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Abstract
Chico Carpio, J. P. 2016. Magnetization dynamics on the nanoscale. From first principles to
atomistic spin dynamics. Digital Comprehensive Summaries of Uppsala Dissertations from
the Faculty of Science and Technology 1383. 115 pp. Uppsala: Acta Universitatis Upsaliensis.
ISBN 978-91-554-9598-5.

In this thesis first-principles methods, based on density functional theory, have been used to
characterize a wide range of magnetic materials. Special emphasis has been put on pairwise
magnetic interactions, such as Heisenberg exchange and Dzyaloshinskii-Moriya interactions,
and also on in the Gilbert damping parameter. These parameters play a crucial role in
determining the magnetization dynamics of the considered materials.

Magnetic interaction parameters, has been calculated for several materials based on Co/Ni/Co
heterostructures deposited on non-magnetic heavy metals where. The aim was to clarify how the
composition of the underlayers affect the magnetic properties, in particular the Dzyaloshinskii-
Moriya interactions. The DMI was found to be strongly dependent on the material of the
underlayer, which is consistent with previous theoretical works. Such behaviour can be traced
back to the change of the spin-orbit coupling with the material of the underlayer, as well as with
the hybridization of the d- states of the magnetic system with the d- state of the non-magnetic
substrate.

First-principles calculations of the Gilbert damping parameter has been performed for several
magnetic materials. Among them the full Heusler families, Co2FeZ, Co2MnZ with Z=(Al, Si, Ga,
Ge). It was found that the first-principles methods, reproduce quite well the experimental trends,
even though the obtained values are consistently smaller than the experimental measurements.
A clear correlation between the Gilbert damping and the density of states at the Fermi energy
was found, which is in agreement with previous works. In general as the density of states at the
Fermi energy decreases, the damping decreases also.

The parameters from first principles methods, have been used in conjunction with atomistic
spin dynamics simulations, in order to study ultra-narrow domain walls. The domain wall
motion of a monolayer of Fe on W(110) has been studied for a situation when the domain wall
is driven via thermally generated spin waves from a thermal gradient. It was found that the
ultra-narrow domain walls have an unexpected behaviour compared to wide domain walls in the
continuum limit. This behaviour have been explained by the fact that for ultra-narrow domain
walls the reflection of spin waves is not negligible.

Furthermore, the dynamics of topologically protected structures, such as topological
excitations in a kagome lattice and edge dislocations in FeGe has been studied. For the FeGe
case, the description of the thermally driven dynamics of the edge dislocations, was found
to be a possible explanation for the experimentally observed time dependence of the spiral
wavelength. In the kagome lattice, it was also found that due to its topological properties,
topological excitations can be created in it.
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1. Introduction

By 2007 the amount of man made information in the world was estimated

to be 2.9×1020 bytes[1], even more remarkable on 2013 it was believed that

90% of the data in the world was created in the last two years[2]. Never before

has it been so easy to create, modify, store and transmit data as it it today.

The reason behind this unprecedented surge is the development of elec-

tronic technology during the second half of the 20th century, which fundamen-

tally changed mankind’s relation with information. The advent of electronics

allowed the creation of devices which have shifted society from a primor-

dially industry based economy to an information based economy, starting the

so-called information age.

The success of electronic applications comes from their ability to use elec-

tronic currents within devices to perform logical operations, of this way it is

possible to do calculations at a much faster rate than it is possible with me-

chanical means. As the use of electronics has become widespread the demands

placed on them have increased, this has lead to a constant effort for the devel-

opment of faster, smaller and more energy efficient applications.

The basic unit of these devices is the transistor, which due to technological

advances have experienced a constant increase in performance, and decrease

in size. However, the transmission of information via an electronic current

has limitations. Electronic currents dissipate energy as they are transmitted in

the form of heat due to their scattering inside materials. Energy is also lost

in capacitors and semiconductor devices due to current leakage. Furthermore

electronic transistors have as an ultimate size the atomic limit which puts a

hard limitation on how small devices can be. These issues among others,

represent some of the problems faced in the design of new electronic devices.

Such considerations have lead manufacturers to re-think which is the most

efficient way to design new applications. An example of this is the fact that

during the last years the speed of each core in a CPU has not increased as fast

as previously, as the amount of power needed for even faster computers could

lead to overheating of the system, instead more computing cores are added to

a single CPU.

While the change of design philosophy has helped manufacturers to over-

come many of the problems of electronics, researchers have been actively

studying other means to transmit information more efficiently giving rise to

new disciplines. A very promising alternative is spintronics which use not

only the electron charge but also in the spin as a means to transmit informa-

tion, and magnonics which instead use the excitations of magnetic materials

(spin waves/magnons) as information carriers.
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Spintronics has been extensively studied in the last decades due to its poten-

tial applications for information storage. Its importance is exemplified in the

Giant Magneto-Resistance (GMR) effect [3, 4] which earned Albert Fert and

Peter Grünberg the Physics Nobel Prize on 2007. The GMR effect describes

how the electrical resistance of a magnetic multilayer changes depending on

the relative orientation of the magnetization between the layers, with a par-

allel orientation resulting in a low resistance and an anti-parallel orientation

resulting in a high resistance state.

Magnonics has also been studied in great detail as it has a key advantage

over electronics, it does not rely on the motion of electron themselves. Instead

it uses the magnetic excitations in a material to transmit information. These

excitations can be transmitted with low losses and it has been shown that it is

possible to create diodes and transistors with them [5–7].

The interest in magnonics and spintronics devices has lead to a renaissance

in the field of magnetic domain walls. This interest stems from the possible

applications that controlled domain wall motion could have for devices such

as Magnetic Random Access Memories (MRAMs), including the proposed

racetrack memory[8], in which magnetic domains with a given orientation

would be used to represent either a 0 or a 1. In order to be able to read and

write in such a device, controlled motion of the domain wall is necessary. Both

spin polarized electronic currents [9–19] and magnonic currents [20–22] can

move domain walls at very high speeds which makes them specially attractive

for practical applications.

The renewed interested in domain wall dynamics has motivated the search

of new materials for potential applications. Suitable materials must allow for

both a high information density as well as fast domain wall motion. Mate-

rials with high anisotropy such as perpendicular magnetic anisotropy (PMA)

materials, are promising candidates as they would allow for higher informa-

tion densities [8]. Recent studies have also shown that relativistic effects such

as the Dyzaloshinskii-Moriya interaction (DMI) can profoundly influence the

domain wall dynamics [23–25].

One of the leading approaches to study domain wall dynamics is numeri-

cal simulations. Micromagnetic simulations are one of the most used tools to

describe the dynamics of magnetic materials. Here the magnetization of a ma-

terial is considered as a continuous variable, and due to the size of the systems

that can be studied the dipolar interaction is the dominant term. However, to

study system at a smaller length scale, when the exchange interactions domi-

nates over dipolar interactions, a micromagnetic simulation might not be the

most appropriated method. Instead approaches such as atomistic spin dynam-

ics, in which each of the atomic moments of a system are considered, can be

better suited.

By combining ab initio methods and atomistic spin dynamics it is possi-

ble to describe the material specific domain wall motion generated by a wide

range of stimuli. Density Functional Theory (DFT) allows the characteriza-
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tion of a system with great accuracy, thus allowing a direct comparison with

experimental situations, possibly even permitting the prediction of possible

candidates for practical applications.

A quantity that has also received a large amount of attention from the theo-

retical standpoint is the Gilbert damping. It controls the dissipation rate of en-

ergy and angular momentum from the magnetic subsystem to the lattice. Usu-

ally, from the magnetization dynamics standpoint, this is either a free param-

eter, or it is obtained from ferromagnetic resonance FMR experiments [26].

However, thanks to methods as the breathing Fermi surface (BFS) [27] and

the torque correlation model (TCM) [28], it is now possible to calculate the

damping from first principles methods. This has opened new venues of re-

search, as the capacity of predicting the damping can be of great importance

to determine promising materials in the field of magnonics.

In this thesis first principle methods will be used to characterize the proper-

ties of magnetic materials, with special emphasis on the interatomic exchange

interactions and the Gilbert damping. These will be used in conjunction with

atomistic spin dynamics simulations, this with the objective of being able to

accurately describe the dynamics of a diverse class of materials. Special em-

phasis is placed in relativistic effects such as the Dzyaloshinskii-Moriya in-

teraction, the magnetocrystalline anisotropy and the Gilbert damping, due to

their importance in the description of magnetic textures such as domain walls

and skyrmions and their dynamics.

The thesis is organized in the following manner, in Chapter 2 the basics of

magnetism will be introduced. In Chapter 3 the background of density func-

tional theory will be introduced, while paying special care to the description

of the Korringa-Kohn-Rostoker method [29, 30], which is used throughout

the thesis. The different methods to calculate the exchange interactions will

be presented in Chapter 4, with emphasis on the Liechtenstein, Katsnelsson,

Antropov and Gubanov (LKAG) [31, 32] formalism. Chapter 5 deals with

the methodology to calculate the magnetocrystalline anisotropy. Chapter 6

provides information on the formalism used to calculate the damping param-

eter from first principles methods. The theory of atomistic spin dynamics and

several applications such as domain wall dynamics will be discussed in Chap-

ter 7. Lastly, in Chapter 8 some conclusions and outlook for this thesis will

be presented. Throughout the different chapters in this thesis, key results from

the included publications will be used to exemplify the theoretical treatments

presented in them.
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2. Magnetization dynamics

2.1 Basics on Magnetism

The phenomena of magnetism has been known since ancient times. Its in-

fluence on the development of devices has been far reaching, revolutionizing

the world with inventions ranging from the magnetic compass to modern hard

drives. However, the magnetic properties of materials were used throughout

history well before an understanding of the origin of magnetism was reached.

It was not until the the 19th century, that the basis of electromagnetic theory

was developed. It was James Clerk Maxwell who compiled and realized a co-

herent theoretical framework which encompassed all the previously work done

in electromagnetism. This compilation is known as the Maxwell equations

∇ ·E =
ρ
ε0

(2.1.1a)

∇ ·B = 0 (2.1.1b)

∇×E =−∂B
∂ t

(2.1.1c)

∇×B = μ0

(
j+ ε0

∂E
∂ t

)
. (2.1.1d)

The Maxwell equations in free space (Eq. 2.1.1) show the relations between

charged particle densities ρ , current densities j and magnetic B and electric E
fields. They form the basis of classical electrodynamics and are completely

consistent with special relativity. The Maxwell equations describe how mag-

netic and electric fields can be created by charged particles and how charged

particles react in the presence of these fields. They describe electromagnetic

phenomena in a very precise way and represent one of the greatest achieve-

ments in physics.

Nonetheless, the spontaneous magnetization present in some materials can-

not be accounted for only using the Maxwell equations. In order to account for

magnetic fields in a material an electronic current must be constantly flowing

through it. An estimation of the magnitude of the current needed to, for ex-

ample, generate the magnetization of iron M = 1.76×106 A
m implies that there

needs to be a perpetually circulating surface current of the same magnitude,

which seems implausible [33]. Furthermore, this consideration cannot explain

magnetism in insulating materials.
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Another argument against a classical explanation of magnetism in a mate-

rial was proposed by Bohr and van Leeuwen in the 1930’s [34]. They started

by writing the Hamiltonian of N classical particles with charge e, and mass m
under the influence of a magnetic field, determined by the vector potential A

H =
N

∑
i=1

1

2m

(
pi− e

c
Ai

)2
+V (q1,q2, · · · ,qN) , (2.1.2)

where c is the speed of light, the qi’s are the canonical coordinates, pi is the

momenta of the i-th particle and V represents the interaction potential be-

tween the particles. From the Hamiltonian (Eq. 2.1.2) the magnetization of the

system can be obtained through the classical partition function Z (Eq. 2.1.3)

and the relation between the magnetization and the Helmholtz free energy

(Eq. 2.1.4).

Z =

∫
e−βH dq1dq2 · · ·dqNdp1dp2 · · ·dpN (2.1.3)

M = kBT
∂

∂H
lnZ, (2.1.4)

with β = 1
kBT , kB is the Boltzmann constant, T the temperature and H the

magnetic field.

To simplify the calculation of the partition function one can perform the

following transformation μ i = pi− e
c

Ai. It is important to notice that as the

integral over the momenta pi is over all R3, the integral over μ i has the same

integration limits

Z =

∫
e−βV

∫
exp

(
− β

2m ∑
i

μ2
i

)
dμ1dμ2 · · ·dμNdq1dq2 · · ·dqN . (2.1.5)

Performing the integration over the μ i’s results in Z being independent of

H, which means that the partial derivative in Eq. 2.1.4 vanishes. Therefore,

by just considering a system of classical charged particles moving inside a

solid, one cannot explain the spontaneous magnetization that some materials

exhibit. Hence, to obtain an explanation of magnetism at fundamental level it

is necessary to go beyond classical physics and instead use relativistic quan-
tum mechanics. Magnetism is based on the spin of the electron a fundamental

quantity that has no classical equivalent.

The spin is a property of quantum mechanical objects, and it is considered

as an intrinsic angular momentum since it has similar properties to the angu-

lar momentum operator in quantum mechanics and can be described by the

same type of algebra. In quantum mechanics the spin is associated to a spin

operator S and to the spin quantum number s, and allows for the classification

13



of quantum objects in bosons, particles with integer spin, and fermions par-

ticles with half-integer spin. Bosons and fermions differ also in the fact that

fermions must obey the Pauli exclusion principle, i.e. no two fermions can

have the exact same quantum numbers, while bosons do not experience such

restriction.

Electrons are fermions, with spin quantum number which can have the val-

ues s =±1
2 . Hence, the Pauli exclusion principle and the Coulomb interaction

will determine the ground state of a multi-electron atom, thus ultimately lead-

ing to a magnetic or non-magnetic solution. Nevertheless, Hund formulated a

series of empirical rules that allow the determination of the electronic config-

uration of the ground state of a free atom. Hund’s rules can be formulated in

the following way

• The state that minimizes the energy is that which maximizes the sum of

the s values for all the electrons in the open sub shell.

• For a given multiplicity, i.e. a given s, the angular momentum quantum

number, l, related to the operator L must be maximized as it has the

lowest energy.

• If the outermost sub shell of the atom is half-filled or less, then the min-

imum energy state is the one with the lowest total angular momentum j,
associated with the operator J = L+S. If the shell is more than half-

filled, the minima is achieved with the highest value of j.
Hitherto, the determination of the atom’s ground state also sets the total an-

gular momentum, which in turn can be used to calculate the magnetic moment
of the atom

μ = μl +μs = glμB
l
h̄
+gsμB

s
h̄

μ = g jμB
j
h̄

(2.1.6)

g j =−3 j ( j+1)− l (l +1)+ s(s+1)

2 j ( j+1)
, (2.1.7)

where gl =−1 and gs ≈−2.0023 are the angular and electronic gyromagnetic

factors, h̄ is the Planck constant, μB is the Bohr mangeton, g j is the Landé

g-factor, μs is the spin moment and μl is the orbital moment.

In order to describe the magnetic properties of a solid, more information is

needed. Electrons in a material interact with each other, hybridize and give

rise to the formation of electronic bands, thus making the free atom descrip-

tion incomplete. Also the electron-electron interactions give rise to different

magnetic ground states and a multitude of phenomena when the material is

subjected to external stimuli such as temperature.
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2.2 Heisenberg Model

The number of atoms in a solid is very large, making any analytical solu-

tion to the quantum mechanical problem impossible. Therefore, to explain the

magnetic properties of a system approximations and models must introduced.

Generally the models must be able to reproduce the different types of mag-

netic order experimentally observed as well as macroscopic phenomena such

as phase transitions.

One of the most used statistical models in magnetism is the Heisenberg
model. The quantum treatment of this model, is in general a very challeng-

ing task. Hence for systems which have large magnetic moments, the semi-

classical treatment of this model is instead used. In this model the magnetic

moments, mi, of a material are approximated as vectors in R3 and the inter-

action among them is considered in the following way

H =−∑
〈i, j〉

Ji jm̂i · m̂ j, (2.2.1)

where m̂i is the direction of the i−th magnetic moment and the Ji j’s are the

interaction strength between the i-th and j-th magnetic moments, and is called

the exchange interaction, since if stems from the change in energy when two

electrons are interchanged, the symbol 〈· · · 〉means that the summation is con-

sidered only between nearest neighbours. Then it is possible to define the

total magnetization M of a sample with N magnetic atoms as the sum of the

individual magnetic moments, mi, such that M = 1
N ∑N

i mi.

2.2.1 Magnetic ordering

The Heisenberg model allows the description of different types of magnetic

order observed experimentally, which are characterized by the relative orien-

tation of the moments with respect to each other. Some types of magnetic

ground states which can be described through the nearest neighbour Heisen-

berg model are the ferromagnetic, antiferromagnetic and ferrimagnetic states.

Ferromagnetic order refers to the state in which all the magnetic moments

are aligned parallel to each other (Fig. 2.1a), this is the type which is closest to

the intuitive notion of magnetism, as it is the one present in many permanent

magnets, i.e. such as a regular fridge magnet. On the other hand, antifer-

romagnetic materials have their magnetic moments arranged anti-parallel to

each other resulting in a zero net magnetic moment (Fig. 2.1b). Ferrimagnetic

order is similar to the antiferromagnetic case as the magnetic moments of a

solid are antiparallel to each other, but the net magnetization is non-zero, re-

sulting from the magnetic moments in one of the sublattices being larger than

the ones in the other (Fig. 2.1c). To obtain more complex states, such as non-

collinear structures (Fig. 2.1d) the model needs to be extended, how to achieve

this will be discussed in the following sections.
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Figure 2.1. Distinct types of magnetic order which might occur in a material. They are

characterized depending on the relative orientation of the magnetic moments present

in it.

From Eq. 2.2.1 the previously mentioned magnetic configurations can be

obtained depending on the sign of the Ji j’s. If Ji j > 0 the energy would be min-

imized if the magnetic moments are parallel to each other, that is a ferromag-

netic ground state (Fig. 2.1a). On the other hand, if Ji j < 0 the moments prefer

to be aligned anti-parallel to each other, resulting in an anti-ferromagnetic or

ferrimagnetic state depending on the magnitude of the moments (Fig. 2.1b-

2.1c).

Moreover, the magnetic order is strongly dependent on the temperature.

Experimentally it is known that a ferromagnet gradually looses its magne-

tization as temperature increases, especially at low temperatures where the

magnetization follows the Bloch T
3
2 law. For a magnetic material the mag-

netization vanishes at a certain critical temperature; Tc (Curie temperature for

ferromagnets). From the Heisenberg model such behaviour can be described

if one considers that temperature acts as a source of disorder. As temperature

increases the alignment between the moments is broken and the total mag-

netization becomes lower than the saturation magnetization. Eventually the

disorder generated by the temperature becomes so large that all the moments

are aligned in different directions and the systems is in a completely disor-

dered state, i.e. a paramagnetic state, which is also present in some materials

even at very low temperatures.

In principle the temperature dependent behaviour of the magnetization can

be obtained by calculating the partition function and finding the free energy of

the system. Nevertheless, due to the high number of magnetic moments in the

system an analytical solution is impossible, and usually approximations such

as Mean Field theory [35], Random Phase Approximation (RPA) [36, 37] or

numerical methods such as Monte Carlo techniques [38] are used, some of

which will be described in Chapter 7.1.

2.2.2 Extended Heisenberg model

The Heisenberg model has been used very successfully to describe magnetic

materials. Nonetheless, nearest neighbour exchange interactions are not enough

to explain certain phenomena such as non-collinear magnetism. Also, ex-

change interactions can be long ranged in certain materials, such as metals,

which exhibit the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [39–
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41]. Therefore in most cases the Heisenberg model is expanded to include

more interactions

H = −∑
i j

Ji�= jm̂i · m̂ j︸ ︷︷ ︸
Heisenberg exchange

+ ∑
i, j

Di j · (m̂i× m̂ j)︸ ︷︷ ︸
Dzyalonshinskii-Moriya

−K ∑
i
(m̂i · êK)

2

︸ ︷︷ ︸
uniaxial anisotropy

−1

2
∑
i�= j

Qμν
i j mμ

i mν
j︸ ︷︷ ︸

dipolar interaction

− ∑
i

B ·mi︸ ︷︷ ︸
Zeeman interaction

,
(2.2.2)

where Di j is the antisymmetric Dzyalonshinskii-Moriya interaction [42, 43],

K is the uniaxial anisotropy constant with the magnetic easy axis is oriented

along êK, Qμν
i j the dipolar tensor with μ , ν being the Cartesian components

and B is an external magnetic field. It is also worth mentioning that the sum-

mations in Eq. 2.2.2 are not over neighbouring moments any more, which

means that one can obtain more complex magnetic ground states (Fig. 2.1d).

From, now on in this thesis the extended Heisenberg model will be referred

only as the Heisenberg model. The development of first principle methods,

such as density functional theory, allows for the calculation of material specific

parameters belonging to the Heisenberg Hamiltonian, thus allowing the de-

scription of real materials. The theoretical treatment behind this procedure will

be discussed in Chapter 4 for the Heisenberg exchange and Dzyaloshinskii-

Moriya vectors and in Chapter 5 for the anisotropy constants.

2.3 Landau-Lifshitz equations

While the Heisenberg Hamiltonian can be used to describe ground state prop-

erties, the description of the dynamics require a definition of an equation of

motion. In order to obtain an equation of motion one can start by consider-

ing a magnetic material with magnetization, M, in the presence of an external

magnetic field B. As follows from Eq. 2.2.2 the magnetization interacts with

the Zeeman term, which exerts a force on the magnetic moment that tries to

align it parallel to the direction of the field.

Consider a semi-classical approximation in which the magnetic moment is

treated as a 3D vector with a constant length. In this case the moment has

the same behaviour as the angular momentum, L, from classical mechanics.

Therefore, it follows the same time evolution as the angular momentum, where

its time derivative is non-zero only if a torque, τ , is applied over the system

τ =
dL
dt

. (2.3.1)
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M -MxBe

-Mx(MxBe ) Be

Figure 2.2. Sketch describing the precession M× Beff and damping term M×
(M×Beff) of the equation of motion of the magnetizaion under the effect of an ef-

fective field Beff.

Analogously, the magnetic field would exert a torque over the magnetization

making it precess around the axis given by the direction of the field

dM
dt

=−γM×B, (2.3.2)

where γ is the gyromagnetic ratio.

Although Eq. 2.3.2 describes the magnetization precessing around a mag-

netic field, the moment will never align itself with the field in this expression.

Therefore, to get the correct dynamics of the system a dissipative term must

be included such that the motion of the magnetization eventually aligns itself

towards the field (Fig. 2.2). However, considering just the external field in

Eq. 2.3.2 is not enough to describe the dynamics of the system, as it does not

take into account the different interactions which would be present inside a

material such as exchange interactions, finite size effects, etc. Therefore, it

becomes necessary to define an effective magnetic field Beff, which contains

all these considerations. Hence, the equation of motion for the magnetization

of a material can be written as

dM
dt

=−γM×Beff− γ
λ
Ms

M× (M×Beff) (2.3.3)

with Ms being the saturation magnetization of the system and λ is a damp-

ing parameter describing the dissipation of energy from the magnetic system.

This equation is the Landau-Lifshitz (LL) equation [44], which describes the

precessional motion of the magnetization when subjected to a torque with a

phenomenological relaxation term.

The Landau-Lifshitz equation works well to describe the dynamics of a

system in the low damping limit, nevertheless to be able to describe the dy-

namics of materials with high damping, Gilbert [45], modified the equation

and introduced a damping term which depends on the time derivative of the
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magnetization itself

dM
dt

=−γM×Beff +
α
Ms

M× dM
dt

, (2.3.4)

where α is the Gilbert damping. Equation 2.3.4 is the Landau-Lifshitz-Gilbert
(LLG) equation, which is mathematically identical to the Landau-Lifshitz equa-
tion if one redefines the gyromagnetic ratio as γ = γ

1+α2 and λ = γα
1+α2 , leading

to
dM
dt

=− γ
1+α2

�
M×Beff +

α
Ms

M× [M×Beff]

�
. (2.3.5)

The Landau-Lifshitz-Gilbert equation (Eq. 2.3.5) has been extensively used to
describe the magnetization dynamics to a great degree of success [46]. Nev-
ertheless, in this original description no temperature effects are included. The
great importance of temoerature effects led to Brown [47], and Kubo and
Hashitsume [48] to introduce fluctuation terms in the LLG equation within
a Langevin description, which allows the modelling of temperature effects in
the magnetic subsystem. This will be described in detail in Chapter 7.1.

The phenomena that can be described the LLG equation depends intimately
on the nature of the effective field Beff, which can be obtained in a multitude
of ways. One of the methods to model the effective field is the Heisenberg
Hamiltonian (Eq. 2.2.2), in it the effective field is defined as Beff = −∂H

∂M , or
directly obtained from density functional theory. This is not the only method
which can be used, as for example the constrained fields method can be con-
sidered [49, 50].

An analytical solution of Eq. 2.3.5 is not possible for most cases and there-
fore numerical solutions are needed to be able to tackle most systems.

2.3.1 Micromagnetism
The LLG equation presented in this section describes the time evolution of
the magnetization of a system, and it is mostly used in the field of micromag-
netism. In micromagnetism the magnetization is considered as a continuous
variable in space, M(r, t), which depends on the spatial coordinate r and on
time t. The Heisenberg Hamiltonian is then usually rewritten to a continuous
form to parametrize the interactions present in the system. For example, the
micromagnetic exchange energy for a time t can be written as

Exc =
�

Ω
∑
i, j,k

A jk
∂Mi

∂x j

∂Mi

∂xk
dr (2.3.6)

where A jk is the exchange stiffness constant, which is a measurement of the
exchange energy density of the system, the indexes i, j and k run through
the {x,y,z} Cartesian coordinates. In a similar way it is possible to write a
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continuous analogous for the other terms presented in Eq. 2.2.2. The exchange

stiffness is directly related to the Heisenberg exchange interaction, this will be

discussed in detail in Chapter 4.1.2.

In this approach the size of the systems studied are usually in the order

of ∼ 100 nm− 100 μm. The sample itself is usually described using finite

element or finite difference methods, and the size of the elements are usually

in the subnanometer-nanometer scale. Furthermore, on these length-scales,

the dipolar term is a dominant interaction.

Despite all the success of micromagnetism, it fails to treat systems at small

length scales, where a continous description of the magnetization breaks down.

For instance, real materials have a certain crystalline structure which is ne-

glected and materials such as ferrimagnets have different sublattices which

might exhibit different dynamics. Also in classical micromagnetism it is im-

possible to treat the dynamics of antiferromagnetic materials, since the mag-

netization at each point in the continuum model is zero. Such aspects cannot

be appropriately described with traditional micromagnetic methods. Hence,

in order to predict the magnetization dynamics of real materials, it becomes

necessary to study the material properties by a combination of first principle

methods (Chapter 4) and high resolution atomistic spin dynamics simulations

(Chapter 7).
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3. Density Functional Theory

The study of the properties of solids is an ancient pursuit. Mankind has tried

to find better materials to make tools for centuries. But as science and tech-

nology advanced and the quest for better materials became more and more

complicated a deeper understanding of our observations was needed. Since

the material properties are dictated by the electronic structure of the system a

deep understanding of it becomes necessary.

A solid is composed by atoms which arrange themselves in a certain crys-

talline structure. The nucleus and electrons are constantly interacting. These

particles are quantum objects which can be described by the many body time

independent Schrödinger equation

H Ψ(r1, · · · ,rN ,R1, · · · ,RM) = Ψ(r1, · · · ,rN ,R1, · · ·RM)E, (3.0.1)

where Ψ is the many body wave function, the ri’s are the positions of the

electrons, while the Ri’s are the positions of the ions, E is the total energy and

H is the Hamiltonian of the system which is written in Rydberg atomic units,

i.e when the reduced Planck’s constant is set to h̄ = 1, the electron charge

e2 = 2 and the electron mass me =
1
2 as

H =−∑
i

∇2
Ri

Mi
−∑

i
∇2

ri
+∑

i�= j

ZiZ j∣∣Ri−R j
∣∣ +∑

i�= j

1∣∣ri− r j
∣∣ −∑

i, j

2Zi∣∣ri−R j
∣∣ ,

(3.0.2)

where M is the mass of the ions and Z is the atomic number of the ions. The

first two terms in Eq. 3.0.2 are the kinetic energy of the ions and electrons

receptively, while the other terms give the ion-ion, electron-electron and ion-

electron Coulomb interactions respectively.

The number of atoms in a solid is very large which makes an analytical

solution of the the many-body Schrödinger equation impossible. Therefore,

approximations must be introduced to be able to solve the problem. One of

the most used approximations in solid state physics is the Born-Oppenheimer

approximation. In this approximation the electronic and ionic degrees of free-

dom are decoupled, this is an example of an adiabatic approximation. Such

separation is possible because the velocities of the ions and electrons in the

solid are very different, which results from the ionic masses being much larger

than the mass of the electron M � me.
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Therefore, one can consider the ions as being fixed, resulting in the ionic

kinetic term being zero and the ion-ion and ion-electron terms depending para-

metrically on the ionic positions Ri. Meaning that the Hamiltonian 3.0.2 can

be written as following

H = ∑
i

[−∇2
ri
+Vext (ri)

]
+∑

i�= j

1∣∣ri− r j
∣∣ , (3.0.3)

where Vext (ri) is the potential generated from the background ion-ion and

ion-electron interactions. Although, this approximation greatly simplifies the

problem, it is still impossible to obtain an analytical solution for a solid.

Thus, treating the many-body problem in solids is an extremely complicated

problem, but a significant breakthrough came thanks to the work of Hohenberg

and Kohn [51], which proposed that instead of using the wave function of the

electron as the primary object, the electron density of the system n(r) would

be used. Such considerations form the foundation of Density Functional The-
ory (DFT) which is based on the Hohenberg-Kohn theorems that state

Theorem 1 (see Martin [52](p122)) “For any system of interacting particles
in an external potential Vext (r), the density is uniquely determined.”

Theorem 2 (see Martin [52](p122)) “A universal functional for the energy
E [n] in terms of the density n(r) can be defined, valid for any external poten-
tial Vext (r). For any particular Vext (r), the exact ground state energy of the
system is the global minimum value of this functional.”

The Hohenberg-Kohn theorems establish that if one knows the density of the

system all its properties can be obtained, this is a consequence of the fact that

the density replaces the role of the wavefunction. Hence, one can write the

system’s total energy as a functional of the electronic density

E [n(r)] = F [n(r)]+
∫

d3rVext (r)n(r) , (3.0.4)

with F [n(r)] being a functional which does not depend on the external poten-

tial Vext (r).

3.1 Kohn-Sham equations

It was Kohn and Sham [53] though who developed a practical scheme to map

the many body problem to an effective single electron auxiliary system, which

can be used to obtain the properties of the interacting system. The idea behind

this scheme is to find an auxiliary non-interacting system such that it has the

same density as the real case. In this case both of them would have the same

total energy as prescribed by the Hohenberg-Kohn theorems. Therefore, the
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effective one electron problem can be written in a set of equations known as

the Kohn-Sham equations[−∇2 +Ve f f (r)
]

ψi (r) = εiψi (r) (3.1.1)

where ψi are the Kohn-Sham orbitals, εi are the Kohn-Sham eigenvalues and

Ve f f is the effective potential. The electron density is then written as

n(r) =
N

∑
i=1

|ψi (r)|2 (3.1.2)

and the effective potential Ve f f (r) is expressed as

Ve f f (r) =Vext (r)+2

∫
d3r′

n(r′)
|r− r′| +Vxc (r) , (3.1.3)

in which the first term is the external potential generated by the ions, the sec-

ond term is the Hartree energy term which describes the electron-electron in-

teractions and the last term is the exchange-correlation potential which in-

cludes all the many-body effects.

It is important to mention that the Kohn-Sham eigenvalues have in general

no physical meaning, they are not excitation energies, the only exception is the

largest eigenvalue for a finite system, which corresponds to the negative of the

ionization energy [54]. However, the eigenvalues are clearly mathematically

defined as expressed in the Slater-Janak theorem [55].

Lastly one can write the total energy functional as a function of the electron

density, the Kohn-Sham eigenvalues, εi, and the exchange-correlation energy,

Exc, in the following way

E [n(r)] = ∑
i

εi−
∫ ∫

d3rd3r′
n(r)n(r′)
|r− r′| +Exc [n(r)] . (3.1.4)

3.1.1 Exchange correlation potentials

It is important to note that while DFT is an exact theory, the Kohn-Sham for-

malism is not, in principle only the total energy of the system can be ensured

to be correct. One important aspect is that the exchange correlation term is

not known. Hence, approximations on the shape of the exchange-correlation

term must be introduced. The two most used approximations are the local

density approximation (LDA), first proposed by Kohn and Sham [56] and the

generalized gradient approximation (GGA).

The local density approximation assumes that the exchange-correlation en-

ergy density εxc [n(r)], obtained for an uniform electron gas with a density

n(r) works even in situations in which the electron gas is not uniform. This
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assumption allows one to parametrize the exchange-correlation potential

V LDA
xc (r) = εxc [n(r)]+n(r)

∂ (εxc [n(r)])
∂n(r)

(3.1.5)

ELDA
xc [n(r)] =

∫
n(r)εxc [n(r)]d3r. (3.1.6)

On the other hand the generalized gradient approximation assumes that the

exchange-correlation density depends not only on the electronic density but

also on the gradient of the density

EGGA
xc [n(r)] =

∫
n(r)εxc [n(r) , |∇n|]d3r. (3.1.7)

The GGA functionals can improve some of the problems resulting from LDA

treatments, such as the fact that LDA usually underestimates the lattice con-

stant of the material. However, GGA does not always an improvement, in

particular LDA is better suited to describe the properties of itinerant magnetic

systems than a GGA approach [57].

The treatment performed until now has not taken into account the spin de-

gree of freedom, which is valid for non-magnetic systems, but as the objective

here is to study magnetic systems, the formalism must be extended to include

the spin of the electrons.

The inclusion of the spin in the non-relativistic Kohn-Sham scheme was

done by von Barth and Hedin [58] in which the Kohn-Sham equations are

generalized for magnetic systems. For a complete relativistic treatment of the

system the Dirac equation or the Schrödinger-Pauli with spin-orbit coupling,

must be considered instead of the Schrödinger-Pauli equation.

The spin degeneracy is lifted by the introduction of a spin dependent exchange-

correlation potential. It requires that one replaces the density n(r) by the gen-

eralized density matrix ρ (r) in the following way

n(r)→ ρ (r) =
n(r)

2
1+

m(r)
2

σ , (3.1.8)

with 1 being the 2× 2 unit matrix, m(r) the magnetization density and σ =
(σx,σy,σz) the Pauli matrices. Therefore one must modify the wave functions

to a spinor form

ψ i (r) =
(

αi (r)
βi (r)

)
, (3.1.9)

with αi (r) and βi (r) being the spin projections. Using the previously defined

quantities one can write the density matrix ρ (r) as:

ρ (r) =
N

∑
i=1

( |αi (r)|2 αi (r)βi (r)∗

αi (r)∗βi (r) |βi (r)|2
)
. (3.1.10)
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The density matrix lets one write the electronic and magnetization densities:

n(r) = Tr [ρ (r)] =
N

∑
i=1

|ψ i (r)|2 (3.1.11a)

m(r) =
N

∑
i=1

ψ i (r)
† σ (r)ψ i (r) (3.1.11b)

with N being the number of states in the system. The generalization to a spin

dependent theory implies that one must also introduce spin dependent terms in

the Hamiltonian, i.e. spin dependent kinetic energies and effective potentials,

even though there is in reality no spin dependence on these terms, this is done

to write the equation in a spinor form

2

∑
β=1

[
−δαβ ∇2 +V αβ

e f f (r)
]

ψ iβ (r) = εiδαβ ψ iβ (r) , α = 1,2, (3.1.12)

the Kohn-Sham equation can then be separated in a magnetic and a non-

magnetic part

εiψ iα (r) =
2

∑
i=1

[
−∇2δαβ +V0 (r)αβ +(Beff (r) ·σ)

]
ψ iβ (r) , (3.1.13)

where V0 (r)αβ is the non-magnetic part of the potential and Beff (r) ·σ is the

magnetic potential.

Many different parametrizations of the LSDA functional exists such as the

ones proposed by Vosko, Wilk and Nusair [59], Perdew et al. [60], Perdew

and Zunger [61] and Perdew and Wang [62] among others. However, all of

these are just different parametrizations of the same functional. On the other

hand, the GGA different parametrizations of the exchange correlation poten-

tial, such as the ones proposed by Langerth and Mehl [63] and Perdew, Burke

and Ernzerhof [64] among others, are different functionals on themselves, that

is there is no single GGA functional.

The treatment of correlations is a quite challenging problem in DFT, as

strongly correlated electrons are not well treated under LSDA and GGA. As a

result several methods have been developed to treat correlations. One promi-

nent example is the LSDA+U approach, in which an on-site Hubbard term

to treat the strong Coulomb interaction between correlated electrons. As part

of the correlation term is already taken into account via the LSDA exchange-

correlation potential, the so-called double counting term (DC) must be sub-

tracted from the total energy. However, this term in general has no unique

way to be defined, two approaches are generally used, the around mean-field

(AMF) scheme introduced by Czyżyk and Sawatzky [65], and the fully local-

ized limit (FLL) by Lichtenstein et al. [66].

A more sophisticated method to treat correlation effects is via dynamical

mean-field theory (DMFT), where correlation effects are taken into account
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by treating the electrons as a interacting with a bath in an impurity model,

a detailed explanation of this method goes beyond the topics treated in this

thesis and the reader is instead directed to Ref. [67] for more details.

3.1.2 Relativistic DFT

Relativistic effects have not been considered in the DFT treatment presented

until now, hence properties that depend on relativistic effects cannot be treated

with the regular Kohn-Sham treatment presented. Hence, to be able to properly

take into account relativistic effects, a generalization of the Kohn-Sham treat-

ment to a relativistic framework must be performed. This was first performed

by Rajagopal and Callaway [68] and later by MacDonald and Vosko [69]. The

generalization can by done by considering that the total energy of the system

can be written as a functional of the four component current, jν = (n, j), with

n being the probability density and j being the probability current, and n the

electronic density, making use of the Gordon decomposition of the current one

can then write

Etot [ jν ] = Ts [ jν ]+Eext [ jν ]+EH [ jν ]+Exc [ jν ] (3.1.14)

where Ts is the kinetic energy term, Eext is the external potential term which

includes both the ionic potential and a vector potential resulting from an exter-

nal magnetic field, EH is the Hartree term and Exc is the exchange correlation

potential. This can be done by writing the Dirac-Kohn-Sham equation(
cα̂ ·p+βc2 + veff (r)−m(r) ·Beff (r)

)
ψi = εiψi. (3.1.15)

Here one can define the effective potential veff (r) and the effective magnetic

field Beff (r)as

veff (r) = v(r)+
∫ nσ (r)
|r− r′|dr+

δExc [nσ (r) ,m(r)]
δnσ (r)

(3.1.16)

Beff (r) = Bext (r)+
δExc [nσ (r) ,m(r)]

δm(r)
(3.1.17)

where v(r) is the external ionic potential and Bext (r) is the external magnetic

field.

Besides the fully relativistic Dirac equation, the scalar relativistic approach

is often used. In this approach the Dirac equation can be rewritten and the

spin-orbit coupling can be removed [70]. The spin orbit is then treated in a

perturbational approach.

The relativistic description of DFT allows one to describe relativistic phe-

nomena such as the anti-symmetric Dzyaloshinskii-Moriya interaction which

will be described in Chapter 4, magneto-crystalline anisotropy discussed in
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Chapter 5 and the Gilbert damping parameter that will be discussed in Chap-

ter 6.

Up until now a theoretical description of the basic premises of DFT have

been presented. For practical applications a methodology needs to be intro-

duced to solve the Kohn-Sham equations, in the next section both plane waves

based methods and the Korringa-Kohn-Rostoker (KKR) method will be dis-

cussed. The KKR method is used throughout this thesis to obtain numerical

results for materials properties will be introduced.

3.2 Plane wave methods

One of the most used approaches to solve the Kohn-Sham equations is the

plane wave method. This consist of expanding the Kohn-Sham wavefunctions

as plane waves, following Ref [71], the plane waves can be defined as φ (r) =
1
N eig·r, with N being a normalization factor, [r the position in real space, and g
a vector in reciprocal space.

Plane waves have the advantage that they are orthonormal, that is one can

write ∫ ∞

−∞
d3rφ ∗g (r)φg′ (r) = δ

(
g−g′

)
(3.2.1)

meaning that they can give rise to diagonal terms in the Hamiltonian, such as

in the case of the momentum operator, simplifying calculations tremendously.

Also, making use of the Bloch theorem one can take advantage of the sym-

metry of the solid. Hence, by defining the reciprocal vector, g, as g = k+G,

with k being the considered reciprocal space vector and G a reciprocal lattice

vector defined as a linear combination of the fundamental vectors in reciprocal

space A, B and C (see for example [34])

G = g1A+g1B+g3C (3.2.2)

allowing one to expand the Bloch functions as

ψk (r) =
1

N ∑
G

aG (k)ei(k+G)·r (3.2.3)

where aG (k) are a series of coefficients which fulfil ∑G = |aG (k)|2 = 1.

Making use of such expansion one can then calculate the matrix element of

the Kohn-Sham Hamiltonian

∑
G

{[
(k+G)2− εk

]
δGG′+V̂

(
G′ −G

)}
aG (k) = 0 (3.2.4)

where V̂ is the Fourier transform of the potential.
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In this way the Kohn-Sham equation becomes a standard eigenvalue prob-

lem. However, due to the 1
r2 behaviour of the potential, an all electron treat-

ment of the problem becomes very prohibitive from the computational stand-

point, as large number of G vectors would be needed to ensure the proper

description of the system. That is, due to the high energy of the core electrons,

the large cut-off energy becomes so large that the basis size becomes unwieldy.

Several approaches to treat these problems are generally used, such as, pseu-

dopotential methods [72], and augmented plane waves [73] approaches.

3.3 Korringa-Kohn-Rostoker approach

The periodicity of solids bring forth one big advantage: instead of having to

solve the Khon-Sham equation for the whole solid, it is only necessary to solve

it in the Wigner-Seitz cell. Owing to the Bloch theorem, if the solution to the

Kohn-Sham is known within one Wigner-Seitz cell, then the solution is also

known for the whole solid. Hence, one can begin by considering an atom, n,

at position, Rn. If the potential shape is assumed to be spherical, one can write

the wavefunction, ψ (r) as

ψ (r) = ∑
l,m

ClmRlm (r)Ylm (r) (3.3.1)

where Rlm (r) is the radial solution of the Schrödinger equation, Ylm (r) are the

spherical harmonics, Clm are a series of coefficients and l, m are the angular

momentum and magnetic quantum numbers respectively. If one considers the

spherical potential to be given the Muffin-Tin approximation (MT). That is

spherically symmetric inside the muffin-tin radius RMT and constant outside of

it (see Fig. 3.1). A constraint is enforced in the solution for the wave function,

as they must match in the intersect between the two regions.

In 1947 Korringa [29] proposed a wavefunction method to calculate the

Clm coefficients, based on the matching of incident and scattered wavefunc-

tions from the potential centred in a give, unit cell. Later on, in 1954 Kohn

and Rostoker [30] proposed an alternative derivation, in which the wavefunc-

tion was expressed by using the Green’s function, G(E,r,r′). This is done

by rewriting the Schrödinger equation as the integral Lippmann-Schwinger

equation [74]

ψn (r,E) = ψ0 (r,E)+
∫

Ωn

d3r′G0

(
E,r,r′

)
V n (r)ψn (r,E) (3.3.2)

with ψ0 (r,E) being the free electron wave function, Ωn the volume of the n-th

cell and V n (r) is the potential acting over the electron at site Rn. The Green

function is defined as

[E−H ]G
(
r,r′,E

)
= δ

(
r− r′

)
(3.3.3)
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Figure 3.1. Sketch of the Muffint Tin potential centered around atom n in the Wigner-

Seitz construction.

However, this classical interpretation of the KKR technique as a series of

matching wavefunctions is for most part not used in present implementations.

Instead, most modern implementations of the KKR method are based on Mul-

tiple Scattering Theory (MST). Here the basic idea is that each atom is treated

as a scattering center for the electronic waves, with the scattering process be-

ing described by the scattering matrix. Also, the condition that the incident

wave at each center is equal to the sum of all the outgoing waves for all the

other scattering centres must be fulfilled [71].

The Green function contains the same information as the wavefunction.

This can be be easily seen when one expresses the Green function in the

Lehman representation, i.e. as a function of the eigenfunctions [71, 75]

G±
(
r,r′,E

)
= lim

ε→0
∑
ν

ψν (r)ψ∗ν (r′)
E−Eν ± iε

(3.3.4)

where the superscript +(-) refer to the retarded Green function, G+ (r,r′,E),
that is propagating states forward in time, or the advanced Green function

G− (r,r′,E), ψν refers to the eigenfuction for the state ν and Eν is the eigen-

value associated with the eigenfuction ψν . The factor ε is a positive real num-

ber to ensure the convergence of the expression.

Due to the relation between the eigenstates of the system and the Green

function, it is possible to obtain all the information of the system encoded in

the wavefunction via the Green function instead.

In general one can calculate the expectation value of an operator, A, in the

KKR formalism by using the relation

〈A〉=− 1

π
Im

∫ ∞

−∞
Tr
[
AG

(
r,r′,E

)]
fT (E)dE (3.3.5)
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for example, the density of states n(E) and the charge density ρ (r) can be

obtained in such manner

n(E) =− 1

π
Im

∫
G
(
r,r′,E

)
d3r =− 1

π
ImTr [G(E)] (3.3.6)

ρ (r) =− 1

π
ImTr

∫ ∞

−∞
G
(
r,r′,E

)
fT (E)dE (3.3.7)

where fT (E) = 1

1+exp
(

E−EF
kBT

) is the Fermi function, kB is the Boltzmann con-

stant and EF is the Fermi energy.

Thus one can use the definitions above to calculate the density of states

for real materials from first-principles. One example is the Heusler alloy

Co2MnsSi in the L21 crystal structure, as see in Fig. 3.2 as studied in de-

tail in paper VI. The DOS allows one to identify several properties of the

system such as the fact that this system is half-metallic, i.e. it is an insulator in

one of the spin channels as demonstrated by the gap around the Fermi energy

for the minority states. Also the effect that different potential constructions

can have in the description of the electronic states is seen in the DOS. Here

two different constructions of the potential were considered. First, the Atomic

Sphere Approximation (ASA), where the potential is spherically symmetric,

and is considered to act on a sphere with a volume equal to the volume of the

Wigner-Seitz cell centred around a given atom. For closed packed structures

this leads to an overlap of the sphere until the entire volume of the cell is filled.

For open systems, empty spheres centred at the interstitials can be used to fill

the volume. Another alternative to construct the potential, is the Full Potential

(FP) scheme on the other hand treats both spherical and non-spherical parts of

the potential. And thus is expected to give a more accurate description of the

real potential.

3.3.1 The Dyson equation

Another important property of the Green function is how one can relate the

un-perturbed Green function G0 (E) with the Green function G1 (E) resulting

from a perturbation ΔV of the un-perturbed Hamiltonian H0. Hence one can

write equations such as Eq. 3.3.3 for both the perturbed and unperturbed Green

function

G−1
0 (E) = E−H0 (3.3.8)

G−1
1 (E) = E− (H0 +ΔV ) (3.3.9)

Substituting Eq 3.3.8 in Eq. 3.3.9 allows one to write

G−1
1 (E) = G−1

0 (E)−ΔV (3.3.10)
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Figure 3.2. Density of states for Co2MnSi, as studied in paper VI. Different treat-

ments for the geomerty of the potential were considered, the atomic sphere approxi-

mation (ASA) and a full potential treatment (FP). The half-metallic character of the

material is revealed by the gap in one of the spin channels.

then one can write the Dyson equation relating the Green function of the

reference system to the one of the perturbed system

G1 (E) = [1−G0 (E)ΔV ]−1 G0 (E)

= G0 (E) [1−ΔV G0 (E)]
−1

= G0 +G0 (E)ΔV G1 (E) . (3.3.11)

The Dyson equation can then by written as a series expansion as seen in

Eq. 3.3.12. This capacity of the Dyson equation is one of the corner stones

for interpreting the KKR method from the point of view of scattering theory,

as each term in the expansion describes successive interaction events between

the reference Green function G0 and the perturbation ΔV .

G1 (E) = G0 (E)+G0 (E)ΔV G0 (E)+G0 (E)ΔV G0 (E)ΔV G0 (E)+ · · ·
(3.3.12)

With knowledge of the Dyson equation and the basic properties of Green’s

functions one can introduce the basic concepts of MST, which forms the basis

of modern KKR methods. Compared with plane wave methods, KKR methods

can be formulated to have profound advantages when dealing with systems in

which translational symmetry is lost, either by impurities in solids [76–78] or

for systems of reduced symmetry [79–84].
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3.3.2 Multiple Scattering Theory

In order to be able to describe the scattering problem in a real solid, in which

multiple scattering sites exist, one must first be able to describe the single scat-

tering site problem using Green functions. The following treatment is based

on Refs. [85, 86]. For this one considers the scattering of plane waves (the

eigenfunctions of a free electron system) from a spherical atomic potential.

Due to the symmetry of the system it is useful to represent the plane waves in

the angular momentum representation.

ψk (r) = ∑
l,m

4πil jl
(√

Er
)

Y m
l (k)Y m

l (r) (3.3.13)

where Y m
l are the spherical harmonics and jl are spherical Bessel functions.

One can also write the free space Green’s function in the angular momentum

representation

G
(
r,r′,E

)
= ∑

l,m
Y m

l (r)Gl
(
r,r′,E

)
Y m

l (k) (3.3.14)

Gl
(
r,r′,E

)
=−i

√
E jl

(√
Er<

)
hl

(√
Er>

)
(3.3.15)

with hl being pherical Hankel functions and nl are the spherical Neumann

functions. The radii r< and r> are defined as r<=min{r,r′} and r>=max{r,r′}.
As in the previous section the potential for simplicity is considered to be given

by a Muffin-Tin construction for the potential shape. In principle the method

is valid for different treatments for the construction of the potential, Atomic

Sphere Approximation (ASA), Wigner-Seitz construction or full potential im-

plementations [85, 87–89].

The eigenfunctions, Rl (r,E), of the radial Schrödinger equation for r >
RMT, can be expressed as a function of the single site scattering matrix, tl (E),
as shown in Eq. 3.3.16. Thus, one can write the relation between the t-matrix,

which represents the scattering of the wavefunction from the potential, V n (r),
centred at site Rn, with the phase shifts δl (E) resulting from the scattered

waves from the potential (Eq. 3.3.17).

Rl (r,E) = jl
(√

Er
)
− i
√

Etl (E)hl

(√
Er
)

(3.3.16)

tl (E) = sinδl (E)eiδl(E) (3.3.17)

The inhomogeneity in Eq. 3.3.16 means that the regular solutions Rl (r,E)
cannot completely represent the Green function for the scattering problem.

Therefore, one needs to introduce a set of irregular solutions (i.e. diverging

at r → 0) Hn
l (r,E) = Hn

l (r,E)Y m
l (r). The irregular solutions must coincide

with the spherical Hankel functions hl when r < RMT. Using this information
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one can expand the Green function for the scattering problem as the product

of the regular and irregular solutions (Eq. 3.3.18).

G
(
r,r′,E

)
=−i

√
E ∑

l,m
Rl (r<,E)Hl (r>,E)Y m

l (r)Y m
l
(
r′
)

(3.3.18)

This expansion allows one to deal with a single scatterer, but in a solid there

are multiple scattering sites. Each scattering site has its own potential which

can be considered as a perturbation of the unperturbed Hamiltonian, i.e. the

i-th site has a perturbation ΔVi. Hence, one can define the total perturbation

ΔV = ∑
j

ΔVj. In the same way as one defines the total perturbation one can

define a total T-matrix that contains all the scatterers in the lattice

T(E) =∑
i

ti (E)+∑
i, j

i�= j

ti (E)G0 (E) t j (E)+

∑
i, j,k
i�= j
j �=k

ti (E)G0 (E) t j (E)G0 (E) tk (E)+ · · · (3.3.19)

The total scattering matrix T can be interpreted such that the first term deals

with all the single site scattering processes, i.e. where an electron is scattered

by a single scatterer which then leaves the area of interest. The second term

deals with two successive scattering events with a propagation between them

determined by the crystal Hamiltonian and following terms describe multiple

scattering events. In this approach there can be only one scattering event at the

same site.

As in the single scatterer case one needs to be able to find a relation between

the free space Green function G0 and the crystal green function G. For this

purpose, when considering the MT potential construction, the free space Green

function in the cell-centred representation can be written as

G0 (r+Rm,r+Rn,E) = G0 (r,r+Rn−Rm,E) (3.3.20)

G0 (r,r+Rn−Rm,E) =−
√

E ∑
L

jL (r,E)hL (r+Rn−Rm,E) (3.3.21)

with Rn and Rm referring to the center of n-th and m-th cell respectively, thus

implying that m �= n and introducing the combined symbol L = l,m. Using

one of the identities of the Hankel functions

h
(
x+x′

)
= 4π ∑

L,L′
il−l′+l′′CLL′L′′ jL′ (x<)hl′′ (x>) (3.3.22)

where CLL′L′′ are the Gaunt coefficients

CLL′L′′ =
∫

drYL (r)YL′ (r)YL′′ (r) (3.3.23)
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Thus, one can write free space Green function as

G0

(
r+Rm,r′+Rn,E

)
= ∑

L,L′
jL (r,E)Sm,n

0LL′ (E) jL′
(
r′,E

)
(3.3.24)

where one defines the KKR structure constants Sm,n
0LL′ (E) and the

Sm,n
0LL′ (E) = 4πi

√
E ∑

L′′
il−l′+l′′CLL′L′′hL′′ (Rm−Rn,E) (3.3.25)

As the indexes m and n refer to different scattering sites the entries Smm
0LL′ = 0.

Henceforth, the free space Green function is expressed as

G0 (r+Rm,r+Rn,E) = δmnG0

(
r,r′,E

)
+∑

LL′
jL (r,E)Sm,n

0LL′ (E) jL′
(
r′,E

)
(3.3.26)

Henceforth, it is possible to rewrite Eq. 3.3.19 and the crystal Green func-

tion using the Dyson equation, obtaining T(E) =
[
t−1 (E)−G0 (E)

]−1
and

G(E) =
[
G−1

0 (E)− t (E)
]−1

. Using the Dyson equation and Eq. 3.3.26 one

can write the secular KKR equations in real space

det
[
t−1
l (E,r)δ

(
r− r′

)
δL,L′ −SLL′

(
E,r− r′

)]
= 0 (3.3.27)

and in reciprocal space

det
[
t−1
l (E)δL,L′ −SLL′ (E,k)

]
= 0 (3.3.28)

which allows the calculation of the eigenvalues and the band structure of the

system. Also one can see that in both equations there is a separation between

the terms that depend on the structure SLL′ and terms that depend on the poten-

tial t. This is one of the main advantages of the KKR implementation, since

the SLL′ need to be calculated only once for each structure.

Another relevant quantity in the MST is the decomposition of the T-matrix

in the scattering path operator τnm (Eq. 3.3.29) which transfer the incoming

electronic wave on site m to an outgoing wave from site n with all possible

scattering events that may take place in between. This allows one to write the

scattering path operator as a function of the single site scattering matrix and

the free space Green function G0 (Eq. 3.3.30)

T(E) = ∑
nm

τnm (E) (3.3.29)

τnm (E) = tn (E)δnm + tn (E) ∑
k �=n

Gnk
0 (E)τkm (E) (3.3.30)
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3.3.3 Coherent Potential Approximation

The treatment of alloys presents a large challenge from the perspective of den-

sity functional theory since introducing a random alloy leads to the transla-

tional symmetry being lost. Many techniques have been proposed to overcome

this difficulty such as the supercell technique, in which large computational

cells are used so that they reproduce the concentration of the alloy compo-

nents. However, this implies that in order to obtain representative quantities,

a large number of atomic configurations must be taken into account and av-

eraged over. An alternative approach is the special quasirandom structures

(SQS) [90] which need a much smaller set of configurations to obtain rep-

resentative quantities. Another proposed approach is the Virtual Crystal Ap-

proximation (VCA) which treats the alloy by proposing a fictitious element

with atomic number Z′ resulting from the average of the atomic numbers of

the components [91], however, this approach makes it impossible to obtain

reliable information from the components of the alloy. It is also a very crude

approximation for elements that are not neighbours in the periodic table. For

example, VCA would model Fe0.5Ni0.5 as Co.

Some of the previously discussed difficulties, can be partially solved by the

introduction of the Coherent Potential Approximation (CPA) [92, 93]. The

basic idea behind it is the creation of an effective potential that is able to re-

produce the properties of the alloy. This potential is constructed by neglecting

short range order and only taking into account the concentration of the atomic

species. However, the CPA technique is the best single site average that can be

performed [94]. This is a consequence of the fact that the coherent potential

is derived by averaging the scattering properties of the different atoms in an

effective potential. That infers that the average should not cause additional

scattering with respect to the CPA medium as exemplified in Fig. 3.3. Then

one can write the single site path operator matrices, for a random alloy AxABxB

as

τnn
CPA = xAτnn

A + xBτnn
B (3.3.31)

where τnn
CPA, τnn

A and τnn
B are the scattering path operator of the CPA medium

and A and B components of the alloy respectively, xA and xB are correspond-

ingly the concentrations of the A and B species. Thus reducing the problem to

a single site impurity scattering problem.

The CPA method also allows for the calculation of the total Green’s function

of the system by taking into consideration the concentration weighted compo-

nent projected Green’s function Gα . On this way it is possible to obtain an

averaged but component-specific information.

G
(
r,r′,E

)
= ∑

α
xαGα (r,r′,E) (3.3.32)

The recovery of translational symmetry in the CPA technique allows the

calculation of the dispersion relation of the material obtained from the Bloch
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xA + xB =

Figure 3.3. Schematic illustrating the CPA scheme, impurities are introduced in a host

which represents the alloy, the average over impurities is constructed in such a way as

to not introduce aditional scattering with respect to the medium.

spectral function, AB (k,E). In paper X, permalloy (Ni0.80Fe0.20) doped with

transition metals was studied by means of first-principles calculations using

the KKR method. One of the studied quantities was the Bloch spectral func-

tion, and what effect impurities have when comparing it with pure permalloy.

This comparison allows one to observe which bands are the most affected by

the disorder and whether this can influence the magnetodynamic variables of

the material.

One of the advantages of the CPA method in the Green function formalism

is the fact that it can be used to treat low dimensional systems. The formalism

developed for the CPA can also be applied to ferromagnetic systems at high

temperatures, this by considering instead of chemical disorder disorder mag-

netic moments leading to a paramagnetic state, this is the so called Disordered

Local Moments scheme (DLM) [95, 96]. Also recently a CPA analogy has

been developed by Ebert et al. [97, 98] and Mankovsky et. al [99] to treat

temperature effects for the calculation of the Gilbert damping parameter, this

approach will be discussed in detail in Chapter 6.

As shown in this chapter, the KKR approach based on Green’s functions

has the advantage of presenting a formalism which is not restricted to systems

with translational symmetry [85], and in which linear response theory can be

easily introduced, thus allowing the calculation of susceptibilities [100, 101],

transport properties [102], and as will be discussed in Chapter 6 the Gilbert

damping parameter.
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4. Calculation of exchange interactions

Magnetic ordering between magnetic moments, mi’s, is often described mak-

ing use of the Heisenberg Hamiltonian

HHeis =−∑
i�= j

Ji jm̂i · m̂ j (4.0.1)

which was previously introduced in Chapter 2. The sign and magnitude of

the exchange coupling constants, Ji j, determines the magnetic configuration,

and dynamics of the system. Hence, a method to calculate the Heisenberg

exchange interactions, Ji j’s, from first principles is of great importance to de-

scribe both static and dynamic properties of magnetic materials. In this chap-

ter different methods for calculating these exchange interactions, Ji j, will be

introduced. Some of the most used methods to calculate the exchange inter-

actions are what will be called direct calculation, the frozen magnon method

and the LKAG method.

The method that is dubbed here as the direct calculation, can be understood

if one considers a magnetic material with two magnetic moments per unit

cell (see Fig. 4.1). A simple approach to calculate the exchange interactions

is to take the difference between a ferromagnetic configuration and an anti-

ferromagnetic one, which results from “flipping”one of the spins in the cell.

However, in order for such approach to be able to obtain relevant exchange

interactions several configurations must be considered. In metals, exchange

interactions are known to be long ranged [39–41] and can furthermore depend

on the configuration [103], implying that the direct calculation method give

only approximate results [104] unless more a detailed treatment is used.

Figure 4.1. Schematic of a simple approach to calculate the Heisenberg exchange

energy.
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Figure 4.2. Deviation of one of the magnetic moments from the ferromagnetic back-

ground by an angle δθ . Notice that the length of the magnetic moment is conserved

during the rotation.

Another approach, is to calculate the exchange interactions via the so called

frozen magnon method. This is a reciprocal space method, which is based on

the calculation of total energies of different spin spiral configurations [105].

The use of the generalized Bloch theorem [106], which makes use of the peri-

odicity of spin spirals, allows this kind of calculation to be performed without

the need of large supercells. This approach can be generalized to materials

with more than one atoms per unit cell, as used in Ref. [107].

4.1 LKAG Formalism

One of the most used methods to calculate the Heisenberg exchange interac-

tion parameters, is the real space method developed by Liechtenstein, Kat-

snelsson, Antropov and Gubanov (LKAG) [31, 32]. It is based on Andersen’s

force theorem [108], determining the Heisenberg coupling constants by con-

sidering small deviations from a reference state.

Hence, by considering a small variation, δθ , in one of the magnetic mo-

ments in a spin polarized host (see Fig. 4.2), the variation on the total energy

δE can be calculated as

δE =−
∫ EF

−∞
dεδN (ε) (4.1.1)

where δN (ε) is the variation of the integrated density of states. It is important

to notice, that a variation of the magnetic moment does not change the total

number of electrons, only the density itself is changed.

In the scattering matrix formalism the density of states can be expressed

via Lloyd’s formula [109], that is the density of states can be expressed as a

function of the scattering path operator. This allows one to write the variation
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of the energy as

δE =
1

π

∫ EF

−∞
dεIm

[
Tr
(
ln
[
1+δ t−1

i · τii
])]

(4.1.2)

where δ t−1
i = 1

2

(
t−1
i↑ − t−1

i↓
)
×δ m̂i ·σ , τii is the scattering path operator, t↑(↓)i

is the single site scattering matrix for spin up(down) , δ m̂i is the variation of

the orientation of the i-th magnetic moment, and σ the vector composed of

Pauli matrices.

From the energy variation described in Eq. 4.1.2, it is possible to write the

exchange coupling, related to the single site rotation, Ji = ∑
j �=i

Ji j, when only

terms on the order δθ 2 are kept, as

Ji =− 1

4π

∫ EF

−∞
dεIm

{
Tr
[(

t−1
i↑ − t−1

i↓
)(

τ↑ii− τ↓ii
)
+(

t−1
i↑ − t−1

i↓
)

τ↑ii
(

t−1
i↑ − t−1

i↓
)

τ↓ii
]} (4.1.3)

In a similar way, the interatomic exchange interactions can be calculated by

considering a two-site rotation. That is two magnetic moments at sites i and j
rotated by angles δθi and δθ j respectively. Yielding the following expression

for the Ji j’s

Ji j =
1

4π

∫ EF

−∞
dεIm

{
Tr
[(

t−1
i↑ − t−1

i↓
)

τ↑i j

(
t−1

j↑ − t−1
j↓
)

τ↓ji
]}

(4.1.4)

An important fact about equation 4.1.4 is that is makes no assumption of

which kind of exchange is being considered, i.e. which mechanism, allow-

ing for a more complete description of the exchange interaction even at arbi-

trary distances. However, this makes a direct determination of which physical

mechanism influence the exchange interactions quite difficult.

4.1.1 Exchange interactions for magnetic heterostructures

The LKAG formalism can be used to treat a diverse set of systems. In paper
VII it was used to study the Co/Ni/Co heterostructures deposited on heavy

metals with different crystallographic orientations. This study was done with

the objective of characterizing their magnetic properties due to the unexpected

domain wall dynamics that was previously observed in these systems [23, 24].

The studied underlayers, were Cu, Rh, Pd, Ag, Ir, Pt and Au in the fcc

stacking, while Tc, Ru and Re were treated considering an hcp stacking. The

lattice constants were taken to correspond to the bulk values of the underlayer

elements. Structural optimization was considered in the out of plane direction.

In Fig. 4.3 the Heisenberg exchange interactions for the fcc(001) Co/Ni/Co

on Pt heterostructure, when structural optimization was considered, are shown.
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Figure 4.3. Exchange interactions for Co/Ni/Co on Pt heterostructure. A schematic

view of the system is seen on the left hand side of the figure.

As can be seen their magnitude decreases rapidly as a function of distance,

with nearest neighbour interactions dominating. However, the long-range be-

haviour of the interactions is much more apparent for the Ni-Ni exchange in-

teractions. Also the atomic species of the magnetic ions has a clear influence

on the magnitude of the exchange with the Co-Co being much larger than the

Ni-Ni and Co-Ni interactions. Such behaviour is expected, the metallic nature

of the system implies that long-ranged RKKY interactions will be present in

it, as evidenced by the oscillations observed in Fig. 4.3. Also, the observation

that Co has larger exchange interactions than Ni, is expected, since such be-

haviour corresponds with that is observed in the bulk systems, where Co has a

larger Curie temperature than Ni.

It was also found, that even though the chemical composition of the non

magnetic underlayer has an influence on the obtained exchange interactions,

this influence is smaller than for other quantities as the magnetocrystalline

anisotropy energy (MAE) and Dzyaloshinskii-Moriya interaction (DMI). As
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both the MAE and the DMI strongly depend of the spin-orbit coupling, which

varies greatly with the substrate. For the case of the Dzyaloshinskii-Moriya

interaction, the hybridization between the d−states of the non-magnetic sub-

strate and the d−states of the magnetic atoms, play a fundamental role in

determining its strength, as will be discussed in the next section.

4.1.2 From first principles to micromagnetism

A direct measurement of the microscopic exchange interactions is no easy

task. However, they can be used to express readily measurable experimental

quantities such as the spin-wave stiffness, D, and as a consequence the ex-
change stiffness, Axc. The spin-wave stiffness is a measurement of the curva-

ture of magnetic excitation spectra in the limits of long wave-length magnons,

i.e. when q→ 0 E (q)∼ Dq2 (see Chapter 7 for more details).

The spin wave stiffness, for a system with one atom per unit cell, can be

defined for a cubic system as [110]

D =
2

3
∑
i, j

Ji j√mim j

∣∣ri j
∣∣2 (4.1.5)

where ri j is the distance between the i-th and j-th magnetic atoms mi is the

magnitude of the i-th magnetic moment. As Eq. 4.1.5 is a conditionally con-

vergent summation, a factor, exp
(
−η ri j

alat

)
, is included to ensure its conver-

gence, with alat being the lattice constant of the material and η the conver-

gence factor. The value of the stiffness can then be obtained by extrapolating

η → 0. The expression for the spin-wave stiffness can then be generalized for

multi-sublattice systems [111]. This quantity is readily accessible in experi-

ments, by techniques such as spin-polarized electron energy loss spectroscopy

(SPEELS) [112], inelastic neutron diffraction [113] and Brillouin Light Scat-

tering (BLS) [111].

The spin-wave stiffness can then be used to calculate the classic micromag-

netic exchange stiffness, Axc as

Axc =
DMsat

2gμB
, (4.1.6)

where Msat is the saturation magnetization, g is the Landé g-factor and μB

is the Bohr magneton. The exchange stiffness can be calculated making use

of experimental techniques, such as the FMR approach [114]. This expres-

sion can then be generalized for systems in which the stiffness is not isotropic

in space [115]. Hence, by determining the pair-wise interactions it is then

possible not only to compare the spin-wave stiffness with experimental mea-

surements, if not also to provide parameters to characterize micromagnetic

simulations.
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Exchange stiffness for NiMnSb
This approach was used in paper IV where the magnetodynamic variables

of the Ni1−xMn1+xSb half-Heusler alloy were studied using both theoretical

and experimental approaches. Heusler alloys have been extensively studied as

they are ideal candidates for many technological applications, resulting from

properties, such as low Gilbert damping, and large Curie temperatures exhib-

ited by materials such as Co2MnSi. Which make them ideal candidates for

spintronic applications. Controlling these important materials properties by

alloying could pose one way to tailor the promising behaviour of these mate-

rials further.

The Ni1−xMn1+xSb system was studied from the experimental point of

view, making use of the FMR technique and considering both field depen-

dent and frequency dependent sweeps, allowing the measurement of both the

Gilbert damping and the exchange stiffness.

The chemically disordered alloys were treated via the CPA scheme [92,

93], and the pair-wise exchange interactions were calculated using the LKAG

formalism discussed above. However, the calculation of the exchange stiffness

depends on the distance between magnetic moments, as shown in Eqn. 4.1.5.

As an effect, the real-space distribution of the defects in the sample affects the

calculated exchange stiffness. Therefore it becomes necessary to generate a

large number of supercells with different distributions of atoms representing

the same chemical configuration. Then an average over the stiffness over the

different configurations can be taken, which allows for a comparison with the

experimental measurements. The theoretical values of the stiffness are larger

than the experimental ones (see Fig. 4.4), which is in agreement with what

was observed in previous studies [116]. The stiffness was found to decrease

with defect concentration, due to the anti-ferromagnetic alignment, between

the Mn antisites in the Ni sublattice and the Mn moments in the Mn sublattice.
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Exchange stiffness for doped Permalloy
Another example of the capacity of tuning the exchange stiffness via alloying

was studied in paper X. In this paper the effect that non-magnetic transition

metal defects have over the exchange stiffness of the alloy permalloy (Py) was

studied. Permalloy is an intensively studied Fe and Ni alloy from both theo-

retical and experimental point of view, partly due to its large Tc and relatively

small Gilbert damping.

In general, it was found that the addition of defects decreases the stiffness

significantly, the most pronounced effects were observed for elements with

less than half-filled d-shell. This is consistent with the small value of the satu-

ration magnetization obtained when these impurities are considered. However,

the same behaviour is also observed in the spin wave stiffness, highlighting the

fact that the change in the exchange stiffness not only results from the change

in the magnetization, if not also changes in the pairwise exchange interactions.

4.1.3 Dzyaloshinskii-Moriya interactions

The Heisenberg Hamiltonian has been successfully used to describe many as-

pects of strong ferromagnetic materials. However, it cannot properly explain

certain cases of non-collinear magnetic order, as the ones observed in non-

centrosymmetric B20 structures, such as in the case of MnSi [117], and in low

dimensional magnets as in a monolayer of Fe on Ir(111) [118].

To describe situations such as this, additional interactions must be intro-

duced in the Heisenberg Hamiltonian. This was first phenomenologically

proposed by Dzyaloshinskii [42] to describe “weak” ferromagnetism. Lat-

ter Moriya [43] proposed a model in which identified the spin orbit coupling,

and the symmetry of the lattice as the microscopic causes behind the inter-

action. This Dzyaloshinskii-Moriya interaction (DMI), is then added to the

Hamiltonian in the following way

HDM = ∑
i, j

Di j · m̂i× m̂ j, (4.1.7)

where the Di j are the Dzyaloshinskii-Moriya vectors, it is important to notice

that these vectors are anti-symmetric, i.e Di j = −D ji. Due to the relation

between the spin and the lattice via the spin orbit coupling, the directions

of the DM vectors are dictated by the structure of the lattice itself. This set

of constraints was first proposed by Moriya for insulators, by studying the

symmetries between two atoms i and j joined by a bonding vector ri j. They

can be summarized as

• If there is an inversion center on the midpoint of ri j then Di j = 0 (Fig. 4.5a).

• If there is a mirror plane perpendicular to ri j and it passes through its

midpoint, Di j will be parallel to the mirror plane (Fig. 4.5b).
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Figure 4.5. Schematic representation of the symmetry rules for the Dzyaloshinskii-

Moriya vector.

• If the mirror plane includes the position of the i−th atom, ri and the

position of the j−th atom, r j, Di j will be perpendicular to the mirror

plane (Fig. 4.5c).

• If there is a two-fold rotation axis perpendicular to ri j and passes through

its midpoint, Di j will be perpendicular to this axis (Fig. 4.5d).

• If there is an n-fold rotational axis along ri j, with n > 2, Di j will be

parallel ri j.

The original work by Dzyaloshinskii, treated insulating systems in which

d-states are more localized that in metallic systems. For itinerant magnets,

Fert and Levy [119] proposed a three site model, in which the DMI between

two magnetic atoms, is mediated through a third non magnetic atom with a

high spin orbit coupling, as schematically shown in Fig. 4.6. The Fert-Levy

model is based on the s−d Heisenberg Hamiltonian (not to be mistaken with

Eq. 2.2.2) which describes the interaction between a localized magnetic mo-

ment mi and an itinerant electron s. This treatment, considers the RKKY

model when spin orbit coupling is present, which then allows one to write the

energy resulting from the DM interaction

HDM =−V (ξ )
sin [kF (ri + r j + ri j)+η ] r̂i× r̂ j

rir jri j
(r̂i× r̂ j)(m̂i× m̂ j) (4.1.8)

where V (ξ ) is a term which depends on the spin orbit coupling, ri and r j is

the position of the i-th and j-th magnetic atoms taking as the origin the non-

magnetic atom, ri j is the distance between the i-th and j-th atom, η is a phase

shift induced by the non-magnetic impurity and kF is the Fermi momentum.

As can be seen the DM interaction as presented here is long ranged and oscil-

latory, meaning that to describe metallic systems, more than nearest neighbour

interactions must be considered.

The Moriya rules used for insulating bulk systems, can also be applied

to systems with broken symmetry. This was first proposed by Crépieux and

Lacroix [120] that demonstrated that symmetry breaking at the surface of mag-

netic materials can give rise to finite DM vectors. These DM vectors, induced

due to symmetry breaking at the surface, have been recently demonstrated to
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Figure 4.6. Schematic picture of the Fert-Levy model. The DM interaction between

two magnetic atoms is meadiated through a non-magnetic atom with spin orbit cou-

pling ξ , leading to a finite Di j.

be instrumental in the modelling of magnetic states at low dimensional sys-

tems. For example as in the formation of chiral magnetic ordering in Fe on

W(110) [121].

The relativistic origin of the DM interaction, implies that if one wishes to

calculate them from first principles a fully relativistic approach must be used,

and a generalization of the LKAG in which spin orbit coupling is considered

must be introduced. Two of these approaches are the one proposed by Uvardi

et al. [122] and an alternative method devised by Ebert and Mankovsky [123].

Throughout this thesis the latter approach is used in the numerical simulations

here within. In it, the Heisenberg Hamiltonian is considered in a general form

H =−∑
i, j

m̂Ji jm̂ j (4.1.9)

where Ji j is the exchange tensor. Where its trace is related to the scalar,

Heisenberg exchange, and the antisymmetric part of the J tensor is the Dzyaloshinskii-

Moriya interaction.

Hence, one can write the components of the exchange matrix as

J
αiα j
i j =− 1

π
Im

∫ EF

−∞
dεTrΔV (Z)αiτi jΔV (Z)α j τ ji (4.1.10)

where ΔV (Z)αi is the change in the full relativistic spin dependent potential and

α = (x,y,z) is the spin direction.

DM interactions in Co/Ni/Co heterostructures
As discussed above, the Dzyaloshinskii-Moriya interaction can have profound

effects in the magnetic configuration of the system. In paper VII the DM

vectors in Co/Ni/Co fcc heterostructures deposited on heavy metal substrates

were calculated, since they are speculated to have a profound effect in the type

of domain walls which can be stabilized in them [23, 24].

When considering the case of Co/Ni/Co deposited on Pt, the DM vectors for

the nearest Co layer to the Pt substrate follow, as expected, the Moriya rules

as presented in Fig. 4.7. In the fcc(001) stacking the DM vectors are shown to

be perpendicular to the bonding vector between the magnetic atoms. Another
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Figure 4.7. Direction of the DM vectors for the nearest Co layer to the Pt layer as

described in paper VII.(left panel) In the fcc (001) stacking the DM vectors are per-

pendiular to the bonding vectors. (right pannel) On the other hand in the fcc(111)

structure the direction of the DM are not completely determined by the Moriya rules.

observation is that the out of plane component of the DM vector is zero as

expected from the Moriya rules. In contrast the DM vectors in the fcc(111)

structure have a clear out of plane component, this is once again in agreement

with the Moriya rules, where the DM vectors are predicted to be in a plane

perpendicular to the bonding vector between the magnetic atoms. However,

its direction in this plane cannot be completely determined by symmetry argu-

ments [120].

It was also seen, that both the magnitude and out-of plane component of the

DM vectors, intrinsically depend on the material of the underlayer. Interest-

ingly enough, despite the need of spin orbit coupling (SOC) to obtain a finite

DM, a high SOC does not necessarily yield a strong anti-symmetric interac-

tion, which is seen in the case of Au underlayers. This is consistent with the

work of Kashid et al. [124], in which it was shown that the hybridization of

the magnetic 3d states with the non-magnetic 5d states, are also a determinant

factor in both the strength and magnitude of the DM vectors. It is also impor-

tant to mention that relaxation effects can have a profound influence in both

the magnitude and direction of the DM vectors, which is consistent to what

has been observed in .

The results obtained here correspond quite well with a recent work by Yang

et al. [125], in which Co layers are deposited on heavy metal substrates.

Helical spin spirals on FeGe
Another set of systems which are known to exhibit a finite DMI, are those

that crystallize in the non-centrosymmetric B20 structure. In paper V the B20

FeGe system was studied via both theoretical and experimental techniques.

FeGe is a system that has gathered a great deal of attention due to the fact that

skyrmions, topologically protected magnetic textures in the continuum limit,

can be stabilized in this material and in other B20-structured materials. [126].
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Figure 4.8. Spin spiral ground state at low temperature for FeGe from coarse grained

first principles parameters.

Hence, an understanding of the helical structures, and their dynamics, are of

great interest.

Experimentally, the system was studied using a combination of magnetic

force microscopy and Nitrogen-vacancy (NV) center based magnetometry [127,

128]. The NV technique, is a novel measurement approach which allows

for the detection of weak magnetic fields in atomic scale, allowing for the

detection of domain wall profiles in systems with perpendicular magnetic

anisotropy [129].

By using these techniques, the system was found to be a non-collinear he-

lical spin spiral with a wavelength of λ = 70±5 nm, which is consistent with

previous measurements [130]. By using the generalized LKAG formalism de-

scribed above, both the Heisenberg exchange and Dzyaloshinskii-Moriya vec-

tors were calculated. The pair-wise interactions were then coarse grained as to

form an effective micromagnetic model, which is done in a similar approach,

as the one previously used for the spin-wave stiffness. By using Monte Carlo

techniques (for details see Chapter 7.1) the magnetic ground state was found to

be a helical spin spiral, as seen in Fig. 4.8, with a wavelength of λ ∼ 100 nm,

which is also in reasonably good agreement with the experimental results.

The critical temperature of the spiral state was found to be TN = 240 K,

which is in quite good agreement with the experimental measurement of 276 K

[131]. The good agreement observed in the spiral wavelength and the critical

temperature, indicate that the used method can be used to describe the mag-

netic properties of this exotic non-collinear system. However, it is important

to notice that the LKAG formalism as shown here is derived from a collinear

reference frame, and the non-collinear ground state might influence the ex-

change parameters. Recent efforts have been done to improve the description

as to include these effects [132].
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Figure 4.9. (top panel) Heisenberg exchange interactions for MnPt1−xIrxSn. As

the concentration of Ir is increased the nearest neighbour Mn-Mn interaction de-

creases.(lower panels) Dzyaloshinskii-Moriya interaction between Mn atoms for dif-

ferent concentration of Ir defects, from left to right Dx
i j, Dy

i j and Dz
i j respectively.

DM in the MnPt1−xIrxSn half-Heuslers
Another important effect, is how alloying can affect the magnitude of the DM

interaction. This is the topic studied in paper VII, where the half-Heuslers

MnPt1−xIrxSn are studied. The half-Heusler family of Mn2YSn with Y=(Rh,

Pt, Ir) alloys have been shown to have a helical ground state [133]. By using

the CPA, the effect that the inclusion of Ir defects have over the interatomic

exchange interactions and DM vectors was studied. Thus, opening the possi-

bility of tuning the spiral wavelength via alloying. This is of great interest, as

controlling the spiral wavelength would be of great importance for any possi-

ble skyrmioninc state present in them.

By increasing the concentration of Ir the alloy was found to become mag-

netically softer, as demonstrated in Fig. 4.9. The magnitude of the nearest

neighbour exchange interaction decreases, which in turn has profound effects

on the spin spiral wavelength of the system, due to the fact that the helimag-

netic phase comes from a competition between the Heisenberg exchange and

the Dzyaloshinskii-Moriya interaction.

The magnitude of the DM vectors is also affected by the concentration of

Ir. With the nearest neighbour Dx
i j and Dy

i j components increasing with in-

creasing concentration of Ir, while, any change to the Dz
i j is very minor. Such

observation indicates that it is possible to tune the wavelength of a helical spin

spiral by increasing the concentration of dopants.
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5. Magnetocrystalline anisotropy

5.1 Origins of the magnetic anisotropy
Magnetic moments in magnetic materials tend to align towards a certain orien-

tations, with respect to its structural axes. This magnetocrystalline anisotropy
(MCA), cannot be explained alone by the Heisenberg Hamiltonian, since for

exchange interactions only relative orientation between the moments are con-

sidered. Therefore, if one wishes to consider this effect, additional interactions

must be included. One can start by considering, that there exist certain mag-

netic axes which minimize the energy of the system. Hence, the energy of the

magnetic anisotropy depends on the direction cosines α1, α2, α3 of the mag-

netic moments with respect to the magnetic easy axes. Thus, one can write the

total energy as

E = E0 + f (α1α2α3) (5.1.1)

where E0 contains all the isotropic energy contributions, and f is a function

that must be determined. Brooks [134] demonstrated that the function f can

be determined by the symmetry of the crystalline system. For a cubic system

this results in

E = E0 +K1

(
α2

1 α2
2 +α2

2 α2
3 +α2

1 α2
3

)
+K2

(
α2

1 α2
2 α2

3

)
(5.1.2)

where K1 and K2 are coefficients denoting the strength of the magnetic anisotropy

and are usually referred as the magnetic anisotropy constants. The simplest

case that can be described by Eq. 5.1.2 is the uniaxial anisotropy, in which

there is only one magnetic axis which minimizes the magnetic anisotropy en-

ergy. For this case, and considering polar coordinates, Eq. 5.1.2 can be written

as [135]

E = E0 +K1 sin2 θ +K2 sin4 θ + · · · (5.1.3)

5.1.1 Shape anisotropy

The treatment presented above only deals with how one can express the energy

related to the MCA. However, the determination of the magnitude anisotropy

energy, requires that one understands the microscopic mechanisms behind it.

For this purpose an interaction in which the positions of the moments in the

lattice becomes necessary. The first proposed contribution was the dipole-

dipole interaction

Hdip =−∑
i j

μ0

4π
∣∣ri j

∣∣3 [3(mi · r̂i j)(m j · r̂i j)−mi ·m j] (5.1.4)
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with μ0 being the permeability of free space, mi being the i-th magnetic mo-

ment and ri j being the distance vector between the i-th and j-th magnetic

moments.

As can be seen in Eq. 5.1.4, the dipolar interaction has a clear dependence

on the geometrical distribution of the magnetic moments. The geometrical

shape of the sample itself can lead to the so-called shape anisotropy. The dipo-

lar interaction predicts that for certain geometries, such as cubic systems, then

EMAE = 0. However, cubic systems such as bcc Fe [136] and fcc Co [137],

have finite magnetic anisotropy energy. Also, only taking into account the

dipolar interactions is not sufficient to explain the magnetic easy axis observed

in some ultra-thin films, which showcase an out-of plane magnetic easy axis in

contrast to the in-plane axis predicted by the dipolar interactions [138]. Thus,

despite of the importance of the dipolar interaction in stabilizing magnetic

textures such as domain wall (for details see Chapter 7.3) and as mentioned

before in the description of the shape anisotropy, it is not the only microscopic

mechanism behind the the MAE.

5.1.2 Spin-orbit coupling and MAE

It was Van Vleck [139] that identified the spin-orbit coupling (SOC) as the

mechanism behind the MAE, which, as mentioned in Chapter 3 is a relativistic

effect. Therefore, to understand what are the determining factors for the MAE,

one can look at the spin-orbit coupling Hamiltonian

HSOC = ξL ·S (5.1.5)

where ξ is the spin-orbit coupling parameter and L and S are the angular

momentum and spin operator respectively. By considering states |ψ〉 then is

possible to calculate the expectation value of the SOC Hamiltonian. However,

when calculating the expectation value of the angular momentum, 〈ψ|L |ψ〉,
if the state |ψ〉 is non-degenerate, a purely imaginary value is obtained [71],

which is a contradiction since the angular momentum is an observable, imply-

ing that 〈ψ|L |ψ〉= 0, that is the angular momentum is quenched [140].

Henceforth, to consider the effects of the spin-orbit coupling one must treat

it via perturbation theory. In an uniaxial magnet, the first non-zero contribution

is found when considering second order perturbation theory

HSOC = ξ 2 ∑
n�=k

|〈ψn|L ·S |ψk〉|2
En−Ek

(5.1.6)

where |ψn〉 and |ψk〉 are states of the unperturbed Hamiltonian, and En and Ek
are the eigenvalues of the Hamiltonian for the states |ψn〉 and |ψk〉 respectively.

For cubic system the first non-zero contribution comes from the fourth-order

of the spin orbit coupling.
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However, not all states contribute to the energy arising from the SOC term,

since if |ψn〉 and |ψk〉 are both occupied or unoccupied, their terms in the

summation will cancel out, resulting in only states that cross the Fermi energy

contributing to the energy [141, 142]

HSOC = ξ 2 ∑
n∈occ.

∑
k∈unocc.

|〈ψn|L ·S |ψk〉|2
En−Ek

(5.1.7)

as can be seen, this implies that not only the SOC parameter, ξ , is determinant

in obtaining a large magnetocrystalline anisotropy (MCA), if not also details

of the band structure are of great importance, which can lead to high MCA’s

in systems with low spin-orbit coupling [143].

It is important to notice, that even if the spin orbit coupling, is responsible

for the magnetocrystalline anisotropy, the dipolar interaction is still present,

and it does yields an important contribution to the total magnetic anisotropy
energy (MAE). However, throughout the rest of this thesis, the term MAE will

be used to refer only to the magnetocrystalline contribution to the energy.

Large magnetocrystalline anisotropy is of profound importance for poten-

tial technological applications. The large magnetocrystalline anisotropy can

lead to thin films with an out of plane magnetic easy axis, which are very

promising candidates for the development of magnetic memory devices with

high information density [144].

5.2 Calculating MAE from first principles

5.2.1 Total energy calculations

From Eq. 5.1.7, is possible to see, that in order to calculate the MAE one would

need to consider the total energy of the system for two different magnetization

directions, m̂ and m̂′. With m̂ being the easy axis orientation and m̂′ being a

perpendicular direction to the easy axis. Hence, the magnetocrystalline energy

can be written as

EMAE = E
(
m̂′
)−E (m̂) (5.2.1)

The sign convention usually used is for the MAE, states that EMAE > 0 indi-

cates an out of plane magnetocrystalline anisotropy axis and EMAE < 0 indi-

cates an in-plane easy axis. This convention is followed through this thesis.

From a computational standpoint, this would require two self-consistent

calculations, one for each magnetization direction. However, the magnetocrys-

talline energy is generally very small in comparison with the total energy of

the system. Hence, usually a very accurate method and large number of points

in the reciprocal space is needed to ensure numerical convergence and the de-

sired energy resolution.
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5.2.2 Force theorem method

Performing two self-consistent calculations with a large number of k-points

can be very expensive from the computational standpoint. Also there is the

difficulty that one might not know a priory the direction of the magnetic easy

axis, making the search process even more prohibitive. However, by mak-

ing use of the force theorem the computational effort needed to perform the

calculations is significantly lowered.

A force theorem based approach, reduces the computational time by ap-

proximating the EMAE, as the difference of the single particle Kohn-Sham en-

ergies (band energies) of the two magnetic orientations from a frozen spin

potential

EMAE =
occ

∑
i,k

εi
(
m̂′,k

)− occ

∑
i,k

εi (m̂,k) (5.2.2)

where the εi are the Kohn-Sham eigenvalues and k are the reciprocal vectors.

Hence, only one self-consistent calculation is required. All that would be

required afterwards, would be a single iteration of using the already converged

potential but for a different orientation of the magnetization.

The force theorem has been demonstrated to be applicable to monolayers

and low dimensional systems [145].

5.2.3 Torque method

Another alternative for the calculation of the MAE is the torque method. This

approach, first proposed by Wang et al. [146], can be understood by looking at

Eq. 5.1.3, which describes the magnetic energy of system as a function of the

deviation of the magnetization from the magnetic easy axis. For an uniaxial

magnet the torque, T (θ), can be defined in the following way

T (θ) =
dE (θ)

dθ
= K1 sin(2θ)+2K2 sin4 (θ) (5.2.3)

where θ is the angle between the magnetization and the normal axis. Using

the Hellman-Feynman theorem, the torque can then be written as

T (θ) = ∑
n∈occ

〈ψn| ∂HSOC

∂θ
|ψn〉 . (5.2.4)

Lastly, noting that the EMAE can be defined from the torque as

EMAE = E (θ = 90)−E (θ = 0) (5.2.5)

EMAE = K1 +K2 = T (θ = 45) (5.2.6)

thus, the calculation of the MAE is reduced to the calculation of the torque

for θ = 45. This approach can be used in conjunction with the magnetic force
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theorem, again simplifying the determination of the MAE as only one self-

consistent calculation needs to be performed.

The torque, can also be expressed in the MST formalism, by considering the

rotation along of the magnetization with respect to an axis û, in the following

way [85]

T m̂
θ û =− 1

π
Im

∫ EF
dE

∂
∂θ û

[
ln
{

det
(
t−1 (m̂)−G0

)}]
(5.2.7)

hence, by integrating in the path between the directions m̂ and m̂′ it is possible

to calculate the EMAE.

As has been shown, no matter which method one uses to calculate the MAE,

it is imperative to consider relativistic effects. This can either be done by a

Pauli-Schrödinger equation with the inclusion of spin-orbit coupling or via

the fully relativistic Dirac equation.

MAE for L10 binary alloys
As previously mentioned, not only a strong SOC but also the details of the

band structure determines if a considered system has a large MAE. This sub-

class of materials with large MAE but low SOC, have attracted large amount

of attention, not only due to their possible applications, if not also due to the

fact that they do not contain neither heavy elements nor rare-earths. This is of

profound importance for technological applications due to the difficulties to

obtain such elements.

Hence, in paper II, the torque approach was used to calculate the MAE for

a series of tetragonally distorted systems with low SOC but with high mag-

netic anisotropy. The studied systems were FeNi, CoNi, MnAl and MnGa,

all of them crystallizing in the L10 crystalline structure, where the lattice pa-

rameters a and c were optimized by minimizing the total energy using the

WIEN2K package [147]. The MAE found for these compounds was to be in

relative good agreement with the previous experimental measurements, with

the first principles calculations in general yielding larger values than exper-

iments. Such behaviour can be understood when considering that in experi-

ments chemical disorder and finite temperature effects can affect the measured

MAE values [148, 149]. It is important to notice, that the obtained MAE val-

ues are quite large (see Table 5.1), with the Mn based systems being compara-

ble to the MAE of FePt in the L10 structure [149].

Another important factor, was that for the Mn based systems, chemical dis-

order was found to be necessary for the stabilization of a ferromagnetic so-

lution. The Mn antisites in either the Al of Ga sublattice present antiferro-

magnetic exchange interaction with respect to the Mn sublattice, helping to

stabilize not only the ferromagnetic solution if not also, increasing the Curie

temperature of the system.
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Quantity FeNi CoNi MnAl MnGa

a (Å) 3.56 3.49 3.89 3.83

c (Å) 3.58 3.60 3.49 3.69

EW2k
MAE (μeV/f.u.) 68.7 135.1 275.1 378.2

Ekkr
MAE (μeV/f.u.) 110.3 184.7 320.8 385.7

EW2k
MAE (MJ/m3) 0.48 0.99 1.67 2.24

Ekkr
MAE (MJ/m3) 0.77 1.35 1.95 2.28

Eexp
MAE (MJ/m3) 0.58(Ref. [150]) 0.54(Ref. [151]) 1.37(Ref. [152]) -

Table 5.1. Lattice parameters calculated using WIEN2k,magnetic anisotropies cal-
culated using WIEN2k and SPR-KKR for L10 binary alloys FeNi, CoNi, MnAl and
MnGa.

MAE in magnetic heterostructures
The torque method was also used in paper VII, where Co/Ni/Co heterostruc-

tures deposited on heavy metals were studied. Due to the low dimensionality

of these systems, and the strong spin-orbit coupling that is present in some

of the underlayer materials, they are expected to show an out of plane or per-

pendicular magnetocrystalline anisotropy (PMA). That means that the mag-

netrocrystalline anisotropy that these heterostructures have is large enough to

overcome the in-plane shape anisotropy of the system. The advantage of PMA

materials, is that they can present very narrow domain wall widths, which as

previously mentioned can lead to higher bit densities in magnetic memory de-

vices. As in Chapter 4.1.3, where the anisotropic Dzyaloshinskii-Moriya in-

teractions for these systems were presented, different crystallographic orienta-

tions for the stacking of the systems were also considered for the calculations

of the MAE.

In Fig. 5.1 the effect that the underlayer has over the MAE can be observed.

In general, the fcc(111) structure has a larger MAE than the fcc(001) structure

for systems with the same underlayer. It is also worth noticing, that the the

magnitude of the MAE is not only related to the SOC, since if that would be

the case the MAE would increase with increasing atomic number, as heavier

atoms have larger spin-orbit coupling parameter ξ . Further evidence of this

can be also seen when studying the hcp(001) stacking, where for the three

different studied underlayers large variations were found.

The kind of oscillatory behaviour seen here, has been previously studied via

first principles calculations, were the magnitude and sign of the MAE could be

related to how filled is the d−band of the studied material [153, 154]. Also, the

hybridization of the Co d−states with the d−states of the underlayer will have

a profound effect on the MAE, as shown in previous calculations, in which

the effect of the overlayer for a Co monolayer on Cu(001) was studied via the

force theorem [155].
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Figure 5.1. Magnetocrystalline energy for Co/Ni/Co heterostructures deposited over

different substrates and different crystallographic orientations.
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6. The Gilbert damping parameter

When magnetic moments in a material are driven out of their equilibrium po-

sition they will precess around the effective magnetic field acting over them,

however, this precession does not last for an infinite time. After a finite time

the magnetization will reach an equilibrium state. The reason is that the mag-

netic system dissipates energy, and this process is modelled by the second term

of the Landau-Lifshitz-Gilbert equation (Eq. 2.3.5), which was previously pre-

sented. The rate of energy dissipation from the magnetic sub-system is deter-

mined by the Gilbert damping. From a magnetization dynamics standpoint

the damping is usually treated as a free parameter or taken from experimental

measurements. In experiments the damping can be determined from the peak

linewidth obtained from ferromagnetic resonance (FMR) techniques. In these

techniques the obtained damping contains both intrinsic and extrinsic contri-

butions, some of which can be separated in experiments [26], although with

some difficulty.

Intrinsic contributions to the damping refer to the microscopic mechanisms

that give rise to the damping, whilst extrinsic contributions to the damping

refer to effects such as eddy-currents, sample defects, magnon-magnon scat-

tering, among others. In experiments it is possible to separate extrinsic and

intrinsic contributions to the damping by performing measurements with both

angular dependent and frequency dependent measurements.

However, from the theoretical standpoint the determination of the damping

parameter from first principle calculations has been the focus point of intense

development in the past decades [27, 28, 97–99, 156–159]. A fundamental

aspect from the microscopic point of view is the fact that the damping pa-

rameter is a consequence of the spin-orbit coupling [156], which couples the

magnetic moment to the lattice, and allows for the dissipation of energy and

angular momentum from the spin system to the lattice. In the following a brief

overview of theoretical treatments to determine the damping parameter from

first principles will be presented.

6.1 Overview of theoretical methods
As it was previously discussed the time evolution of the magnetization, M,

of a system is described via the phenomenological Landau-Lifshiftz-Gilbert

equation, Eq. 2.3.5, which can be rewritten in an alternative way as

dM
dt

=−γM×Beff + γM×
[

G̃(M)

γ2 |M|2
dM
dt

]
(6.1.1)
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Figure 6.1. Schematic of the change of the Fermi surface for two different magneti-

zation directions m̂ and m̂′. As can be seen the Fermi surface changes with the spin

orientation.

where Beff is the effective magnetic field acting over the magnetization, γ is

the gyromagnetic ratio and G̃ is the relaxation tensor which is related to the

damping parameter. Usually the Gilbert damping is assumed to be a scalar,

however, in principle it is a tensor that depends on the spin orientation. There

are two methods that have been developed to treat the damping from first prin-

ciple methods, the Breathing Fermi Surface (BFS) method developed by

Kamberský [27] and the Torque-Correlation Model (TCM) [28].

6.1.1 Breathing Fermi surface model

The model proposed by Kamberský [27] for the description of the Gilbert

damping in metallic systems is based on the observation that if one considers

an effective single electron theory in the presence of spin-orbit coupling, the

energy of the electronic states, ε j,k, depends not only on the band number, j,
and the wavevector, k, but also on the direction of the magnetic moment m̂.

In this treatment the electrons transfer energy and angular momentum from

the electrons to the lattice via scattering events. In the absence of dipolar

interactions the spin-orbit coupling is necessary for this effect [158].

Under these considerations, one can study the same electronic system with

two different magnetic orientations m̂ and m̂′, resulting in different energies

for the magnetic states, therefore modifying the population number of states

around the Fermi energy, due to the change of the shape of the Fermi surface

as schematically shown in Fig. 6.1.

The process of redistribution of the occupation numbers, n j,k, occurs due to

scattering processes between the different electronic states around the Fermi

energy. Assuming a relaxation ansatz it is possible to write the time evolution

of the non-equilibrium populations as

dn j,k (t)
dt

=− 1

τ j,k

[
n j,k (t)− f j,k (t)

]
(6.1.2)
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Interband

Figure 6.2. Schematic representation of intraband scattering events and interband

scattering events, which can contribute to the Gilbert damping.

where f j,k (t) are the equilibrium population give by the Fermi function and

τ j,k is the relaxation time parameter, which codifies all the information about

the scattering processes in the system. This relaxation ansatz is only valid

for intraband scattering processes [157], meaning that no interband scattering

processes are considered (see Fig. 6.2). As previously mentioned only states

close to the Fermi energy are considered in this treatment.

If one considers the characteristic time of the motion of the magnetic mo-

ments as being much larger than the relaxation time τ j,k one can approximate

the solution of Eq. 6.1.2 as

n j,k (t) = f j,k (t)− τ j,k
d f j,k (t)

dt
. (6.1.3)

Considering that the total electron energy density is given by

E =
1

Ω ∑
j,k

ε j,kn j,k (6.1.4)

where Ω is the volume of the Brillouin-Zone, it is then possible to define an

effective field which mimics the action of the damping as

B =− 1

|M|Ω ∑
j,k

n j,k
∂ε j,k

∂δ m̂
(6.1.5)

where δ m̂ is the variation of the magnetic moment direction m̂. This then

allows one to write the Gilbert damping tensor as

αμ,ν =− γ
|M|∑j,k

τ j,k
∂ f j,k

∂ε j,k

∂ε j,k

∂δ m̂μ

∣∣∣
M

∂ε j,k

∂δ m̂ν

∣∣∣
M

(6.1.6)

with μ,ν = x,y,z. In the adiabatic limit the relaxation time is taken to be

uniform τ j,k = τ . It is important to notice that the relaxation time τ depends on

the mean free path of the electrons between scattering events. The temperature

dependence of the relaxation time is usually taken to be given in the same way

as for the Drude model for the itinerant electron [156, 157]. Another relevant

factor is that in theoretical approaches based on the BFS τ is a parameter.
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6.1.2 Torque correlation model

The torque correlation model (TCM) proposed by Kamberský [28], in prin-

ciple depends on the same relaxation time, τ , as the BFS method, but the

TCM allows for interband transitions. However, such restriction was lifted by

Brataas et al. [159]. The damping can be described if one considers the dissi-

pation of magnetic energy, Emag, to be determined by the expectation value of

the time evolution of the non-equilibrium many body Hamiltonian H

dEmag

dt
= 〈dH

dt
〉 . (6.1.7)

It is also possible to write the loss of magnetic energy from the LLG equation

(Eq. 6.1.1) by considering

dEmag

dt
= Beff · dM

dt
=

1

γ2

dM
dt

[
G̃(M)

dM
dt

]
(6.1.8)

The Hamiltonian, Ĥ, depends on the direction of the magnetization, m̂. As

the Hamiltonian considers the spin-orbit coupling it does not commute with

the spin operator. Considering that one can take the time evolution of the mag-

netic moment m̂ to be given by m̂(t) = m̂0 + δ m̂(t), with m̂0 the equilibrium

state magnetization and δ m̂(t) a small perturbation around the equilibrium

state. Performing an expansion of the Hamiltonian up to the first order on

δ�(t)
H (t) = H (m̂0)+δ m̂(t) · ∂H

∂δ m̂

∣∣∣
m0

(6.1.9)

and combining Eq. 6.1.8, Eq. 6.1.7 and Eq. 6.1.9 one can write the Gilbert

damping tensor α̃ = G̃
|M|γ as

αμν =−π h̄ ∑
μ,ν

∑
i, j

dδmμ

dt
dδmν

dt
〈ψi| ∂H

∂δmμ

∣∣ψ j
〉×

〈
ψ j
∣∣ ∂H

∂δmν |ψi〉δ (εF − εi)δ (εF − ε j)

(6.1.10)

with μ,ν = x,y,z. This expression can be re-written using the definition of the

retarded single-particle Green’s function

ImG+ (EF) =−π ∑
i
= |ψi〉〈ψi|δ (EF −Ei) (6.1.11)

αμν =− h̄γ
π |M|Tr

(
∂H

∂δmμ
ImG+ (EF)

∂H

∂δmν
ImG+ (EF)

)
. (6.1.12)

Considering the Hamiltonian, H , to be given by the fully relativistic Dirac

Hamiltonian in the local spin density approximation

H = cα ·p+βmc2 +V (r)+βσ · m̂B(r) (6.1.13)
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with α and β being the Dirac matrices, p is the relativistic momentum op-

erator, V r is the spin averaged part of the LSDA potential and B(r) is the

spin dependent part of the LSDA potential. Then it is possible to define the

magnetic torque operator as

T μ ≡ ∂H

∂δmμ
= βB(r)σμ . (6.1.14)

The Green’s function based expression for the damping parameter can be

rewritten in the language of multiple scattering theory, which yields an ex-

pression for α̃ which depends on the torque operator and the scattering path

operator, τ̃nm
ΛΛ′ , which in matrix notation yields

αμν =
g

πμtot
∑
n

Tr
(
T 0μ τ̃0nT nμ τ̃n0

)
(6.1.15)

with g = 2
(

1+ μorb
μspin

)
, μtot = μspin + μorb is here the total magnetic moment

while μspin and μorb the spin and orbital magnetic moments respectively.

For chemically disordered systems an average over configurations must be

performed, this can be taken into account thanks to the coherent potential ap-

proximation (CPA), which implies than in Eq. 6.1.15 and average 〈· · · 〉c is

necessary. It also has been shown [85, 102] that vertex corrections such as

〈T μ ImG+〉c−〈T μ ImG+〉c〈T ν ImG+〉c are of great importance to ensure that

“scattering-in”processes are properly taken into account.

Substitutional disorder in Heusler alloys
Since chemical disorder affects the scattering processes in a material it can

have profound effects on the Gilbert damping. As previously mentioned,

Heusler alloys have been extensively studied due to their favourable properties

for possible spintronic applications.

In paper IV the effect of chemical disorder over the damping parameter

for the half-Heusler Ni1+xMn1−xSb was studied using both experimental mea-

surements and first principle calculations based on the TCM as implemented

in the SPR-KKR package [85, 97]. In Fig. 6.3 a comparison between experi-

mental measurements and theoretical calculations can be observed.

It can be seen that as the concentration of antisites increases, the damp-

ing decreases. This can be understood when one considers that the chemical

disorder leads to an increase of the scattering of electrons. The calculated be-

haviour matches quite well with the experimental trends, obtained via FMR

measurements. The theoretical values are smaller than the measurements, this

can be explained in part due to the difficulties of separating intrinsic and ex-

trinsic damping effects in experiments [26]. Also one cannot neglect that other

types of defects may be present in the samples, something that in not captured

in the calculations.
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Figure 6.3. Dependence of the damping with increased concentration of Ni, a) ex-

perimentally and b) from first principle calculations. Negative values for x imply the

introduction of NiMn antisites and positive values are related to MnNi antisite defects.

Figure 6.4. Dependence of the Gilbert damping for Co2Mn1−xFexSi as a function of

the Fe concentration, for different treatments of the exchange correlation potential.

Another example of the influence of chemical disorder in the Gilbert damp-

ing, is the case of the alloy Co2Mn1−xFexSi, which was studied in detail in

paper VI. Both Co2MnSi and Co2FeSi are full Heusler alloys which crystal-

lize in the L21 structure. As for the previous case the damping was calculated

using the TCM approach, considering the geometry of the potential to be given

by ASA. In Fig. 6.4 the dependence of the damping with Fe concentration is

presented. One can see that considering the exchange correlation potential to

be given by LSDA, GGA or LSDA+U[AMF] the obtained trend is quite sim-

ilar. However, when considering the double counting term to be given by the

FLL treatment the observed trend is quite different than for the other cases.

This can be explained due to the fact that the FLL treatment may not be good

approximation to describe this set of materials.

The observed behaviour of the damping is not only a consequence of the

increased scattering due to defects. It is also heavily influenced by the loss of
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half-metallicity of the system as the concentration of Fe increases. In the con-

sidered approximations Co2MnSi is a half-metallic material, whilst Co2FeSi

is not. This has a profound influence on the damping of the material, as nu-

merous studies suggest that there is a correlation between the density of states

at the Fermi level and the damping parameter [160–162]. Hence, for materials

with a small density of states at the Fermi energy the damping parameter is

expected to be small when compared to the values of metallic systems.

For both Ni1+xMn1−xSb and Co2Mn1−xFexSi the damping parameter was

calculated for a finite temperature T = 300 K. How temperature effects can

be included in the calculation of the Gilbert damping will be discussed in the

next section.

Temperature effects
Temperature effects can be taken into account by considering the electron-

phonon self energy Σel-ph in the calculation of the Green’s function [97]. An

alternative is to consider a quasi-static approximation for thermal displace-

ments of atoms from their equilibrium positions. This approach has been de-

veloped by Ebert et al. [97, 98]. Here an alloy analogy was used to average

over atomic displacements, and the discrete set of displacements is chosen

such that the root mean square of the displacement is given by the Debye

model for a system with one atom per unit cell

〈σ2〉= 1

4

3h2

π2mkBΘD

⎡
⎣Φ

(
ΘD
T

)
ΘD
T

+
1

4

⎤
⎦ (6.1.16)

where ΘD is the Debye temperature, Φ is the Debye function, kB is the Boltz-

mann constant and h is Planck’s constant.

In a similar way as for atomic displacements, Ebert et al. [98] also devel-

oped an alloy analogue model to treat spin fluctuations. Here several configu-

rations of spin orientations are averaged over using the CPA approach, whilst

considering a rigid spin approximation in the spin dependent part of the ex-

change correlation potential.

In paper VI the Gilbert damping for the full Heusler families Co2MnZ,

Co2FeZ and Mn2VZ with Z = (Al, Si, Ga, Ge) was calculated when both

lattice displacements and spin fluctuations are considered. The effect that dif-

ferent exchange correlation potentials can have in the Gilbert damping can be

seen in Fig. 6.5 for the full Heusler Co2MnSi. When the exchange correlation

potential is considered to be given by LSDA, GGA or LSDA+U[AMF], the

damping first decreases with temperature, in what is dubbed a conductivity like

behaviour, after that the damping increases with temperature, in a resistivity

like behaviour. Whilst when the exchange correlation potential is considered

via the LSDA+U[FLL] the damping is observed to decrease with tempera-

ture. Such profound difference can be explained by looking at the density of
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states at the Fermi energy for the different exchange correlation potential as

previously mentioned. As the LSDA+U[FLL] treatment destroys the half-

metallic state, hence increasing the damping of the material, with respect to

the half-metallic state.

The obtained values for the damping for all the studied Heusler alloys, are

in general smaller than the experimental values. As previously mentioned this

could be partly due to the consequence of the difficulties in separating intrin-

sic and extrinsic contributions to the damping. Also, for the particular case

of Co2MnSi the damping parameter can be profoundly affected by the loss

of half-metallicity due to surface states, which can occur in specific termina-

tions [163]. If the termination is chosen as to keep the half-metallicity ultralow

damping can be obtained [162].

The effect that thermal and spin fluctuations have on the Gilbert damp-

ing for permalloy (Py) with composition Fe0.19Ni0.81, when it is dopped with

transition metals was studied in paper X. In this work it was shown that spin

fluctuations can have a profound effect on the magnitude of the damping, de-

pending on which heavy metal that is used as a dopant for Py. In particular

one can see that with increasing temperature, the spin fluctuations start to play

a larger role. This is expected since the fluctuations of the magnetic moments

will be larger the closer it is to the Curie temperature of the material.
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7. Atomistic spin dynamics

The LLG equation (Eq. 2.3.5) has been used to study the magnetization at mi-

croscopic scale and ab initio methods can be used to parametrize the Heisen-

berg Hamiltonian, as described in previous chapters. As the magnetic mo-

ments are a quantum mechanical property it is natural to think that their be-

haviour can be described from first principle methods. Therefore, the question

is whether there is a robust framework that allows one to combine the LLG

equation and ab-inito methods to describe the magnetization dynamics.

Recent works such as the one from Antropov et al. [164] try to answer this

question. In Chapter 3 the spin dependent Kohn-Sham equations were pre-

sented and how information about magnetic systems could be obtained from

them was discussed. However, the formalism was developed for time indepen-

dent systems, and to fully understand the dynamics one must consider the time

dependent Schrödinger or Dirac equation. In the following, the derivation will

be based on the Schrödinger equation as in the work by Antropov et al. [164]

i
∂ψ iα (r, t)

∂ t
=

2

∑
β=1

[
−∇2δαβ +V0 (r, t)δαβ +(σ ·Beff (r, t))αβ

]
ψ iβ (r, t) .

(7.0.1)

where the first term on the right hand side is the kinetic term, V0 (r, t) is a

scalar potential and σ ·B(r, t) is the magnetic potential.

Hence, a solution of the time dependent Kohn-Sham equations would re-

quire a time dependent parametrization of the exchange-correlation potential.

Since a parametrization of the time independent problem is already diffi-

cult, the introduction of time-dependent effects complicate the situation even

more. Therefore, for most applications the adiabatic approximation is made,

where the fast degree of freedoms are separated from the slow ones. The slow

variables are considered to be frozen while the fast ones are allowed to evolve

freely. An example of an adiabatic approximation is the Born-Oppenheimer

approximation where the ions would be the slow variables and the electrons

the fast ones. This approximation was used in Chapter 3 to formulate the

Kohn-Sham equations.

In the case of magnetism, the separation between fast and slow variables

is not as intuitive. The slow variables are the local directions of the magne-

tization while the fast variables are the electron densities. The magnetization

density also fluctuates rapidly due to the scattering of itinerant electrons which

are prevalent in 3d−transition metals, henceforth an average over the typical
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electron scattering time is of relevance to ensure that the localized atomic mo-

ment treatment is valid [164, 165]. The separation between the electronic and

magnetic subsystem is possible due to the fact that the transversal excitations

of the magnetization are orders of magnitude smaller than the electronic struc-

ture energies. The approximation is also justified by looking at the different

energy scales present in the system, the exchange interactions, Ji j, are usually

small (< 100 meV) when compared to the electronic energies, i.e. the band

formation energy, bandwidth, etc. [164].

The separation of degrees of freedoms allows the transformation of the time

dependent Kohn-Sham equations to its time independent counterpart for a

fixed direction of the magnetization, which is Eq. 3.1.13 for a set of instan-

taneous eigenstates. The electronic density, n(r), is then used as a potential

for the effective magnetic field that will exert a torque on the magnetization.

As the magnetization is dictated by spin of the electrons, it is useful to define

the spin density as S(r, t) = ψ† (r, t)Sψ (r, t), where S is the spin operator.

Therefore, one can then find the equation of motion for the slow variables

i.e. the directions of the atomic magnetic moments, by taking the Schrödinger

equation

i
∂ψ (r, t)

∂ t
= HKSψ (r, t) (7.0.2)

−i
∂ψ† (r, t)

∂ t
= [HKSψ (r, t)]† (7.0.3)

where HKS is the spin dependent Kohn-Sham Hamiltonian (see Eq. 7.0.1).

Then considering the time evolution of the spin density one can write

∂S(r, t)
∂ t

=ψ† (r, t)S
∂ψ (r, t)

∂ t
+

∂ψ† (r, t)
∂ t

Sψ (r, t) (7.0.4a)

∂S(r, t)
∂ t

=
1

i

[
ψ† (r, t)SHKSψ (r, t)− [HKSψ (r, t)]†Sψ (r, t)

]
(7.0.4b)

neglecting any possible relativistic effects, the spin operator commutes with

the effective scalar potential V0 (r)αβ . Hence, only terms containing the ki-

netic term or the magnetic field will determine the time evolution of the spin

density. Thus, one can write

∂S(r, t)
∂ t

=−∇ ·QKS (r, t)− γS(r, t)×Beff (7.0.5)

where the last term of the right hand side is a consequence of the commutation

relation of the spin operator, and QKS (r, t) is defined as

QKS (r, t) =
1

2i

[(
S∇ψ† (r, t)

)
ψ (r, t)−ψ† (r, t)S∇ψ (r, t)

]
(7.0.6)

where the term ∇ ·QKS (r, t) describes the action of the spin currents in the

system. For insulators, or in general, materials in which the spin current is
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negligible one can neglect this term, nevertheless this term is of great impor-

tance when one describes the spin transfer torque (STT) effect [9–11, 17, 166],

which will be explained in detail in section 7.3.2. Neglecting the current term

and integrating over the atomic cells, one can obtain the equation of motion

for the atomic magnetic moments from Eq. 7.0.5

dmi

dt
=−γmi×Bi

eff (r, t) , (7.0.7)

as can be seen the equation of motion obtained here corresponds to the preces-

sion term of the LLG equation 2.3.5.

As shown here, the precession term of the LLG equation can be obtained

from first principles and the description of the damping term can also in prin-

ciple be obtained from ab initio considerations. If the magnetic system would

be completely isolated the angular momentum and the energy would be con-

served, but in reality the system is connected to a lattice and the magnetic

moments do interact with the electrons. Damping mechanisms extend from

the spin-orbit coupling, to damping trough radiation when considering the

Maxwell equations. A Gilbert like term can be obtained from a single elec-

tron picture when considering a non-relativistic expansion of the Dirac equa-

tion [167]. Henceforth, an atomistic analogous to Eq. 2.3.5, can be written for

each atomic moment, mi, subjected to an effective field, Bi
eff, with a Gilbert

damping αi

dmi

dt
=− γ

1+α2
i

(
mi×Bi

eff +αimi×
[
mi×Bi

eff

])
(7.0.8)

In Chapter 6, some of the theoretical approached used to obtain the damping

from first principles were presented, allowing a more complete parametriza-

tion of the atomistic LLG equation. Theoretical models treating the damping

as a tensorial quantity have also been proposed as well as generalizations of the

LLG equation including an inertial tensor contribution which can be relevant

for ultrafast processes [168]. Calculations of the Gilbert damping (scalar) term

from DFT methods have been performed with a reasonable good agreement

with the parameters extracted from FMR experiments [97–99], as previously

presented in Chapter 6. For these reasons it becomes clear that the use of the

LLG equation for atomistic level systems is justified as long as one keeps in

mind the fact that the atomistic LLG equation is only valid in the adiabatic ap-

proximation, i.e. one must be able to separate the electronic and the magnetic

subsystems. Therefore, one can use the LLG equation in conjunction with ab
initio approaches to describe and model systems which one would not be able

to with the conventional micromagnetic formalism.

However, there are several limitations that any approach based in the LLG

equation presents. One that is very relevant, due to the recent developments

in the area of ultrafast dynamics, is that the adiabatic approximation limits

the phenomena which can be studied using the LLG equation. Excitations in
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which the magnetization and electronic processes are in the same time scales,

such as ultrafast demagnetization processes, cannot in principle be properly

treated with the LLG equation. Nevertheless, several models have been pro-

posed to try to solve these shortcomings [169, 170].

For atomistic models, another problem from the computational point of

view is the treatment of the dipolar interaction. Due to the long range na-

ture of the dipolar interaction its treatment becomes very expensive computa-

tionally, as situations in which the dipolar interactions become relevant would

require billions of atoms to be considered. Therefore parallelization schemes

and methods such as the Fast Multipole Method (FMM) have to be considered.

7.1 Temperature effects
As previously discussed in Chapter 2 the magnetic order of a system can vary

due to temperature effects. Several techniques are generally used to describe

such effects, for static properties Monte Carlo methods are usually the method

of choice, whilst for dynamic properties a reformulation of the LLG equation

(Eq. 2.3.5) on the spirit of Langevin dynamics must be performed.

7.1.1 Monte Carlo methods

Monte Carlo (MC) methods, refers to a series of importance sampling algo-

rithms which search through the possible configurations of a system, with the

objective of finding the most probable one at a given set of conditions. One of

the most used algorithms, in the context of magnetism, is the Metropolis al-

gorithm, which is used to describe the static properties of a magnetic system,

described by a certain Hamiltonian, usually the Heisenberg Hamiltonian.

For a system of N magnetic moments, the Metropolis algorithm can be

summarized in the following way

1. Randomly select a magnetic moment i in the computational cell.

2. Perform a trial rotation of the i−th moment, any rotation on the unit

sphere is permitted.

3. Calculate the energy difference, ΔE, between the initial configuration

and the trial configuration.

• If ΔE < 0 the trial move is accepted.

• If ΔE > 0 the trail move is accepted with a probability given by

e−
ΔE

kBT

4. Select a new trial moment and repeat from step 2 until the number of

visited moments is equal to the number of moments in the system.

5. When a number of trials equal to N one MC step has been done, repeat

from step 1.

The Metropolis algorithm can be used to obtain properties of the system

such as the Curie temperature. This can be obtained by looking at the Binder
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Figure 7.1. Binder cumulant as a function of temperature for Co2FeSi for different
simulation box sizes. The intercept of the curves indicates the transition temperature
of the system.

cumulant, which for a ferromagnet can be written as

U4 = 1− �m4�
3�m2�2 (7.1.1)

where m is the magnetization of the system. The intersect of U4 for differ-
ent simulation cell sizes can be then used to determine the critical tempera-
ture [171].

This approach was used in paper VI where the critical temperature of sev-
eral Heusler alloys was determined, using exchange interactions determined
from first principles calculations. In Fig. 7.1 the Binder cumulant as a func-
tion of temperature for Co2FeSi is presented. The exchange interactions were
obtained with the LKAG formalism presented in Chapter 4, considering the
exchange correlation potential to be given by LSDA and the geometry of the
potential to be described by ASA. The calculated Tc for this combination of ex-
change correlation potential and geometrical shape of the potential, is smaller
than the experimental results. This could be due to the loss of half-metallicity
in this approximation. Which results in smaller exchange interactions, than the
ones that would occur in the half-metallic state. This also corresponds to the
calculations performed using a full-potential scheme. In them the pseudogap
present in one of the spin channels is better described than in the ASA case,
resulting in larger exchange interactions, and as a consequence, a larger Curie
temperature. The Binder cumulant is constant until the effects of thermal dis-
order become more relevant close to Tc. At this point large oscillations can be
seen due to the fact that the system has reached the paramagnetic state.
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Despite of the usefulness of the Metropolis algorithm in describing static

properties of a material, it is not suited to treat dynamical processes since

Monte Carlo time, i.e. number of MC steps performed in a simulation, is

not necessarily linked to a physical time. Kinetic Monte Carlo (KMC) ap-

proaches [172], overcome this difficulty by calculating the time between un-

likely events separated by an energy barrier.

7.1.2 Langevin Dynamics

In the Langevin picture, thermal effects are included by redefining the effec-

tive field Beff to include a stochastic field b(t), such that Beff = Beff + b(t).
The stochastic field is modelled as a Gaussian white noise, to make all pos-

sible excitations equally preferred. The constraint to a Gaussian distribution

is not necessary and several other alternatives can in principle be considered

to describe certain physical processes, such as ultrafast dynamics in which the

noise might be correlated [173, 174]. Nevertheless, most applications model

the fluctuation term as a Gaussian with certain restrictions being applied to it

to better reproduce the experimental observations. This term must fulfil certain

criteria which can be resumed as follows

〈b(t)〉=0 (7.1.2a)

〈bi (t)b j
(
t ′
)〉=2Dδi jδ

(
t− t ′

)
(7.1.2b)

D =
α

(1+α2)

kBT
μBm

, (7.1.2c)

where 〈· · · 〉 denotes time average. The later set of equations show that the

time average of the stochastic field is zero (Eq. 7.1.2a), that the field is uncor-

related in time (δ (t− t ′)) and in each of the directions (δi j where i = {x,y,z})
(Eq. 7.1.2b). The strength of this field, D ,depends on the temperature T
and can be obtained from the stationary solution of the Fokker-Planck equa-

tion [175].

Therefore by introducing the stochastic field the LLG equation becomes

dmi

dt
=− γ

1+α2

(
mi×

(
Bi

eff +bi (t)
)
+

α
mi

mi×
[
mi×

(
Bi

eff +bi (t)
)])

,

(7.1.3)

allowing one to describe dynamical magnetization processes at finite temper-

ature. The stochastic LLG is used throughout this thesis when spin dynamics

simulations at finite temperatures are performed. Such capability has been

demonstrated to be of great interest with the discovery of phenomena as the

spin Seebeck effect [176] among others.
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7.1.3 Thermally driven dynamics in FeGe

Thermally driven dynamics of magnetic structures have also garnered a large

amount of attention from experiments. This in combination with techniques

such as diamond nano-vacancy magnetometry, allows the study of magnetic

structures not usually available with other techniques.

In paper V thermally driven dynamics for helical magnetic structures have

been studied both via experimental and theoretical techniques. The studied

system was the non-centrosymmetric FeGe, which is known to have a large

DM interaction, giving rise to helical spin spiral configurations as reported in

section 4.1.3.

By using a combination of Magnetic Force Microscopy (MFM) [177] and

diamond nanovancy (NV) magnetometry [127, 128], it was possible to exper-

imentally measure the spin spiral period for FeGe at temperature close to the

Neel temperature of the system, thus allowing the observation of thermally

driven dynamics. As previously discussed in Chapter 4, NV magnetometry is

a novel technique that allows the study of magnetic textures with very high

spatial resolution [129, 178].

More importantly, the present techniques allows one to obtain information

on the time domain, allowing one to track the thermal dynamics of helical

systems. In Fig 7.2a a snapshot of the magnetic structure of the system at

T = 255 K is shown, the alternating dark and bright regions represent the al-

ternating orientation of the magnetic structure. One can also see that there is

an edge dislocation present in the sample, which is highlighted in panel b, this

kind of defects are known to have a non-trivial topology [126, 179–181], i.e.

they have a non-zero topological number (for details on topological numbers

see section 7.4). In panel c, one can see an schematic representation of the

defects, where it is shown how the magnetization alternate between orienta-

tions in the spiral state, and how the defect introduces a change in this pattern.

However, the most relevant aspect comes when examining panel e, in which

the time dependence of the spiral period is measured. It can be seen that at

∼ 110 s an abrupt jump in the spiral period is observed.

The abrupt change in the period can be understood by looking at the thermal

dynamics of the defects. For this the exchange interactions and DM vectors for

FeGe were calculated using the LKAG formalism, as previously described in

Chapter 4. These were coarse grained such as to obtain an effective micromag-

netic model, which captures the same spin spiral wavelength than the atomistic

description. In Fig. 7.2 panels f, g and h snapshots of the thermal dynamics

obtained from the LLG are presented, in this one can see that due to temper-

ature fluctuations it is possible to stabilize the edge dislocations observed in

experiments. Even more, stochastic fluctuations can cause the defects to move,

either perpendicular to the spiral wave vector, trying to reach the edge of the

sample to obtain a perfectly ordered spiral configuration (panel f). Or along

the spiral wave vector, resulting in multiple defects with different topological
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f g h

Figure 7.2. a MFM image of the helical magnetic structure displaying topological

defects, as identified by green arrows. The white arrows represent stochastic jumps

of the magnetization. b Zoom-in of the area highlighted with the yellow box in a
which showcases one of the mentioned defects. c Schematic representation of the

edge dislocations, the arrows indicate the directions of the possible motion of the

defect. d Schematic illustration of the magnetic structure after the defect has moved. e
Evolution of the local spin spiral period as a function of time evaluated in the blue box

in a. The lower panels f, g and h showcase the results from spin dynamic simulations

where different mechanisms for the motion of the defect can be seen.
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number being annihilated (panel g) or the defect “jumping”, between different

magnetic orientations.

This stochastic motion of the defects can be one the factors responsible

behind the abrupt change of the spiral period, since if the measurement is per-

formed in an area of the sample where this defects are present the obtained

wavelength is not the one of a perfectly ordered system. Temperature fluctua-

tions could then lead this defect to move out of the measurement region, lead-

ing to a measurement of the fully ordered magnetic structure. Understanding

the behaviour of the edge dislocations is valuable for the description of the

formation and stabilization of skyrmionic textures, since the key role that they

play in the nucleation of these textures.

7.2 Spin Waves

The atomistic LLG equation describes the motion of the magnetic moments

of the atoms dictated by a certain effective field. The effective field for the

i-th atom, Bi
eff, contains interactions terms which depend on other magnetic

moments in the sample as exemplified by the extended Heisenberg Hamilto-

nian (Eq. 2.2.2), meaning that the equations of motion for different moments

are coupled. Hence, an excitation of any kind of one of the moments will

propagate trough the sample.

To understand the propagation of these interactions, one can consider a 1D

ferromagnetic spin chain with only nearest neighbour Heisenberg exchange

interactions J.

H =−∑
〈i, j〉

Jm̂i · m̂ j (7.2.1)

then, the field acting over the j-th magnetic moment is written as

B j
eff = 2J

(
m̂ j+1 + m̂ j−1

)
, (7.2.2)

considering that the temperature is set to zero and that there is no damping

term the equation of motion is written as

dm̂ j

dt
=−γm̂ j×

[
2J
(
m̂ j+1 + m̂ j−1

)]
. (7.2.3)

If the moments are considered to be aligned towards the z-axis, one can write

the LLG in Cartesian coordinates in the following way

dmx
j

dt
=−γ2J

[
my

j

(
mz

j−1 +mz
j+1

)
−mz

j

(
my

j−1 +my
j+1

)]
(7.2.4)

plus cyclic permutation terms. In the limit of small deviations mz
j = m j, which

means that the quadratic terms on the transversal components i.e. x and y can
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be neglected, leading to

dmx
j

dt
=−γ2J

[
2my

j−my
j−1−my

j+1

]
(7.2.5)

dmy
j

dt
= γ2J

[
2mx

j−mx
j−1−mx

j+1

]
(7.2.6)

dmz
j

dt
= 0. (7.2.7)

Now it becomes a matter of finding the solution to Eq. 7.2.5 and Eq. 7.2.6.

Considering that there is a spacing a between each spin and that the chain is

infinite the solutions can be written as

mx
j = Aexp(i [ jqa−ωqt]) (7.2.8)

my
j = Bexp(i [ jqa−ωqt]) , (7.2.9)

where q is the wave vector and ωq is the frequency. If one introduces these

solutions in the equation of motion and remembers that γ = geμB
h̄ it is possible

to write

h̄ωq = 4JμBge [1− cos(qa)] . (7.2.10)

This equation is the dispersion relation of a ferromagnet which in the limit of

small wave vectors reduces to

εq ≈ Dq2, (7.2.11)

where D = 2JμBgea2 is the spin-wave stiffness.

Due to the coupled nature of the LLG equation an excitation will not be

localized but will propagate. These excitations are known as spin waves in the

semi-classical Heisenberg model, while the particle like equivalent excitation

is known as a magnon. The characteristics of these excitations in the sam-

ple will be dictated by the dispersion relation of the system, which as shown

in the example of the 1D Heisenberg chain is completely determined by the

Hamiltonian of the system (which is related to the crystalline structure of the

system).

The calculation of the magnon dispersion relation is of great importance as

it give us information about which kind of excitations are allowed in the sys-

tem. In a real system the situation is more complex, hence numerical methods

must be used to obtain the dispersion relation.

7.2.1 Adiabatic magnon spectra

One of the used methods to calculate the spin wave dispersion relation is the

adiabatic magnon spectra (AMS) [182]. In this approach, one can obtain the

dispersion relation by performing a Fourier transform of the interatomic ex-

change interactions Ji j’s. In the case of a single atom per unit cell, this implies
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that for a ferromagnetic ground state, the energy as a function of the reciprocal

vectors can be written as

E (q) = ∑
j �=0

J0 j
[
exp

(
iq · r0 j

)−1
]

(7.2.12)

where the ri j is the relative position vector between the i−th and j− th site.

Hence, one can then generalize this approach for a system with NA atoms for

unit cell, by constructing a 2NA×2NA matrix[
∑NA

j Ji j
0 − Jii (q) −Ji j (q)

−Ji j (q)∗ ∑NA
j Ji j

0 − J j j (q)

]
(7.2.13)

The calculation of the eigenvalues of this matrix would then yield the adia-

batic magnon spectra for a system with NA atoms per unit cell.

It is important to notice that in the present approach, neither temperature

effects nor broadening due to the finite lifetime of the magnons are taken into

account. Also, until recently the calculation of spin wave dispersion relation

for non-collinear systems with this approach was not possible, however, recent

works such as the one by Toth and Lake [183],has allowed for a linear spin

wave theory approach for incommensurate magnetic structures.

7.2.2 Dynamical structure factor

Atomistic spin dynamics is an excellent tool to obtain the magnon dispersion

relation of complex materials. If one introduces temperature to a system, it will

be excited and spin waves will propagate through it. One way to calculate the

spin waves is to make use of the space and time displaced correlation function

Ck (r− r′, t). This quantity gives information on how alike are two different

magnetic moments, where r and r′ are their positions, t it the time and k is the

Cartesian coordinate of the moments. The correlation function is written as

Ck (r− r′, t
)
= 〈mk

r (t)mk
r′ (0)〉−〈mr (0)〉〈mr′ (0)〉, (7.2.14)

the brackets signify an average over ensembles. Performing a Fourier trans-

form in space and time results in the dynamical structure factor

Sk (q,ω) =
1√

2πN ∑
r,r′

eiq·(r−r′)
∫ ∞

−∞
eiωtCk (r− r′, t

)
dt, (7.2.15)

where q and ω are the momentum and energy transfer. The dynamical struc-

ture factor gives information about the excitations that are present in the sys-

tem, in a similar way as the data obtained via neutron scattering experiments.

If one plots the peaks of S (q,ω) along a particular path in the reciprocal space,

the dispersion relation of the system can be obtained. An aspect worth notic-

ing is that one needs temperature to have spin waves. These excitations need
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Figure 7.3. Magnon dispersion relation for a 1D Heisenberg chain obtained from

the dynamical structure factor S(q,ω) (Eq. 7.2.15) and Eq. 7.2.10. Both methods

correspond quite well showing that the correlation function can be used to calculate

the dispersion relation of complex magnetic systems.

a certain energy to exist, a system in its ground state at T = 0 K has no spin

waves as there would be no energy to displace the moments from the equilib-

rium position.

Using this method, the dispersion relation for the ferromagnetic Heisenberg

chain previously presented can be calculated. In Fig 7.3 it is possible to see

that the dispersion relation obtained from the correlation function and the ana-

lytical expression correspond quite well. The height and width of the S(q,ω)
from the LLG equation depends on the choice of damping parameter α and

temperature at which the calculations are made. It is also relevant to notice that

the obtained dispersion relation only considers exchange interactions, if one

would consider the excitations that result from dipolar interactions they would

present much lower energies (i.e. lower frequencies ωexc∼ THz ωdip∼ GHz)

and correspond to small q-values.

It is important to notice that under the LLG equation the magnitude of the

moments has to be kept constant. At high enough temperatures Stoner exci-

tations will be present, in which an electron is excited from an occupied state

of the majority spin channel to an empty state of the spin channel, causing

the local atomic moment to change size, this is expected to play a big role in

itinerant magnets such as nickel. Also, this affects the intensity of the magnon

dispersion relation, as Stoner excitations will damp the intensity of the op-

tical branch, such effects cannot be captured with the present approach, and

methods as TD-DFT are needed to capture some of them [184].

Comparison between AMS and S (q,ω)

The adiabatic magnon spectra and the dynamical structure factor can be then

used to study materials with parameters from first principles. In paper VI
the half-metallic Heusler families Co2MnZ, Co2FeZ and Mn2VAl with Z=(Al,

Si, Ga, Ge) were studied. In Fig. 7.4 a comparison between the adiabatic

magnon spectra and the dynamical structure factor at T = 300 K for Co2FeSi is

presented, with the exchange interactions obtained from the LKAG formalism
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Figure 7.4. As presented in paper VI, a comparison of the adiabatic magnon spectra

(solid lines) with the dynamical structure factor S (q,ω) for Co2FeSi at T = 300 K,

when the shape of the potential is considered to be given by the atomic sphere approx-

imation and the exchange correlation potential to be given by LSDA, some softening

can be observed due to temperature effects specially observed at higher q-points.

introduced in Chapter 4. The Gilbert damping was calculated with the method

described in Chapter 6, which yield a value of α = 0.004 for T = 300 K.

The main differences between the AMS and dynamical structure factor,

arise from the temperature effects included in the atomistic spin dynamics,

but are not taken into account in the AMS treatment which is observed in the

softening of the spectra. Due to the fact that the critical temperature of the

system is much larger than T = 300 K (Tc = 655K in LSDA), temperature ef-

fects are quite small. The high energy optical branches are also softened and

in general are much less visible. This is expected since the correlation was

studied using only vectors in the first Brillouin zone and as has been shown

in previous works [185], a phase shift is sometimes necessary to properly re-

produce the optical branches, implying the need of vectors outside the first

Brillouin zone. Stoner excitations dealing with electron-hole excitations re-

sult in the Landau damping which affects the intensity of the optical branches.

Such effects are not captured by the present approach, but can be studied by

other methods such as time dependent DFT [184]. The shape of the disper-

sion relation along the path Γ−X also corresponds quite well with previous

theoretical calculations performed by Kübler [34].

It is important to notice, that as the damping increases the broadening of

the bands increases, and the overall intensity of the bands is also affected. In

the limit of small damping and vanishing temperatures, the AMS and S (q,ω)
would match with each other. Also, the present scheme can be used to treat

systems in which Dzyaloshinskii-Moriya interaction is present, which can lead

to anti-symmetric dispersion relations, as in the case of two monolayers of

Fe on W(110), which was found to exhibit a large antisymmetric dispersion

relation from experiments [186] and theoretically described [187] by making

use of the methodology described above.
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a)

b)

Figure 7.5. Difference between the Bloch wall a and the Néel wall b. The Bloch wall

rotates out of the plane of the magnetization while the Néel wall has the moments

rotating in plane.

7.3 Domain wall dynamics

The region between two magnetic domains is known as a domain wall (DW)

and it is characterized by a given width and magnetic configuration. The size

and shape of such region depends on the strength of the interactions present in

the system as well as the geometry of the sample.

For instance the exact size of the domain wall is the result of the competition

between the exchange interaction and the uniaxial anisotropy. The exchange

interaction in a ferromagnetic material tends to align all the magnetic moments

parallel to each other, hence an abrupt transition between two domains is ener-

getically unfavourable for the exchange term, since this would be minimized

if the transition is as smooth as possible. On the other hand, the anisotropy

term will prefer the domain wall to be as sharp as possible as any deviation

from the easy axis leads to a gain in the anisotropy energy.

In Fig. 7.5 one can see two of the most common types of domain walls, the

Bloch wall (Fig. 7.5a) and the Néel wall (Fig. 7.5b). In the Bloch wall the

magnetization rotates trough the plane of the wall, while in the Néel wall the

moments rotate within the plane of the wall.

The difference between the Bloch and Néel wall comes from the magneto-

static term. In a thin film the Bloch wall generates a larger demagnetizing field

than the Néel wall, as the demagnetizing field of the Bloch wall would occur

at the surface of the wall, while the one for the Néel wall occurs in the volume.

On the contrary, in a bulk material Bloch walls will be preferred [188, 189].

As previously mentioned the competition between the exchange interaction

and the anisotropy determine how wide the domain wall is. This can be easily

seen for a Bloch wall if one writes the Heisenberg Hamiltonian in the contin-

uous form

Etot = Eex +Eani =
∫ (

A
(

∂θ
∂x

)2

+K sin2 θ

)
dx, (7.3.1)
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where A is the exchange stiffness, i.e. the continuous approximation for the

exchange term, θ is the angle with respect to the plane of the wall and x is

the position. For simplicity no external magnetic field is considered and the

magnetostatic term is neglected, although some of its effects can be considered

by redefining K as an effective anisotropy term which takes into account the

microscopic effects as well as the shape anisotropy contribution Keff = K +
Kshape.

As shown in Ref. [33] the domain wall width can be easily obtained by

minimizing the micromagnetic energy. That can be done by using the Euler-

Lagrange equations for a given functional F
(

x,θ (x) ,θ ′ (x)
)

, which in this

case is the micromagnetic energy∫
F
(
x,θ (x) ,θ ′ (x)

)
dx→ ∂F

∂θ
− d

dx
∂F
∂θ ′

= 0, (7.3.2)

with θ ′ = ∂θ
∂x . Allowing one to write the following relation

2A
(

∂ 2θ
∂x2

)
−K sin(2θ) = 0, (7.3.3)

which leads to the expression for the angle θ (x)

θ (x) =±2arctan

[
exp

(
x

ΔDW

)]
, (7.3.4)

where the sign depends on whether the domain wall rotates clockwise or coun-

terclockwise, ΔDW is the domain wall width in the continuum model, and is

given by

ΔDW =

√
A
K
. (7.3.5)

From here it is clear that a domain wall cannot exist without an anisotropy

term, regardless of its origin, i.e. shape anisotropy alone could give rise to

domain walls. By studying two extreme cases of magnetic anisotropy it is

possible to obtain the two limits of the domain wall width. If K → 0 the

domain wall width ΔDW → ∞ which means that the magnetic moments are all

parallel to each other. On the other hand, if K → ∞ the domain wall width

ΔDW → 0 i.e. there is a sharp transition between the domains.

However, the creation of the domain wall requires energy, depending on

how large are the exchange stiffness A and the anisotropy constant K. There-

fore, it is useful to define the energy density for the domain wall γDW

γDW = 4
√

AK. (7.3.6)

Hence the energy density is a way to see if the creation of a domain would

minimize the total energy.
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Figure 7.6. When a field is applied in the direction of the magnetization of a domain

the moments tend to align towards it minimizing the energy of the system, this makes

one of the domains grow.

The interaction of the domain with an external magnetic field will depend

on the strength of the field and its orientation. Thus, it is known that if one

applies a sufficiently large external magnetic field to a ferromagnetic material

in the direction of one of the domains, its magnetization will reach satura-

tion (the moments reorient themselves along the direction of the field). This

implies that the domain aligned with the field has grown.

The growth of a magnetic domain can be understood if one considers a sit-

uation like the one presented in Fig. 7.6. If one applies a magnetic field in the

“up”direction, the moments aligned anti-parallel to the magnetic field increase

the energy of the system. As previously mentioned the magnetic moments are

related to the spin, which has the same structure as the angular momentum.

From a classical perspective, the change of angular momentum implies that

the system is being subjected to a torque which means that in a case such as

the previously described, the external magnetic field is exerting a torque over

the magnetic moments of the sample. Therefore, if the moments are perfectly

anti-parallel to the field there is no torque being exerted by the external field

over them, but the field will exert a torque over the moments belonging to the

wall. These moments will rotate to try to align themselves toward the field,

thus minimizing the total energy of the material. This reorientation of the

moments towards the field is known as domain wall motion.

At low fields the domain wall behaves as a solid object, i.e. its shape is

preserved as it moves through the sample [190]. When the field is increased,

the torque acting over the moments belonging to the wall also increases, there-

fore the domain wall moves with a speed proportional to the strength of the

field. Intuitively, one considers the domain wall as a solid object, the wall is

an elastic membrane and the field pushes it with a force proportional to its

strength.
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The pressure over the domain wall increases along with the increasing field

until a critical field HWalker is reached. Above this value the domain wall starts

to be deformed, resulting in a sharp drop in the domain wall speed. This is

known as the Walker breakdown limit [190]. An expression for the domain

wall speed above and below this limit were obtained by Walker [33, 190]

vDW =
γ
α

ΔDWH, H � HWalker (7.3.7a)

vDW =
γα

1+α2
ΔDWH, H � HWalker, (7.3.7b)

where γ is the gyromagnetic ratio and α is the Gilbert damping which will be

discussed in detail later.

Domain wall dynamics have been extensively studied both from the theoret-

ical and experimental point of view. Besides magnetic fields, several external

stimuli can also be used to move domain walls, which will be described in the

following sections. Usually, the 1D Walker model is used to describe and pre-

dict domain wall motion, however, recently the work by Yoshimura et al. [191]

has cast some doubt on the validity of the 1D model when Dzyaloshinskii-

Moriya interaction is considered.

7.3.1 Thermally driven domain wall motion on Fe/W(110)

In recent experiments [176, 192, 193] it has been shown that when a magnetic

material is subjected to a thermal gradient, a spin voltage is created, i.e. spins

of one character are accumulated on an edge of the sample while spins of the

opposite character are accumulated on the other. This is what is known as the

Spin Seebeck Effect (SSE). The microscopic origins of such phenomenon are

widely disputed due the large variety of materials in which it has been ob-

served, magnonic [194] and phononic [195] mechanisms have been proposed

to explain its origin.

The interest in the SSE has lead to a wide variety of studies on the behaviour

of magnetic systems under the influence of thermal gradients, from the devel-

opment of thermo-magnonic devices [5, 6] to domain wall motion via thermal

gradients [22, 196–199].

It has been claimed that the reason behind such motion is due to the exci-

tation of spin waves by the thermal gradient. In an effort to understand the

factors that determine the dynamics of such systems, stochastic atomistic spin

dynamics simulations of both material specific and model systems were per-

formed in paper I.

The system chosen to study this phenomena is a monolayer of Fe on W(110),

the reason behind this is that due to its soft exchange and large anisotropy the

domain wall width, δDW, is expected to be very narrow [200]. Which makes

it an excellent case for atomistic spin dynamics simulations, which provides

great spatial resolution. The crystalline structure of the system can be seen
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in Fig. 7.7. It contains a long axis in the (1-10) which corresponds to the

magnetic easy axis, the magneto crystalline anisotropy for such a system is

2SKeff = 4.6 meV as reported in an experimental study [201]. The exchange

interactions for this system were calculated in a previous study [202], which

result in an exchange stiffness of 160 meVÅ
2
. To take into consideration the

long range nature of the exchange term 40 interaction shells were considered.

Figure 7.7. Unit cell structure and easy axis of Fe on W(110) [203], with a lattice

parameter of 3.16 Å. The direction (1 -1 0) denotes the magnetization easy axis.

Two different sample geometries were studied, which would correspond

to two different types of domain wall configurations. The first system was

constructed by 100 repetitions along the (1 -1 0) direction (this axis will be

referred to as the x axis from now on) and 40 repetitions in the (0 0 1) (y axis),

which would result in a head to head domain wall configuration. The second

configuration was obtained by taking 100 repetitions in the (0 0 1) direction

and 40 in the (1 -1 0) resulting a in a Bloch domain wall.

The small system size sets the exchange interactions as the dominant energy

term, therefore the dipolar interactions are neglected in this study. However,

to test which effect their inclusion would have in the dynamics, several test

simulations were performed, in general the dynamics were mostly unaffected

with only about a ∼ 3% of difference observed between both cases. Such an

observation coupled with the great computational burden that the calculation

of dipolar interaction brings justifies their neglect. Nonetheless, for larger

system sizes the magnetostatic effects will be relevant and should be included.

Due to the lack of dipolar interactions domain walls are metastable states

and no observable difference was observed between the two studied geome-

tries, hence in the following the rest of the discussion will deal with the head

to head domain wall structure. Such configuration is achieved, by setting half

of the moments aligned in the +x direction while the other half is set in the -x

direction. The system is then allowed to relax at a finite temperature Tave to ob-

tain the domain wall shape and width expected from the interactions present,

this is achieved by using the stochastic atomistic LLG equation (Eq. 7.1.3).

The metastable nature of the domain walls in the system, make it necessary

to consider several ensembles when studying finite temperature cases, in order
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to neglect any possible Brownian motion. Such an effect becomes noticeable

when one studies the position of the domain wall in the different ensembles, as

there is a clear distribution of domain wall positions (Fig. 7.8) which increases

with temperature. Nevertheless, it is important to notice that in average the

domain wall is located in the middle of the sample.

Figure 7.8. Domain wall position distribution for different temperatures as studied

in paper I. In a and b the distributions for Tave = 20K and Tave = 60K are shown

respectively. As the equilibration temperature increases the spread of the distribution

also increases which is consistent with Brownian motion.

After the thermalization of the system, a thermal gradient is imposed in

the sample, transient effects are ignored and the material is assumed to have

reached the steady state, i.e. no time evolution of the temperature. The shape

of the gradient is set to be linear, and the temperature difference ΔT is cre-

ated in such a way as to maintain the local temperature of the domain wall

constant, as to avoid any sudden changes in the local temperature of the do-

main wall which could influence our results, also on such a way the “average

temperature”, Tave, of the sample is maintained.

When a thermal gradient is applied to the system the domain wall moves

towards the hotter edge of the sample as seen in previous works [22, 197]. The

domain wall speed is shown to increase linearly with the gradient strength as

seen in Fig. 7.9 (notice the log-log scale). Such behaviour is observed for

up to three orders of magnitude of ΔT , it is also relevant to observe that the

dynamics seems unaffected by the average temperature Tave. The large error

bars at low gradients are due to the logarithmic scale of the plot, and the fact

that finite temperature effects, introduce fluctuations which are un-biased and

they will compete with the ones produced by the gradient.

However, the models presented in the theory [196, 197] predict a much

smaller speed than the one that is obtained in the present work. One of the

main differences between the theoretical model and the studied system is the

domain wall width. In Fe on W(110) the domain wall width is ∼ 2 nm which

is smaller than the wavelength of the thermally excited magnons interacting

with it λtherm. Such aspect is key when comparing with the previously pro-

posed models, since the departure point for them is the adiabatic approxima-

tion in which the domain wall width is assumed to be much larger than the

thermal magnon wavelength. Yan and Bauer [204] showed that the transmis-
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Figure 7.9. Log-Log plot of the DW speed as a function of the temperature change

per nm ΔT
Δx for the ML of Fe on W(110) presented in paper I. As ΔT

Δx increases, the

speed increases linearly with it. At low gradients the spread in the measurements due

to the stochastic fluctuations hides any possible global behavior. Note: the error bars

respect the log scale of the axis.

sion coefficient for spin waves of ultranarrow domain walls changes with their

width, i.e. some spin waves are reflected from the domain wall, a fact that is

not taken into account in the continuum model.

The change of the transmission coefficient with the domain wall width

should affect the interaction of the spin waves with the domain wall, hence

affecting the magnonic spin transfer torque which in turns controls the speed

of the wall. To test this hypothesis, model simulations were performed in

which the anisotropy constant, K, and the exchange interaction, J, were var-

ied, which would result in a change in the domain wall width. It was observed

that as the domain wall width increases the speed that is obtained for a given

gradient also increases (Fig. 7.10). Thus, the domain wall width for ultranar-

row domain walls becomes of great importance when considering motion via

spin wave interactions. Such observation is conflicting with previous mod-

els in which the domain wall width does not explicitly affect the domain wall

speed. This discrepancy could be a result from the fact that such models were

obtained by considering the continuum model, which seems ill equipped to

deal with ultranarrow domain walls.

When the thermal gradient is applied to the system, magnons are pro-

duced at the hotter edge and they diffuse towards the colder region [22], these

magnons interact with the domain wall resulting in a magnonic spin transfer

torque [21, 204], i.e. the spin waves interact with the moments that belong to

the DW making the precess, changing their orientation and eventually causing

the DW to move. From our simulations we see that the interaction between the

magnons and the atomically sharp DW changes as the DW becomes broader

as evidenced in the change of the DW speed. This is consistent with the work

previously done by Yan and Bauer [204] in which the interaction between spin
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Figure 7.10. Dependence of the domain wall speed on the anisotropy constant K and

the temperature difference ΔT (notice the logarithmic x-axis) for the model systems

treated in paper I. The dependence of the speed is presented for Tave = 20K a , Tave =
60K b and Tave = 100K c. For all cases, as the anisotropy constant diminishes the

DW speed that can be achieved with a given gradient for a given Tave increases.

waves and ultra-narrow DW was studied. In that study it was found that for

narrow DW ( K
J � 2

3 ) the transmission coefficient of the DW with respect to

spin waves changes as the K
J ratio changes. In contrast to what is expected for

broad domain walls in the 1D continuum model, where the DW do not reflect

spin waves, ultra-narrow DW have a transmission coefficient that is less than

one, i.e. some spin waves are reflected from the DW, as schematically shown

in Fig. 7.11. As the anisotropy is reduced, i.e. the DW becomes broader the

system becomes closer to the one described in the continuum model.

Several alternative models, have been recently proposed [205–208] to de-

scribe the underlying mechanisms behind the thermally driven motion domain

wall motion. However, most of the work has been realized for systems in the

micromagnetic limit in which domain walls are much larger than the wave-

length of the spin waves interacting with them.

7.3.2 Current driven domain wall motion

Magnetic textures, such as domain walls, can be moved when a spin polarized

current is applied to them. This was first proposed by Berger [9–11] and later
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Figure 7.11. Schematic representation of the interaction between spin waves and do-

main walls, for wide walls (left panel) the spin wave is completely transmitted, whilst

for narrow walls (right panel) part of the spin wave is reflected.

Tim
e

Electron propagation

Current propagation

Figure 7.12. Schematic representation of the transfer of angular momentum between

the conduction electrons and the magnetic texture. The transfer of momentum causes

the magnetic texture to move as to conserve the agnular momentum of the system.

The dotted region is a guide to the eyes denoting the domain wall region.

Slonczewski [166] provided a mathematical formalism to couple this contri-

bution to the LLG equation (Eq. 2.3.5). This phenomena is named the spin

transfer torque (STT), as it describes the transfer of angular momentum from

the spin polarized electrons circulating through the sample to the magnetic

texture.

A spin polarized electronic current flowing through a magnetic material

will be undisturbed if its polarization matches the magnetic field of the sam-

ple. However, if there is a magnetic texture, such as a domain wall, the elec-

trons will interact with this spatially dependent magnetic field, trying to align

themselves with it, as a consequence of the angular momentum conservation,

angular momentum will be transferred from the spin polarized current to the

magnetic texture, causing it to move, as exemplified in Fig. 7.12. This phe-

nomena has been experimentally observed [23, 24, 209–212] and modelled in

numerical simulations [17–19, 213].

In the numerical simulations here within, the STT terms are included in

the stochastic LLG equation (Eq. 7.1.3) following the approach proposed in
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Ref. [19]. Leading to the following expression

dmi

dt
=− γ

1+α2

[
mi×

(
Bi

eff +bi (t)
)
+

α
mi

mi×
(
mi×

[
Bi

eff +bi (t)
])]

+
1+βα
1+α2

u
m2

i
· (mi× [mi×∇mi])− α−β

1+α2

u
mi
· [mi×∇mi] (7.3.8)

where β is the non-adiabatic parameter, which describes situations in which

the spin transport length is much smaller than the domain wall width [18], u is

a parameter with units of velocity which is related to the current density je as

u =
jePgμB

2eMs
(7.3.9)

where P is the polarization, Ms is the saturation magnetization of the system, g
is the Landé g-factor, e is the electronic charge and μB is the Bohr magneton.

Spin-Hall effect driven torques
Recent experiments [24, 211], have also highlighted that an extra torque can

arise in a magnetic material in contact with a non-magnet, when the non-

magnet it has a strong spin orbit coupling. It has been proposed, that one

of the mechanism behind such torques is the Spin Hall Effect (SHE), since as

an electronic current flows through a non-magnetic material with large SOC,

a spin current perpendicular to both the electronic current propagation and

the quantization axis is generated. This pure spin current can interact with

magnetic textures, leading to dynamics that cannot be described with the tra-

ditional STT treatment.

The torque generated by the SHE can be included in the LLG equation

(Eq. 2.3.4) as in previous theoretical works [214–218] for a 1D system, by

considering

∂M
∂ t

=−γM×Beff︸ ︷︷ ︸
precesion

+
α
M

M× ∂M
∂ t︸ ︷︷ ︸

damping

−b j
i M×M× ∂M

∂x
−βb j

i M× ∂M
∂x︸ ︷︷ ︸

STT

+θ SH
i c j

i M×M× ŷ︸ ︷︷ ︸
SHE STT

(7.3.10)

where b j
i is the STT coefficient, θ SH

i c j
i is the magnitude of the spin hall current.

In the present model the direction of the current is assumed to be along the

+x direction. In general the direction of the SHE-STT can be obtained by

considering that the SHE torque, τSHE, is obtained by

τSHE =−γ
h̄θ SH | je|
2eMst f

(
M̂× ( ĵ× ẑ

)× M̂
)

(7.3.11)
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with θ SH being the spin hall angle, je the current density, h̄ the reduced Planck

constant, γ the gyromagnetic ratio, Ms the saturation magnetization and t f the

thickness of the ferromagnetic layer over which the torque is acting on.

By making use of the properties of vectorial algebra (for details see Ap-

pendix A), it is then possible to write the LLG equation including the Slon-

czewski STT terms and the SHE STT terms as

∂M
∂ t

=− γ
1+α2

M×
[

Beff +αM̂×Beff− (1+αβ )u′ · M̂×∇M̂

+(α−β )
(
u′ ·∇)M̂+

θ SH
i u′

Pt f

[(
û′ × ẑ

)× M̂−αM
(
û′ × ẑ

)]] (7.3.12)

where u′ = u
γ , where u is the STT velocity parameter previously defined.

As can be seen in Eq. 7.3.8 the presence of the spin Hall effect leads to

the inclusion of new terms to the equation of motion, which do not depend

on the gradient of the magnetization, but on the orientation of the electronic

current with respect to the quantization axis. These terms can act over mag-

netic textures of certain symmetries, and under certain conditions can be large

enough to be the dominant term, as is in the case of domain walls on thin films

deposited on non-magnetic materials with a large SOC. The interfacial DMI

present in these materials can lead to the stabilization of a Neél wall, which has

the correct symmetries to allow the SHE torque to act over it, such behaviour

has been observed in both experiments [24, 211, 219] and in numerical simu-

lations [214, 218].

In paper IX the effects that both STT and SHE have on the domain wall

dynamics are studied. This is done by a combination of model systems and

material specific calculations. The considered materials were Co/Ni/Co het-

erostructures deposited on heavy metal substrates previously characterized in

paper VII, making use of the pairwise Heisenberg exchange interactions and

the Dzyaloshinskii-Moriya vectors. The magnitude of the DM interaction is

large enough such that Neél walls are stabilized as seen in Fig. 7.13, due to the

fact that the magnetic moments rotate along the long edge of the sample.

It is important to notice that in the [001] stacking both Pt and Ir have the

same chirality, while in the [111] stacking, Pt and Ir moments rotate in differ-

ent orientations, this illustrates the influence that the different crystallographic

orientations can have over the domain wall profile. A consequence of the

different chirality between the stackings, is that the SHE torque will have a

different sign profoundly affecting the dynamics.

7.4 Topology in magnetism
Topological effects in physics is a subject that has gathered a large amount of

attention, some examples of these are topological insulators [220], the quan-
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Figure 7.13. Domain wall profile for Co/Ci/Co deposited on Pt and Ir. The left panel

shows the [001] stacking, while the right panel shows the [111].

tum Hall effect [221], the Aharonov–Bohm’s effect [222], the Josephson junc-

tion [223], and skyrmions in magnetic materials [224–227].

Magnetic textures such as skyrmions, have gathered much attention due to

their topological properties, namely they are topologically protected. Which

means that they are very resistant to external perturbations, thus making ideal

candidates for potential applications. Skyrmions were originally proposed by

Tony Skyrme in the context of stability of baryons in particle physics [228,

229]. However, in magnetic materials they were proposed by Bogdanov,

which demonstrated that solitonic solutions such as skyrmions, can appear

in ferromagnetic materials without spatial inversion symmetry [230, 231].

The lack of inversion symmetry implies that a finite DMI will be present in

these systems. This prediction, has been experimentally observed in materials

such as the non-centrosymmetric MnSi in the so called A-phase [117], where

skyrmionic states are stabilized by a competition of Heisenberg exchange and

Dzyaloshinskii-Moriya interactions at certain considerations of external mag-

netic fields and temperature.

Topological effects can be described by the concept of Berry phase [232].

That is when considering the time evolution of an eigenstate of the system

along a closed path, the eigenstate will obtain an overall complex phase factor,

which depends on geometrical considerations of the Hamiltonian. As illus-

trated in Ref. [71], the Berry phase can be obtained by considering a Hamilto-

nian, H (λ ), which depends on a parameter λ that belongs to a differentiable

manifold M . By taking that M can be separated into two zones P1 and P2

which fulfil P1 ∩ P2 �= ∅, it is possible to define two sets of eigenstates of

H (λ ), |nλ 〉 and |nλ 〉′, which differ only by a complex phase factor when

λ ∈ P1∩P2

|nλ 〉′ = eiχn(λ ) |nλ 〉 (7.4.1)

By considering the time evolution of the eigenstates along a closed loop be-

longing to one of the zones of the manifold in the adiabatic limit, it becomes
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possible to write the Berry phase as

γn (t) =
∫ λ (t)

λ (0)
i〈nλ (τ)|∇λi |nλ (τ)〉dλi (7.4.2)

Making use of the Berry phase concept, it is possible then to define the Berry

curvature Ωn
i j and the Chern numbers Cn as

Ωn = i∇λ ×〈nλ |∇λ |nλ 〉 (7.4.3)

Cn =
1

2π

∫
S

dSΩn (λ ) (7.4.4)

where the integration of the Berry curvature is performed over the surface S
defined by the close path C.

These quantities allows one to characterize states which exhibit different

topological properties. This is of special significance for the Chern numbers,

since it is not possible to perform a smooth transformation such that one can

go between states associated to different Chern numbers.

Another quantity of interesting when describing topological excitations in

magnetic systems, is the topological charge Q which in two dimensions can

be written as [118]

Q =
1

4π

∫
dxdy

(
m̂ ·
[

∂ m̂
∂x
× ∂ m̂

∂y

])
(7.4.5)

where the integral is taken over the two dimensional unit cell.

The topological charge can be used to classify the different types of topo-

logical magnetic excitations, skyrmionic states are often characterized with the

number +1, and anti-skyrmions, topological structures with opposite chirality

with the number -1. This concept also allows one to differentiate non-trivial

topology, i.e. topologically protected states, from trivial textures with topo-

logical charge Q = 0.

7.4.1 Kagome lattice

Pyrocholore materials, such as Lu2V2O7 along the [111] direction can be con-

sidered as alternating stack of magnetic atoms in a Kagome lattice. Recent

experiments performed by Onose et al. [233] have measured the presence of

a transversal spin current to an applied thermal gradient, this effect is dubbed

the magnon Hall effect.

In paper III the topological properties of the 2D kagome lattice were stud-

ied via atomistic spin dynamics simulations. The system was modelled by

considering nearest neighbour Heisenberg exchange interactions, J, and near-

est neighbour DM vectors, D, such as to reproduce the ferromagnetic ground
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Figure 7.14. Dynamical structure factor for a Kagome lattice in a ferromagnetic states

where a non-zero Berry phase is present due to the Dzyaloshinskii-Moriya interaction.

state of the system, whilst keeping a ratio between the interactions of D
J = 0.4

which is comparable to the experimental ratio of 0.32 [233]. The ferromag-

netic groundstate obtained despite the large DMI, is a result of the relative

orientation of the DM-vectors as given by the Kagome lattice.

In Fig. 7.14 the dynamical structure factor for the ferromagnetic Kagome

lattice is presented, this was obtained by considering a simulation cell of

500x40 simulation cells. Due to the presence of Dzyaloshinskii-Moriya in-

teractions, a band gap is open between the bands, which corresponds to what

was previously obtained in Ref. [234] and Ref. [235]. The intense bands in the

figure correspond to the bulk bands, where each of these bands can be char-

acterized by a different Chern number. Even more, between the bulk bands

topologically protected edge states can be seen crossing the band gap. These

edge states have a given chirality. Excitations belonging to edge states can

only be transmitted through them, as they belong to the band gap region of

the bulk, similar to what happens in topological insulators. This opens up the

possibility for the development of magnonic devices based on the protection

of these topological states.

The edge states are also responsible for the magnon Hall effect. The transver-

sal heat current is a consequence of the edge states where the non-zero Berry

curvature contributes to the transversal thermal Hall conductivity as shown by

Matsumoto and Murakami [236, 237] for a 2D model system. Later numerical

work by Zhang et al. [235] and Mook et al. [238] showcased the importance

that the edge states have over the heat current for the 2D Kagome lattice.

The properties of the kagome lattice also allow the excitation of topological

structures, these can be nucleated by applying a localized external magnetic

field or a local spin transfer torque. For simplicity the simulations were per-

formed at 1 mK to minimize the stochastic fluctuations. The local torque

causes the spins in the region to be reversed. Once the external excitation is

removed the affected area will relax to a structure similar to a skyrmion-like

or skyrmion-antiskyrmion pair, as seen in Fig. 7.15, which were found to be

stable for times > 100 ps. These excitations can move through the sample

until they reach the sample edge. At the edge, due to the chiral nature of
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the edge states the skyrmion-antiskyrmion pair becomes decoupled and they

move along the edge of the sample. Once decoupled, they can be described in

terms of meron-antimeron pairs, that is topological excitations with topologi-

cal charge 1
2 or −1

2 respectively, which were first proposed in the framework

of the Yang-Mills theory [239].

It is important to notice, that the nucleation process of the excitations has

some stochasticity present in it, since when the external torque is removed

spin waves are excited in the system, which can affect the excitations. How-

ever, they are found to move in a very predictable way at the edge of the

sample. This property can be used to achieve meron-antimeron collisions and

meron-meron collisions. In the case of meron-meron collisions, the collision

is observed to be elastic, that is the linear momentum and kinetic energy are

conserved. However, for the case of meron-antimeron collision, due to their

opposite chiralities the excitations annihilate each other resulting in an emis-

sion of spin waves [240].
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Figure 7.15. a Illustrations of the skyrmion-antiskyrmion pair in the kagome strip.

Dashed lines are a guide to the eye to recognize the different magnetic structures of

the skyrmion and anit-skyrmion half of the magnetic structure. Snapshots b-f show the

collision of the excitation with the simluation edge and how they become decoupled

at the edge due to the chiral nature of the edge states.
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8. Conclusions and Outlook

The capacity to combine first principle calculations with atomistic spin dy-

namics simulations has been proven to be a valuable technique to study mag-

netization dynamics. The recent developments in ab initio methods allow

the determination of magnetic parameters, such as the Dzyaloshinskii-Moriya

vectors. This improves the description of non-collinear structures and their dy-

namics. Here the effect that DM interactions can have on the motion of mag-

netic textures such as domain walls have been studied. One considered system

consisted of Co/Ni/Co heterostructures deposited on heavy metals. Here the

material of the non-magnetic underlayer was found to be of profound impor-

tance for the magnitude and direction of the DM vectors, and thus for the

magnetic textures which can be stabilized on them.

Atomistic spin dynamics has also been shown to be a very useful formalism,

for describing the dynamics of systems with reduced dimensionality. One ex-

ample is the case of ultranarrow domain walls driven by thermally excited spin

waves. Here the thermally driven domain-wall motion was studied, both for

material specific and model parameters using atomistic spin dynamics. When

a domain wall is established in a ferromagnetic material, which is subjected

to a thermal gradient, the domain wall is observed to move towards the hotter

end of the sample. This phenomenon can be understood due to the creation of

a spin wave current which interacts with the wall resulting in a magnonic spin

transfer torque.

In contrast with what is expected from the continuum model for the elec-

tronic spin transfer torque, the domain wall speed is observed to depend on the

domain wall width. Hence, wide domain walls move faster than their thinner

counterparts. The dependence of the speed with respect to the domain wall

width for ultranarrow domain walls can be understood in the basis of the work

performed by Yan and Bauer [204]. They demonstrated that for ultranarrow

domain walls, the width is a determinant factor in the spin wave wall interac-

tion and the simulations presented in this thesis supports that observation.

The presented approaches has also been applied to the description of topo-

logical magnetic structures, such as the topological excitations stabilized in

the Kagome lattice and the motion of topological defects on FeGe. These

applications are of great importance as the topological protection present in

them, could lead to the development of very robust information devices.

Also, the developments in first principle methods was used for the accu-

rate determination of the Gilbert damping. Thus, giving a powerful tool, to

understand the factors that influence the intrinsic damping in magnetic mate-

rials, as well as a reliable way to both predict and compare with experimental
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measurements. In particular, these techniques allowed the calculation of the

Gilbert damping for half-metallic full Heusler alloys. Here the calculations

could highlight the profound effects that that the half-metallicity of the mate-

rial has over the damping parameter.

The techniques presented here can be used to explore systems that are only

now gathering attention, such as the dynamics of antiferromagnetic materials,

where the high spatial resolution of atomistic spin dynamics is uniquely suited

to deal with these kinds of systems. Another topic of interest, is the capacity of

using topological properties of a material to drive the dynamics of a magnetic

textures, such as domain walls, akin to what was done for the Kagome lattice.

Also, the study of the dynamics of magnetic textures, under the influence of

spin orbit torque, is a novel topic of profound interest.
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9. Summary in Swedish

De magnetiska egenskaper hos material har använts av oss människor i hun-

dratals år. Deras egenskaper har möjliggjort utvecklingen av många tekniska

uppfinningar, till exempel den magnetiska kompassen, hårddiskar och mag-

netiska RAM-minnen. Det är dock först under det senaste århundradet som vi

börjat förstå de mikroskopiska mekanismerna som ger upphov till magnetism.

Magnetism är en kvantmekanisk effekt som är relaterad till elektronens spin.

Följaktligen, om man önskar beskriva och förutsäga egenskaperna hos mag-

netiska material, är en kvantmekanisk beskrivning av fasta kroppar nödvändig.

På grund av det stora antalet partiklar i en fast kropp är en analytisk lös-

ning av Schrödingerekvationen omöjlig. 1964 föreslog Hohenberg och Kohn

[51] ett alternativ sätt, istället för att använda flerkroppselektronvågfunktionen

kan elektrontäthet användas som ett objekts grundläggande enhet. Detta är

grunden för täthetsfunktionalteorin (Eng: density functional theory, DFT).

För magnetiska material är några av de viktigaste egenskaperna relater-

ade till växelverkan mellan de magnetiska momenten. Dessa interaktioner

bestämmer både de statiska egenskaperna hos materialet, samt eventuella dy-

namik egenskaper. En typ av interaktion mellan magnetiska moment som fått

stor uppmärksamhet är Dzyaloshinskii-Moriya interaktionen [42, 43] (DMI).

DMI kan leda till exotiska magnetiska tillstånd, så som spin-spiraler och mag-

netiska skyrmioner. Skyrmioniska tillstånd är av stort intresse för forskningen

på grund av eventuella tekniska tillämpningar eftersom de har potential att ge

upphov till mycket robust metoder för att koda information.

En annan egenskap med stor betydelse för beskrivningen av den magne-

tiserande dynamiken är Gilbert dämpningen. Denna dämpning beskriver över-

föringen av rörelsemängdsmoment och energi från ett magnetiskt subsystem

till gittret. Detta har stor betydelse för olika tillämpningar eftersom det avgöra

hur långt information kan propagera genom materialet på ett tillförlitligt sätt i

den typ av enheter.

I denna avhandling använts täthetsfunktionalteori tillsammans med atom-

istiska spindynamika beräkningar för att erhålla en tillförlitlig beskrivning

av de magnetiska egenskaperna hos ett system. I synnerhet studerades dy-

namiken i magnetiska domäner hos lågdimensionella system. Ett exempel

är ett monoskikt av Fe på W(110) där domänväggens rörelse studerandes

när den utsätts för en termisk gradient. Vidare studerades även domänväg-

garna i material ett lager av Co/Ni/Co heterostrukturer ovanpå bulk-material

av tungmetaller. Denna typ av system möjliggör beräkningar från grundläg-

gande principer, vilket tillåter oss att se vilka effekter DM interaktionen har

på domänväggdynamiken.
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En annan aspekt som noggrant undersöktes i denna avhandling är faststäl-

landet av Gilbert dämpning från grundläggande principer. De tekniker som

använts tillåter oss att beräkna den inneboende dämpningen så att resultaten

kan jämföras med experimentella mätningar. I synnerhet har half-metalliska

Heusler-familjer; Co2MnZ, Co2FeZ och Mn2VZ med Z = (Al, Si, Ga, Ge),

studerats. De funna trenderna överensstämmer relativt bra med de experi-

mentella resultaten, även om de erhållna värdena är något mindre än de exper-

imentella.
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A. SHE torques in the LLG equation

The LLG equation including the STT Slonczewski terms plus the torque gen-

erated from the Spin Hall Effect can be written as [214–217]:

∂M
∂ t

=−γM×Beff︸ ︷︷ ︸
precesion

+
α
M

M× ∂M
∂ t︸ ︷︷ ︸

damping

−b j
i M×M× ∂M

∂x
−βb j

i M× ∂M
∂x︸ ︷︷ ︸

STT

+θ SH
i c j

i M×M× ŷ︸ ︷︷ ︸
SHE STT

(A.0.1)

where b j
i is the STT coefficient, θ SH

i c j
i is the magnitude of the spin hall cur-

rent. In the present the direction of the current is assumed to be along the +x

direction, in general the direction of the SHE-STT can be obtained by consid-

ering that the SHE torque, τSHE, is obtained by

τSHE =−γ
h̄θ SH | je|
2eMst f

(
M̂× ( ĵ× ẑ

)× M̂
)

(A.0.2)

with θ SH the spin hall angle, je the current density, h̄ the reduced Plack con-

stant, γ the gyromagnetic ratio, Ms the saturation magnetization and t f the

thickness of the ferromagnetic layer over which the torque is acting on.

Then one needs to transform the LLG to its LL form, for this one can muti-

ply both sides of Eq. A.0.1 by M×

M× ∂M
∂ t

=− γM× (M×Beff)+
α
M

M×M× ∂M
∂ t

−b j
i M×M×M× ∂M

∂x
−βb j

i M×M× ∂M
∂x

+θ SH
i c j

i M×M×M× ŷ

(A.0.3)

Using the triple vector product identity a× (b× c) = b(a · c)−c(a ·b) one

can rewrite Eq. A.0.3 as

M× ∂M
∂ t

=− γM× (M×Beff)−αM
∂M
∂ t

+b j
i M2

i M× ∂M
∂x

−βb j
i M×M× ∂M

∂x
−θ SH

i cJ
i M2M× ŷ (A.0.4)
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Introducing Eq. A.0.4 in Eq. A.0.1

∂M
∂ t

=−γM×Beff +
α
M

[
−γM× (M×Beff)−αM

∂M
∂ t

+b j
i M2

i M× ∂M
∂x

]

+
α
M

[
−βb j

i M×M× ∂M
∂x
−θ SH

i c j
i M2M× ŷ

]

−b j
i βM× ∂M

∂x
−b j

i M×M× ∂M
∂x

+θ SH
i c j

i M×M× ŷ (A.0.5)

doing some algebra one can write

∂M
∂ t

=− γ
1+α2

[M×Beff +αM×M×Beff]− 1+αβ
1+α2

b j
i

M2
M×M× ∂M

∂x

+
α−β
1+α2

b j
i

M
M× ∂M

∂x
+

θ SH
i c j

i
1+α2

(
M×M× ŷ−αM2M× ŷ

)
(A.0.6)

For simplicity of implementation this equation can be easily re-writen to fit

with the Depondt scheme

∂M
∂ t

=− γ
1+α2

[
M×Beff +αM̂×M×Beff +(1+αβ )

b j
i

γM2
M×M× ∂M

∂x

]

− γ
1+α2

[
−(α−β )

b j
i

γM
M× ∂M

∂x

]

− γ
1+α2

[
−θ SH

i c j
i

γ
M× (M̂× ŷ−αMŷ

)]
(A.0.7)

Remembering that

b j
i =−

gμBP je
2|e|Ms

(A.0.8)

θic
j
i =

θ SH
i h̄γ

2|e|Mst f
(A.0.9)

with g being the Landé g-factor, Ms the saturation magnetization, je the cur-

rent density and P the polarization. One can define the quantity u = −b j
i

γ (for

consistency with ASD implementation) and obtain

∂M
∂ t

=− γ
1+α2

M×
[

Beff +αM̂×H− (1+αβ )uM̂× ∂M̂
∂x

]

− γ
1+α2

M×
[
(α−β )u

∂M̂
∂x

+
θ SH

i jvec

Pt f

(
M̂× ŷ−αMŷ

)]
(A.0.10)
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This can then generalized for a current u in any direction

∂M
∂ t

=− γ
1+α2

M× [Beff +αM̂×Beff− (1+αβ )u · M̂×∇M̂
]

− γ
1+α2

M×
[
(α−β )(u ·∇)M̂+

θ SH
i u
Pt f

[(
ĵ× ẑ

)× M̂−αM
(

ĵ× ẑ
)]]

(A.0.11)
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