one example
of this, where the code is dis-aggregated in small units of
code (independent functions) called tasks, and a runtime
system determines their execution order and placement.
The task based approach is simpler to reason for the
programmer while it is also a good approach for perfor-
mance as it can adapt the scheduling to the effective
resource sharing. However, it is a very different dynamic
of execution, making harder to understand performance
of these systems due to the lack of models and tools.

In this paper we look at two key types of cache sharing
(both temporal and spatial, in a task based context. An

application might reuse data brought to the cache in
the past, meaning that the cache is being shared in
a temporal way. On the other hand, two applications
might contend for the cache at the same moment in
time, fighting to install and keep data in it, meaning
that the cache is being shared in a spatial notion.

To do so, we develop efficient modeling techniques to
predict performance with the goal of improving runtime
scheduling decisions based on task sensitivity to hard-
ware resource sharing, maximizing performance of large
scale parallel applications.
To achieve this we first developed StatTask, a fast

and efficient method to predict cache miss ratios for
any arbitrary schedule from information sampled from
a single execution. This method addresses temporal
cache sharing between tasks: how sensitive tasks are
to inter-task data reuse over time. An example can
be seen in Figure 1 for tasks A, B and C. Tasks A

1

Nesus PhD Symposium 2016 • February 2016 • Vol. I, No. 1

A B C

Time

Core

Good Schedule

Reuses Data

Lower Miss Ratio

DRAM

A BC

DRAM

Cache

DRAM

DRAM DRAM

Bad Schedule

Evicts Data

Highter Miss Ratio

Core

Figure 1: Temporal Locality in Task Based Systems.

and B share data, and B might reuse it from the cache
However, executing tasks C in between could evict this
shared data, causing data to be fetched from memory
and increasing the execution time.
Second, we developed a method for predicting per-

formance of co-running applications combining both
statistical cache models and performance models for
regular applications. Previous works did not take into
account parallelism in the memory hierarchy in com-
bination with statistical cache models, which is a key
factor for performance.

Later, we extended this method to address tasks spa-
tial resource sharing: how the memory hierarchy is
shared at a given moment in time during execution. An
example is display in Figure 2, where tasks A1 and B1
executing in parallel will bring data at the same time to
the caches with different ratios. Since they fight for the
cache, both tasks will end up with smaller cache por-
tions impacting on their performance. However, if tasks
would have been co-executed with tasks sharing data
(respectively A2 and B2) sharing could have reduced
their misses.
The method we present is able to predict quickly,

accurately and with low-overhead, how multiple tasks
running in parallel will compete for the caches.
Third, we explain how our models for temporal and

spatial cache sharing can be combined improve sched-
ulers of task-based runtime systems by giving them
feedback.

II. Related work
There are three categories of related work: existing
profiling tools that identify bottlenecks of task-based
applications, task-scheduling optimization techniques,

A1 B1

Core 1 Core 2

Shared

Cache
A B

A2 B2

Core 3 Core 4

A B

A1 B1

Core 1 Core 2

Shared

Cache
A

A2 B2

Core 3 Core 4

B

A and B

fight for cache

B slows down

A1 and A2 share

the same data

A and B speed

up from sharing

Figure 2: Spatial Locality in Task Based Systems.

and finally techniques to analyze and understand data
locality properties of applications.
Many tools exist to profile scheduling and load-

balancing of tasks. Ding et. al. [8] presented a generic
and accessible tool for task monitoring, independent of
any program or library and able to acquire rich infor-
mation with very low overhead, targeting load balanc-
ing and scheduling problems unrelated to data reuse.
Lorenz et. al developed [16], a library for identifying
performance problems inherent to tasking with OpenMP
through direct instrumentation. Schmidl et. al. [17]
surveyed different techniques to analyze data delivered
by instrumentation of task-based programs in order
to integrate parallel performance modeling to the au-
tomation of load-balancing. Ghosh et. al. [14] have
proposed OpenMP extensions to support dependence-
based synchronization, Brinkmann et al. presented a
graphical debugging tool for task parallel programming
that works with most of the production frameworks.
Weng and Chapman [19] looked at the task graph for
OpenMP applications to optimize load balance.

In the second category, work has been done on improv-
ing scheduling strategies. The standard work-stealing
approach was carefully analyzed by Blumofe and Leis-
erson in [5] and [1]. Strategies accounting for the tasks
types were presented by Wimmer et. al. [20]. Adaptive
cut-off scheduling to take advantage of data locality
and reduce the runtime overhead were considered in [9].
Recently, important work on cache-aware task stealing
was carried out in [7] by Chen et. al. Qian Cao et. al.

2

Nesus PhD Symposium 2016 • February 2016 • Vol. I, No. 1

[6] proposed a hybrid scheduling policy for heteroge-
neous multicores using breadth-first over the available
task-pool.

None of these approaches for task-based profiling have
incorporated a general method for understanding the
data reuse implications of the tasks and schedules. In
this category, characterization of data reuse has been
done theoretically in [12] by Frigo. Practically, this can
be done through instrumentation based techniques as
presented by Aamer et. al. in [15] and Weidendorfer in
[18].
Statistical cache modeling, first introduced in [2], is

another widely used way to characterize data locality.
This work has been extended to other cache replacement
policies by Eklov in [11], and to support thread-based
or multicore shared caches in [4, 3, 10].

III. Thesis Idea
Our main contribution is the development models that
address the prediction of temporal and spatial cache
sharing for arbitrary cache sizes for task-based runtime
systems. These model preserve fundamental properties
to be used in conjunction with runtime schedulers for bet-
ter scheduling: both models are fast and low-overhead,
portable (easy to implement across different runtimes)
and architectural-independent (working seamlessly with
different architectures).

III.1 Temporal resource sharing
For task-based programs, data is initially brought into
the cache by a task, and if it is reused, this reuse can
come from either the same task (private reuse) or by a
subsequent one (shared reuse). Other tasks that execute
between tasks with shared data also bring new data
into the cache that may evict the shared data, turning
reuses from the cache into a cache misses, and hurting
performance.

Thus, we classify memory accesses in three types, de-
pending on where they come in the memory hierarchy:
First accesses to a particular memory location must be
brought from DRAM, for example cold cache misses,
and therefore we will call them DRAM Accesses. Sec-
ond, memory accesses to addresses previously loaded
by another task, and which we will call shared reuses.
This reuses will be able to bring data from the cache if
it is large enough to hold the data sets of the sharing
tasks and the data is not evicted by other tasks before
the shared reuse. Finally, memory accesses to addresses

previously loaded by the same task, called private reuses.
This type of accesses will bring data from the cache if it
is large enough to hold the entire task’s data set while
it is executing. With this classification, we are able
to improve statistical cache models to support memory
access information per-task.
A key property of statistical cache models is that

are able to sample a memory access stream from an
application during execution, build a profile depending
on a distance notion that determines how close/far the
data reuses happened, and use statistical inference to
predict cache miss ratios for different cache sizes very
quickly. However, if these methods are used on task-
based applications, the profile would be built based on
information collected from the execution of a particular
schedule. Since changing the tasks’ schedule can affect
observed data reuses, predictions for cache misses given
by these models would be wrong.

StatTask extends existing statistical cache models col-
lecting extra information during the memory profiling
stage. Memory access samples are taken for a particular
task schedule and then classified on a task basis. Later,
multiple profiles are built for different schedules, adapt-
ing what would happen to the distances in the reuses
on each of those cases. With these new profiles, statis-
tical inference is used to get cache miss ratios for the
new schedules, predicting the correct scenarios. This en-
ables accurate prediction of cache behavior for arbitrary
schedules of tasks and cache sizes.

III.2 Spatial resource sharing
When analyzing cache behavior in multi-program work-
loads, previous statistical cache models did not treat
memory level parallelism, which now became crucial in
latest architectures. In modern multicore processors,
a last level cache miss might queue a new request in
the memory controller’s queue, which might be handled
in parallel with a previous miss. Thus two consecutive
misses are likely to overlap, hiding the latency for the
second miss compared to the case of treating them se-
quentially having a drastic improvement in performance.
The number of parallel misses treated on average

throughout execution can be measured and is often
known as memory level parallelism (MLP). Our sec-
ond contribution is a technique that combines statisti-
cal cache modeling with a modern performance model,
adding support for memory level parallelism, that is
able to predict a breakdown of performance (measured

3

Nesus PhD Symposium 2016 • February 2016 • Vol. I, No. 1

in CPI) of co-running applications.
To do so, applications memory accesses are sam-

pled with binary instrumentation, running on isolation.
Later, a statistical cache model called StatCC is used
to predict cache miss ratios of co-running application
for arbitrary cache sizes, assuming an initial perfor-
mance. Later, a realistic and advanced performance
model called Interval model [13] is used to calculate the
number of cycles spent on memory per-application when
co-running. The interval model is based on the abstrac-
tion that the execution time is driven by long-latency
events, such as long latency loads and branch misses.
However, the number of cycles calculated can change the
ratio in which each application miss in the cache. Thus,
StatCC is used iteratively, predicting new miss-ratios
and recomputing the number of cycles spent on memory
with the interval model as a fixed-point iterative solver.

This method needs to be adapted for the task-based
context. To do that, it is necessary to add the same sup-
port for identifying tasks as in Section III.2 generating
a per-task profile. In addition, the MLP modeling has
to be done on a per-task basis as well. Our method runs
on a pair profiles tasks sequences profiles and applies
the technique described above to estimate the CPI of
both sequences of co-running tasks.

IV. Conclusion and future work
Multicore architectures have the potential for high per-
formance on parallel applications, but they are hard to
optimize for due to the complexities of resource sharing.
In this work we have presented two contributions to
understand cache sharing in a task-based context based
on the analysis of memory access samples. First, we pre-
sented StatTask, an efficient statistical cache model that
predicts cache miss ratios for arbitrary task schedules,
addressing the temporal cache sharing problem. Second,
we introduced a new method that quickly predicts the
effect of simultaneous cache sharing on the tasks perfor-
mance, addressing the spatial cache sharing issue. Both
of our methods use the same low-overhead, sampled
input information, and can be easily combined to enable
performance modeling of arbitrary task schedules. With
these new capabilities we will be able to to develop more
intelligent task scheduling policies that take into account
the effects of temporal and spatial cache sharing, and
thereby enable task-based programs to automatically
adapt to the complexities of modern multicore resource
sharing.

Acknowledgments
The work presented in this paper has been partially
supported by EU under the COST programme Action
IC1305,‘Network for Sustainable Ultrascale Computing
(NESUS)’, and by the Swedish Research Council, carried
out within the Linnaeus centre of excellence UPMARC,
Uppsala Programming for Multicore Architectures Re-
search Center.

References

[1] U. Acar, G. Blelloch, and R. Blumofe. The data
locality of work stealing. Theory of Computing
Systems, 35(3):321–347, 2002.

[2] E. Berg and E. Hagersten. Statcache: A prob-
abilistic approach to efficient and accurate data
locality analysis. Proceedings of the 2004 IEEE
International Symposium on Performance Analysis
of Systems and Software, 2004.

[3] E. Berg and E. Hagersten. Fast data-locality pro-
filing of native execution. SIGMETRICS Perform.
Eval. Rev., 33(1):169–180, June 2005.

[4] E. Berg, H. Zeffer, and E. Hagersten. A statisti-
cal multiprocessor cache model. In Performance
Analysis of Systems and Software, 2006 IEEE Inter-
national Symposium on, pages 89–99, March 2006.

[5] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. J.
ACM, 46(5):720–748, Sept. 1999.

[6] Q. Cao and M. Zuo. A scheduling strategy support-
ing OpenMP task on heterogeneous multicore. In
26th IEEE International Parallel and Distributed
Processing Symposium Workshops & PhD Forum,
IPDPS 2012, Shanghai, China, May 21-25, 2012,
pages 2077–2084, 2012.

[7] Q. Chen, M. Guo, and Z. Huang. Cats: Cache
aware task-stealing based on online profiling in
multi-socket multi-core architectures. In Proceed-
ings of the 26th ACM International Conference on
Supercomputing, ICS ’12, pages 163–172, New York,
NY, USA, 2012. ACM.

[8] Y. Ding, K. Hu, and Z. Zhao. Performance moni-
toring and analysis of task-based OpenMP. 2013.

[9] A. Duran, J. Corbalan, and E. Ayguade. An adap-
tive cut-off for task parallelism. In High Perfor-
mance Computing, Networking, Storage and Analy-
sis, 2008. SC 2008. International Conference for,
pages 1–11, Nov 2008.

[10] D. Eklov, D. Black-Schaffer, and E. Hagersten.

4

Nesus PhD Symposium 2016 • February 2016 • Vol. I, No. 1

Statcc: A statistical cache contention model. In
Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques,
PACT ’10, pages 551–552, New York, NY, USA,
2010. ACM.

[11] D. Eklöv and E. Hagersten. Statstack : Efficient
modeling of LRU caches. In Proc. International
Symposium on Performance Analysis of Systems
and Software : ISPASS 2010, pages 55–65. IEEE,
2010.

[12] M. Frigo and V. Strumpen. The cache complexity of
multithreaded cache oblivious algorithms. Theory
of Computing Systems, 45(2):203–233, 2009.

[13] D. Genbrugge, S. Eyerman, and L. Eeckhout. Inter-
val simulation: Raising the level of abstraction in
architectural simulation. In In High Performance
Computer Architecture (HPCA), 2010 IEEE 16th
International Symposium on, pages 1–12. IEEE,
2010.

[14] P. Ghosh, Y. Yan, D. Eachempati, and B. M. Chap-
man. A prototype implementation of OpenMP
task dependency support. In OpenMP in the Era
of Low Power Devices and Accelerators - 9th In-
ternational Workshop on OpenMP, IWOMP 2013,
Canberra, ACT, Australia, September 16-18, 2013.
Proceedings, pages 128–140, 2013.

[15] A. Jaleel, R. S. Cohn, C. keung Luk, and B. Jacob.
Cmp$im: A pin-based on-the-fly multi-core cache
simulator.

[16] D. Lorenz, P. Philippen, D. Schmidl, and F. Wolf.
Profiling of OpenMP tasks with Score-P. In 41st
International Conference on Parallel Processing
Workshops, ICPPW 2012, Pittsburgh, PA, USA,
September 10-13, 2012, pages 444–453, 2012.

[17] D. Schmidl, P. Philippen, D. Lorenz, C. Rössel,
M. Geimer, D. an Mey, B. Mohr, and F. Wolf.
Performance analysis techniques for task-based
OpenMP applications. In OpenMP in a Hetero-
geneous World - 8th International Workshop on
OpenMP, IWOMP 2012, Rome, Italy, June 11-13,
2012. Proceedings, pages 196–209, 2012.

[18] J. Weidendorfer, M. Kowarschik, and C. Trinitis. A
tool suite for simulation based analysis of memory
access behavior. In In Proceedings of International
Conference on Computational Science, pages 440–
447. Springer, 2004.

[19] T. Weng and B. Chapman. Towards optimisation
of openmp codes for synchronisation and data reuse.

Int. J. High Perform. Comput. Netw., 1(1-3):43–54,
Aug. 2004.

[20] M. Wimmer, D. Cederman, J. L. Träff, and P. Tsi-
gas. Work-stealing with configurable scheduling
strategies. In Proceedings of the 18th ACM SIG-
PLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’13, pages 315–316,
New York, NY, USA, 2013. ACM.

5

	Introduction
	Related work
	Thesis Idea
	Temporal resource sharing
	Spatial resource sharing

	Conclusion and future work

