
Techniques for Modulating Error Resilience

in Emerging Multi-Value Technologies

Magnus Själander

Department of Computer and Information Science

Norwegian University of Science and Technology

Department of Information Technology

Uppsala University, Sweden

magnus.sjalander@idi.ntnu.no

Gustaf Borgström

Department of Information

Technology

Uppsala University, Sweden

gustaf.borgstrom@it.uu.se

Mykhailo V. Klymenko

Department of Chemistry

University of Liège, Belgium

mklymenko@ulg.ac.be

Françoise Remacle

Department of Chemistry

University of Liège, Belgium

fremacle@ulg.ac.be

Stefanos Kaxiras

Department of Information

Technology

Uppsala University, Sweden

stefanos.kaxiars@it.uu.se

ABSTRACT
There exist extensive ongoing research e↵orts on emerging
atomic scale technologies that have the potential to become
an alternative to today’s CMOS technologies. A common
feature among the investigated technologies is that of multi-
value devices, in particular, the possibility of implementing
quaternary logic and memory. However, multi-value devices
tend to be more sensitive to interferences and, thus, have
reduced error resilience. We present an architecture based
on multi-value devices where we can trade energy e�ciency
against error resilience. Important data are encoded in a
more robust binary format while error tolerant data is en-
coded in a quaternary format. We show for eight bench-
marks an average energy reduction of 14%, 20%, and 32%
for the register file, level-one data cache, and main memory,
respectively, and for three integer benchmarks, an energy
reduction for arithmetic operations of up to 28%. We also
show that for a quaternary technology to be viable a raw bit
error rate of one error in 100 million or better is required.

Keywords
Approximate Computing, Energy E�ciency, Quaternary
Logic, Emerging Technologies, ALU, Cache

CCS Concepts
•Computer systems organization ! Architec-
tures; Processors and memory architectures; Reliability;
•Hardware ! Power and energy;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CF’16, May 16 - 19, 2016, Como, Italy

c� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4128-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2903150.2903154

1. INTRODUCTION
CMOS technology scaling, the current driver of Moore’s

law, is faced with practical and fundamental limits. The
search for low-power alternatives to CMOS is intensifying
with a large number of emerging technologies being investi-
gated, e.g., single atom and single electron transistors [1,2].
Many such technologies present new features, which provide
opportunities to develop new computer systems. Multi-level
devices are one such common feature [3–5] that is already
employed by several commercial memory technologies, e.g.,
in multi-level flash [6] and phase change memory [7]. Multi-
level devices increase the on-chip information density, as
they are capable of representing more than two distinct log-
ical levels. Thus, multi-level devices have the potential of
providing smaller, faster, and more energy-e�cient circuit
implementations as fewer wires, memory cells, and logic
gates are required to transfer, store, and process a fixed
amount of data. The gain in information density is com-
monly achieved at the cost of reduced error resilience of the
multi-level devices. A multi-level device has more physical
states, which by necessity reduce the margins between the
individual states. Thus, making the device more susceptible
to errors, see Figure 1.

Q0

Q1

Q2

Q3

Input

O
ut
pu
t

U

UQ0 Q1 Q2 Q3

B0

B1

Input

O
ut
pu
t

U

UB0 B1

Binary Quaternary

Figure 1: Illustration of input to output transfer
functions of a fictitious binary and quaternary de-
vice, e.g., a memory cell or bu↵er. Note the much
wider margins for the binary compared to the qua-
ternary device.

http://dx.doi.org/10.1145/2903150.2903154

There is an increasing research focus on approximate
computing, i.e., on trading power, performance, and reli-
ability against each other [8]. Previous work has shown
that approximate computing can be used to improve per-
formance and endurance of multi-level phase change mem-
ory (PCM) [9].

In this work, we present a technique where the resilience
against errors for multi-value technologies can be modulated
simply by the way data are encoded, Section 3. We lever-
age approximate computing to create an architecture where
critical operations and storage of data are represented in a
binary and more error resilient format, while less critical op-
erations and data are represented in a quaternary and more
compact format, Section 4. We evaluate our system by run-
ning eight di↵erent approximate benchmarks while varying
the probability that an error manifests to estimate output
quality and energy dissipation improvements of the system,
Section 5. We show that significant energy reductions can
be achieved while still producing adequate results, Section 6.

2. EMERGING NANOELECTRONICS
The transfer characteristic shown in Figure 1 is typical

for so-called current quantizers [10], which are often en-
countered in nanoelectronics and are considered for appli-
cations in multi-valued logic systems. The current quantiz-
ers can be based on the charge states of a single electron
transistor (SET) characterized by periodic Coulomb oscil-
lations causing, in turn, the negative di↵erential resistance.
The Coulomb oscillations are transformed into a step-wise
transfer function by combining the SET with a conventional
MOSFET in a simple electrical circuit where the MOS-
FET serves to stabilize the electrical current through the
SET [10]. Also, the quantization of electrical current natu-
rally appears in a single-atom transistor (SAT) [11] where an
electron is confined in such a small volume that a discrete
energy spectrum within a given charge configuration can
be observed. Continued improvements in nanotechnology,
making it possible to fabricate smaller objects with better
control of their shapes, leads to operating temperatures of
SET and SAT that reach room temperature. A recent ex-
ample is that of a silicon nanowire FET showing Coulomb
blockade at room temperature [12].

The two examples, mentioned above, involve a control
over the charge state by a static gate voltage. Another,
more complicated but also more robust, way to generate a
step-wise transfer characteristic is to apply a proper alter-
nating signal to the gate electrode implementing a turnstile
single-electron pump. For instance, J. P. Pekola et al. [13]
propose a source of quantized electric current based on a
SET consisting of two junctions between normal and su-
perconducting metals driven by an alternating gate voltage.
In their device, the current between source and drain is a
step-wise function of the gate amplitude. K. Nishiguchi et
al. [14] implement a step-wise transfer function defined by
the electrical current through a charge sensor attached to a
quantum box where the number of electrons is controlled by
a turnstile single-electron pump.

Although all these examples are very di↵erent, most of
them have a common feature that their step-wise transfer
characteristics su↵er from thermal noise, shot noise and 1/f
noise caused by the background charge fluctuations. The
statistics of these fluctuations can be controlled by tem-
perature or by controlling the electrostatics through a gate

electrode. However, the general trend is that better single-
electron charge control, allowing to resolve the quantization
of electrical current, leads to slower device operation and/or
requires a low-temperature regime of operation.

In the SET current quantizer, the most probable bit er-
ror associated with those fluctuations is caused by random
changes in the electron population of the quantum dot. At
low temperatures, these jumps are dominated by the shot
noise and 1/f noise involving changing of the population by
a single electron. Therefore, the most probable bit error at
reasonably small noise level at the gate electrode of SET is a
random jump between adjacent quantization levels. Fluctu-
ations between others levels are less probable. Consequently,
operating in the mode when all quantization levels are in-
volved is less robust comparing to the mode when the logic is
based on the charge states separated by several units of the
charging energy. However, the first case is characterized by
higher information density implying less energy dissipation.

3. MODULATING ERROR RESILIENCE
We consider any device where the output can be de-

scribed as a continuous transfer function of its inputs. For
multi-level logic, this transfer function contains plateaus
that presents a relatively stable output even if the input
value varies slightly [15]. These plateaus appear as discrete
ranges that can be used to represent logic states. Such de-
vices have higher probability that the output of a device will
shift, due to interference, to a nearby level than to a level far
away from the expected level. Here we use the term interfer-
ence for any physical property that a↵ects the output such
that it deviates from the ideal transfer function, e.g., input
noise or manufacturing variances. We take advantage of this
property to create two logic representations for representing
approximate and precise data.

Q0

Q1

Q2

Q3

Input

O
ut
pu
t

U

UQ0 Q1 Q2 Q3

Figure 2: Illustration of a quaternary device that
can operate on binary data. Gray regions represent
the input and output ranges when working with qua-
ternary data. Striped regions represent input and
output ranges when working with binary data.

Figure 2 illustrates a transfer function of a fictitious qua-
ternary device in some unit (U), e.g., voltage or current.
The figure shows in light gray the four di↵erent quaternary
states (Q0, Q1, Q2, and Q3) and how they are represented
as ranges on the input and output of the device. When rep-
resenting approximate data, we use all logic states of the
device. This maximizes the amount of data that can be rep-
resented per device, but it also increases the probability that

0 1 2 3

1 1 2 3

2 2 2 3

3 3 3 3

0 1 2 3

0

1

2

3

A
B

MAX

0 0 0 0

0 1 1 1

0 1 2 2

0 1 2 3

0 1 2 3

0

1

2

3

A
B

MIN

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

0 1 2 3

0

1

2

3

A
B

XOR

0 1 2 3

1 1 3 3

2 3 2 3

3 3 3 3

0 1 2 3

0

1

2

3

A
B

OR AND

0 0 0 0

0 1 0 1

0 0 2 2

0 1 2 3

0 1 2 3

0

1

2

3

A
B

0
1
2
3

A A
3
2
1
0

INV

Figure 3: Truth tables of quaternary gates with their
binary operations highlighted in gray.

a state shifts to a nearby state (e.g., Q2 gets interpreted as
Q1 or Q3). Precise data is represented in binary form by
only using the maximum (Q3) and minimum (Q0) states
as input to the device. When the output is read nearby
states are also considered as part of the maximum (Q2 and
Q3) and minimum (Q0 and Q1) states (see striped regions).
This increases the reliability of the device as the probability
is low that Q0 would shift to Q2 or that Q3 would shift to
Q1. However, it also requires (at least) twice the number of
devices compared to representing the data approximately.

4. SYSTEM ARCHITECTURE
We have designed a complete system based on the princi-

pal of improved error resilience through the use of perform-
ing binary operations on quaternary devices (see Section 3).

4.1 Logic and Arithmetic Operations
Logical operations on quaternary gates work without any

special consideration when operating on binary data, as seen
in Figure 3. A quaternary zero (Q0) also represents a binary
zero (B0) while a quaternary three (Q3) represents a binary
one (B1), highlighted in gray in the figure. From the figure,
it is apparent that if the three in the gray areas would be re-
placed with one then the gray areas represent the equivalent
binary operation.

Performing additions on binary data using quaternary de-
vices are not as straightforward. Considering the basic op-
eration of a half (HA) and full adder (FA) the sum is not
correct for all inputs. When adding two binary ones (quater-
nary three), the resulting sum becomes quaternary two when
we instead need a quaternary three for a correct result, see
Figure 4. Thus, it is not possible to design a ripple-carry
adder simply from full-adder gates.

Ripple-carry adders are relatively slow and in most cases
a more performant adder implementation is desirable. A
carry-lookahead adder (CLA) is commonly used when imple-
menting high-speed adders. The carry-lookahead technique
is based on the creation of a generate (G) and propagate
(P) signal for each significance pair of the input operands,
see Figure 5. The generate and propagate signals are then
used to calculate the carry for each digit. The key insight
is that the carry (and the generate and propagate) signal is

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2

0 1 2 3

0

1

2

3

A
B

1 2 3 0

2 3 0 1

3 0 1 2

0 1 2 3

0 1 2 3

0

1

2

3

A
B

HA FA	(carry=1)

Figure 4: Truth table showing the sum of a qua-
ternary half and full adder. Gray regions highlight
erroneous binary representation.

never anything other than zero or one, regardless, of which
base the input operands have. The generate and propagate
structure constitutes the majority of all gates in a CLA and
all of them perform binary operations. Only the periphery
circuits, i.e., the initial generate and propagate circuit and
final summation circuit, operate at a higher base.

B7 A7

G P

G P

C

G P

G P

B6 A6

G P

G P

C

G P

G P

B5 A5

G P

G P

C

G P

G P

B4 A4

G P

G P

C

G P

G P

B3 A3

G P

G P

C

G P

B2 A2

G P

G P

C

G P

B1 A1

G P

G P

C

B0 A0

G P

C

G P

Gi Pi Gi-1 Pi-1

Gi = Gi or (Pi and Gi-1)
Pi = Pi and Pi-1

C

Gi

Ci = Gi

Bi Ai

G P

Gi = Carry of Ai + Bi
Pi = Gi xor carry of (Ai+Bi+1)

S1

Binary

FA

Figure 5: Illustration of a quaternary Kogge-Stone
adder with the capability of operating on binary
data. Gates in white perform quaternary opera-
tions, all other gates perform binary operations.

Figure 5 shows a Kogge-Stone [16] CLA that can perform
both quaternary and binary additions. Gates in white are
quaternary while all other gates perform binary operations.
The initial generate signal is one when the input-pair of
the operands would generate a carry and zero in all other
cases, i.e., the carry of an HA. The initial propagate signal
is one when the sum of the input-pair is exactly three, i.e., a
carry is generated if a carry would come from the next lower
significance level, hence the name propagate. The generate
and propagate can hence be created as depicted in Figure 6
using the carries from a quaternary HA and FA (Figure 7).

HA FA

Gi Pi

1

Carry Carry

Si

Binary

FA

Bi Ai

Ci-1

Sum
Sum

0 1

Q B

Sum

Figure 6: Circuits for the generate and propagate
signals and the computation of the final sum.

0 0 0 0

0 0 0 1

0 0 1 1

0 1 1 1

0 1 2 3

0

1

2

3

A
B

0 0 0 1

0 0 1 1

0 1 1 1

1 1 1 1

0 1 2 3

0

1

2

3

A
B

HA FA	(carry=1)

Figure 7: Truth table showing the carry of a qua-
ternary half and full adder. Gray regions highlight
binary representation. Note that the result is only
zero or one since it is the carry that is shown.

As the quaternary HA and FA does not generate a cor-
rect binary sum (see Figure 4) a binary FA and a two-input
multiplexor are required for each digit, see Figure 6. The
delay through the binary FA can be made equal to that of
the quaternary path. The additional multiplexor adds neg-
ligible delay to the critical path, since the Binary control
signal of the multiplexor is available directly from the start
of the addition. Thus, even though the control is a high-
fanout signal it will have been applied to the multiplexor
before the sums have been calculated.

Subtraction can be handled as in conventional binary im-
plementations by creating the complement of the subtra-
hend and then perform an addition with the minuend. The
complement is created by inverting the subtrahend. Multi-
plication and division are more challenging and are left as
future work. One simple approach would be to convert ap-
proximate data to precise data, perform the multiplication
or division, and then convert it back.

4.2 Memory Hierarchy
We base the cache on the idea by M. Själander et. al. [17].

The memories storing data consist of quaternary memory
cells, e.g., the single-electron memory by H. Inokawa et.
al. [18]. The cache lines are organized such that each line
stores N quaternary bytes (q-byte). Binary bytes (b-byte)
can be stored by combining pairs of q-bytes as shown by the
striped region of a quaternary word (q-word) in Figure 8.

0
1
2
3
4
5
6
7

W1 W2 W3 A

Address:

000110001000

00011000100 ... 0

Byte

Byte

Line

Line

IndexTag

Tag Index

...

00011000100 ...

Approx.:

Precise:

Tag

0...100

0...010

B0

W0
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

Figure 8: One way of an approximate cache, with
eight sets, sixteen approximate q-bytes per cache
line (N = 16), and four q-bytes per q-word.

Addressing memory becomes more complicated when
bytes of di↵erent size have to coexist in the same memory
system. The same address will have to access di↵erent phys-
ical locations depending on the type of the access (binary or
quaternary). When accessing quaternary data, the address
matches the granularity of the physical organization and,
therefore, does not have to be modified. When accessing bi-
nary data, the physical organization does not match, since
two q-bytes are needed for one b-byte. Thus, only half the
number of b-bytes fit in a cache line, which needs to be
reflected by how the data are addressed. This is achieved
by shifting the address one step to the left, (see Precise in
Figure 8). The shift of the address for binary accesses in-
creases the address size. To create equally sized addresses,
an approximate address is prepended with a most significant
zero, (see Approximate in Figure 8). The resulting address-
ing scheme has the a↵ect that two di↵erent addresses could
map to the same physical location. To distinguish between
the two addresses, a cache line is therefore only allowed to
contain one type of data and a bit (A in Figure 8) is used
to indicate the type of data that the line contains.

Binary and quaternary data should not be intermixed
too finely in the address space to avoid fragmentation with
unusable space. For e�cient use of available cache space
the smallest allocated space for binary or quaternary data
should be a whole cache line that is cache line aligned. This
is likely smaller than the smallest size that is desirable for
main memory. For simplicity, the OS page size can be used
as the smallest granularity.

Registers can be handled such that even registers can be
used to store binary data while all registers can be used to
store quaternary data. If an even register (i) holds binary
data then the following odd register (i + 1) cannot be used
for storing quaternary data. A field for each pair of registers
can then be used to indicate if it contains binary data.

4.3 Modulating the Precision
A desirable property of an approximate computing system

is the ability to control the tradeo↵ between precision and
energy. Reducing the supply voltage causes a quadratic re-
duction in power and attempts have therefore been made to
overscale the voltage without adjusting the frequency [19].

A significant problem with voltage overscaling is that the
precision does not scale gracefully with the voltage. For
memory, it is just as likely that the most significant digit
will flip as the least significant digit. For arithmetic circuits,
the critical path is generally the one for the most significant
digit, i.e., when overscaling the voltage it is more likely that
an error will manifest at the more significant digits than
the less significant digits. Di↵erent circuit and implemen-
tation techniques have been attempted to more gracefully
scale the errors with the voltage through either various er-
ror correcting techniques [20] or slack redistribution [21] to
avoid a↵ecting the more significant digits.

With the ability to control the error resilience simply by
how the data are encoded it is possible to control the preci-
sion at the bit level. If the data have no strict constraints
on precision then all digits can be encoded as quaternary to
minimize the amount of active logic that is required to com-
pute, transfer, and store it. On the other hand, if certain
guaranties on precision are required then a suitable number
of the more significant digits can be encoded as binary while
the less significant digits can be encoded as quaternary. By
increasing the number of more significant digits that are en-
coded as binary the precision can be improved at the cost of
more active logic and thus a higher energy dissipation. For
logic operations, this tradeo↵ is literally controlled by the
encoding of the data without any required modifications of
the circuits. To be able to control the precision of an adder
(Figure 5) the binary-control signal has to be applied to the
appropriate digits. One drawback with the mixed encoding
(i.e., both binary and quaternary encoding in the same data
word) is that the cache optimization described in Section 4.2
is not possible. Only fully approximate words for which the
size becomes half the size of a precise word can benefit from
this technique. Mixed-encoded words still benefit from lower
energy dissipation as fewer memory cells have to be read and
written when accessing the word in the cache.

4.4 System
An application has to be able to convey information about

what type of operation or memory access that is to be per-
formed. To avoid the need of a specialized instruction set
architecture with both approximate and precise instructions
we instead keep this information together with the data in
the architecture. The load instructions are modified such
that the specify the number of digits that are encoded qua-
ternary and this information is kept together with the loaded
data (e.g., the A field for each cache line and pair of registers
in Figure 8)1. This additional metadata is used to determine
the mode (precise or approximate) when accessing data from
registers and the caches as well as when performing logic
and arithmetic operations. A set of new instructions is in-
troduced to convert between approximate and precise data
types. We use the term Approx32 for this approximate mode
to clearly indicate that all digits are quaternary.

The precise representation is not immune to interference
and unintentional changes from Q0 to Q1 or from Q3 to
Q2 might occur. Depending on a particular technologies
probability for this type of change precise data could, e.g., be
restored when reading data from the cache (low probability),
from the register file (medium probability), or from pipeline
registers (high probability).

1A single A field for the whole cache line requires that dif-
ferent approximate data types are cache-line aligned.

5. EVALUATION
We have used EnerJ [22] to classify data as either approx-

imate or precise and to simulate the proposed architecture.
EnerJ is a type system for Java and enables programmers to
specify which data that can be treated approximately. The
type system assures that approximate data are guarded in
such a way that it does not bleed into and a↵ect precise
operations and data.

In the original version of EnerJ data can either be specified
as precise or as approximate (by using the @Approx annota-
tion). For this evaluation, we have chosen to extend this an-
notation by introducing three new annotations @Approx8,
@Approx16, and @Approx24, which enables a programmer
to specify the amount of approximation that an application
can tolerate. The new types specify how many of the least
significant bits of an originally binary data type that are en-
coded as quaternary (i.e., the four least significant digits of
an @Approx8 data type are quaternary and the remaining
digits are binary). The original @Approx keyword signifies
that the whole data type is encoded as quaternary.

The EnerJ classified data are only available within the
java runtime environment (JRE) and are not exposed to the
architecture itself. Thus, it is not possible to use a conven-
tional architectural simulator in combination with EnerJ.
Instead, the architectural modeling needs to be performed
within the JRE itself. We have extended the EnerJ JRE
with our own cache model (described in Section 4.2) and
replaced existing error models with error models for our in-
tended quaternary technology.

Performing architectural simulations within the EnerJ
JRE instead of on an architectural simulator impose lim-
its on the evaluations that can be performed. It is, e.g., not
possible to accurately determine the timing, as the architec-
tural modeling is not separated from the execution of the
application. There is no way of determining how much time
is used for executing the application versus the time used for
modeling the architectural behavior. We are therefore only
evaluating energy aspects even though the use of quaternary
data improves the hit rate for caches and enables more data
to be kept in registers. These improvements would have a
positive impact on performance and, thus, improve energy
even further than what is being reported.

5.1 Benchmarks
We use six benchmarks (scimark2 [lu, smm, sor], imagefill,

jmeint, and raytrace) that been developed together with the
EnerJ framework and two benchmarks (sobel and ↵t) that
we have developed ourselves to evaluate the proposed archi-
tecture. All benchmarks have been annotated with EnerJ’s
approximate annotations to indicate which data and opera-
tions that can be treated approximately by the architecture.

5.2 Error Models
Error correcting codes (ECC) are commonly used to pro-

tect data stored in memories. This is especially true for
multi-value memories (flash, PCM), which have high raw
bit error rates (RBER). We assume that all data are pro-
tected by an ECC that can detect and correct three bits and
use the equation by N. Mielke et al. to calculate the e↵ective
bit error rate given a RBER [23]. For logical operations, we
apply the RBER directly on each bit and use the functional
model to estimate the bit error rate for individual bits of
additions and subtractions.

Output Bits

0
/1

2
/3

4
/5

6
/7

8
/9

1
0
/1

1

1
2
/1

3

1
4
/1

5

1
6
/1

7

1
8
/1

9

2
0
/2

1

2
2
/2

3

2
4
/2

5

2
6
/2

7

2
8
/2

9

3
0
/3

1

E
rr

o
rs

 (
%

)

0

1

2

3

4

5

6

7
Approx8 Approx16 Approx24 Approx32

Figure 9: Error probabilities for each output bit pair
when performing additions with di↵erent modes of
approximation on a 32-bit Kogge-Stone adder under
the assumption of an RBER of 1%.

We have implemented a functional model of the Kogge-
Stone adder described in Section 4.1 and used it to create an
error model. We inject errors at the input of the quaternary
gates and observe how these propagate to the final result.
The probability for error(s) at the output is then recorded
and used for the architectural simulations. Figure 9 shows
an example where the RBER was arbitrarily chosen to one in
100 (1% chance). Since the output both contains quaternary
and binary digits the data are grouped into bit pairs, e.g.,
0/1 and 2/3. The figure also shows the error probability for
the four di↵erent modes of approximation (8, 16, 24, and
32 bits encoded quaternary). It is clearly shown that the
probability for an error in the more significant digits rapidly
decrease at the point where the digits are encoded as binary.
Because of the carry chain, it is possible for an error that
appears in the quaternary part to propagate into the binary,
more significant part. But, the probability for an error in
the more significant part is drastically reduced compared to
only using the quaternary encoding.

5.3 Energy Estimation
We use switching gate equivalents to estimate the energy

of the adder in precise and approximate modes. For the ap-
proximate mode where all digits are quaternary the gates
that switch for creating the initial generate and propagate
signals and the final sum are reduced by half. The carry-tree
(the gray GP-dots in Figure 5) has a higher switching ac-
tivity as the generate and propagate signals of the lower half
(right side of the dotted line) enters the upper half (left side
of the dotted line). This causes switching at the inputs of
GP-dots in the upper half, but will not cause any switching
of their outputs. For a 32-bit Kogge-Stone adder, 80 of the
129 GP-dots will have inputs that switch. We therefore con-
servatively estimate the energy of an approximate addition
to being 62% (80/129) of a precise addition.

Table 1: Energy Estimate Comparison Between
Kogge-Stone and Brent-Kung

Approx8 Approx16 Approx24 Approx32
Kogge-Stone 124/129 (96%) 112/129 (87%) 96/129 (74%) 80/129 (62%)
Brent-Kung 52/57 (91%) 46/57 (81%) 38/57 (67%) 31/57 (54%)

Table 1 shows the number of switching gates in the carry-
tree of a Kogge-Stone and Brent-Kung adder under di↵er-
ent modes of approximation. The energy reduction for the
Kogge-Stone is almost 40% when operating on Approx32
data while only a marginal improvement of 4% is achieved
when operating on Approx8 data. Kogge-Stone is only one
example of a carry-lookahead adder (CLA) and there exist
many di↵erent organizations in terms of number of gates
and connectivity that trade speed, power, and area against
each other. For our approximate adder the connectivity be-
tween less significant parts to more significant parts also
matters as it will determine how much of the carry tree is
active during the di↵erent approximate modes. It is outside
the scope of this work to evaluate the most suitable CLA
configuration. Here, we instead list one alternative, Brent-
Kung, that reduce the switching activity compared to the
Kogge-Stone. For Approx32 operations, the energy almost
reaches the ideal reduction of 50% and for Approx8, we see
a more substantial reduction of almost 10%. Unless it is
explicitly mentioned the presented data are with the Kogge-
Stone results.

The cache has to be designed in such a way that data of
variable width can be read from it to save energy. This can
be achieved by designing the cache such that most modes
of operations access two SRAM memories while during the
Approx32 mode only one of the SRAMs is accessed. We
estimate the energy savings by modeling a single way of a
cache with a 4kB data array and 32-byte cache line size.
The tag array is modeled as a 128 byte SRAM with a 32-
bit wide port. According to CACTI [24] (version 6.5) the
energy dissipation of the tag array is 32% of the data array
(when using the 32nm ITRS-HP technology at 350K and
optimizing for energy). The estimate of a 2kB 16-bit wide
data array the energy dissipation is estimated to be 52.4%
of the 4kB data array (100%). Designing the cache with
two 16-bit SRAMs instead of a single 32-bit SRAM incurs
a slight overhead of 4% ((32%+ 2⇥ 52.4%)/(32%+ 100%))
for precise accesses while Approx32 accesses only dissipate
64% ((32% + 52.4%)/(32% + 100%)).

For the main memory we do not save in terms of access
power as a whole cache line is read and written at a time.
The benefit of having Approx32 data is that twice the num-
ber of data items are read/written than compared to precise
data. This reduces the total number of required accesses to
main memory, which saves energy.

We scale the energy gain with the number of bits that are
accessed when accessing data for other approximate modes
than Approx32, i.e., Approx8 access 28 of the 32 memory
cells in a precise word.

6. RESULTS
We first present results without modulating the approx-

imation (fixed approximation), i.e., only Approx32 is used.
This identifies the best possible energy reduction that can be
achieved when using the proposed system. Next we present
results when trading energy against precision by modulating
the approximation.

6.1 Fixed Approximation
Figure 10 shows the correctness of the output for the eight

benchmarks when the REBR is changed from one error in
100 to one in 100 million. We ran each benchmark 100 times
for each REBR and the graph shows the average, minimum,

1e
+0

2
1e

+0
3

1e
+0

4
1e

+0
5

1e
+0

6
1e

+0
7

1e
+0

8

Raw Bit Error Rate (RBER) (One error in 1e+0X)

0

20

40

60

80

100
E

rr
or

s
(

lu
smm
sor
imagefill
jmeint
raytrace
sobel
fft

Figure 10: Output errors of eight benchmarks when
the raw bit error rate (RBER) is changed from one
in 100 to one in 100 million. The whiskers show the
maximum and minimum error while the line shows
the average for 100 runs.

N
o

rm
a

liz
e

d
 E

n
e

rg
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lu
−

re
g

lu
−

ca
ch

e
lu

−
m

e
m

sm
m

−
re

g
sm

m
−

ca
ch

e
sm

m
−

m
e
m

so
r−

re
g

so
r−

ca
ch

e
so

r−
m

e
m

im
a
g
e
fil

l−
re

g
im

a
g
e
fil

l−
ca

ch
e

im
a
g
e
fil

l−
m

e
m

jm
e
in

t−
re

g
jm

e
in

t−
ca

ch
e

jm
e
in

t−
m

e
m

ra
yt

ra
ce

−
re

g
ra

yt
ra

ce
−

ca
ch

e
ra

yt
ra

ce
−

m
e
m

so
b
e
l−

re
g

so
b
e
l−

ca
ch

e
so

b
e
l−

m
e
m

ff
t−

re
g

ff
t−

ca
ch

e
ff
t−

m
e
m

a
ve

ra
g
e
−

re
g

a
ve

ra
g
e
−

ca
ch

e
a
ve

ra
g
e
−

m
e
m

Precise Energy Approximate Energy

Figure 11: Relative register file (reg) and cache en-
ergy when executing approximately.

and maximum correctness. As seen in the figure, six of the
benchmarks produce correct results for all 100 runs at an
REBR of one in 100,000. However, for imagefill and ↵t an
REBR of one in 100 million is needed to get close to reli-
able outputs. An REBR of one in 10-100 million has been
reported for both PCM and Flash [23, 25–27]. Our results
indicate that a quaternary technology would have to reach
at least this level of correctness for it to be viable.

Figure 13 shows the output of a randomly selected run
from imagefill under varying RBER. The result for an error
rate of one in 100 or 1,000 is not usable, but already at an
error rate of 1 in 10,000 the result could be of use in certain
situations. So even though imagefill does present errors for
an RBER of one in 10 million (the particular run in Figure 13
had a single error) the result can be useful.

Figure 11 shows the energy usage for the register file and
cache normalized to a system which would only use pre-
cise operations. The average register file, cache energy, and
main memory savings are 14%, 20%, and 32%, respectively.
Jmeint shows the greatest improvement with 32% register-
file, 36% cache, and 50% main-memory energy savings. This
is due to the high fraction of data that can be treated ap-
proximately in jmeint. The reason for main memory showing
the greatest improvement is due to locality of the di↵erent
types of data. Precise data tend to be constants and con-

1e
+0

2
1e

+0
3

1e
+0

4
1e

+0
5

1e
+0

6
1e

+0
7

1e
+0

8

Raw Bit Error Rate (RBER) (One error in 1e+0X)

0

20

40

60

80

100

E
rr

or
s

(

fft
fft24
fft16
fft8

Figure 12: Output errors when modulating the ap-
proximation.

Table 2: L1 DC Miss Rate

Benchmark Original (%) Approximate (%) Improvement (%)
lu 5.13 2.67 48%
smm 7.09 4.37 38%
sor 2.13 1.08 49%
imagefill 18.21 17.89 2%
jmeint 1.30 0.65 50%
raytrace 0.50 0.25 50%
sobel 0.10 0.05 50%
↵t 1.65 0.02 99%

sist of a smaller working set, which fits in the cache. While
approximate data tends to be arrays that are strided with
less temporal locality. The more compact representation of
approximate data makes it possible to store more data in
the cache. This improves the miss rate and, thus, reduces
the number of accesses to main memory.

Table 2 shows the miss rate for the modeled level one (L1)
data cache (DC), 4-way, 16KiB, with 32-byte line size. The
column denoted original shows the miss rate for the eight
benchmarks when approximate computing is not used. The
last column shows the improvements in miss rate that are
achieved when storing data approximately in the cache. For
most of the benchmarks the improvements are close to 50%
while for ↵t almost all cache misses can be avoided as the
working set now fits in the L1 DC when storing it approxi-
mately. The reduced miss rate has the e↵ect of fewer main
memory accesses, which improves both energy e�ciency (see
Figure 11) and performance.

Only three of the benchmarks use approximate integer op-
erations (imagefill, sobel, and ↵t). The energy for arithmetic
operations is reduced by 11%, 23%, and 16% for imagefill,
sobel, and ↵t, respectively.

6.2 Modulated Approximation
We use the ↵t application to evaluate the benefits of mod-

ulating the approximation. The reason for only using ↵t is
that it is the only application that only use integer opera-
tions (most benchmarks use floating point) to include the ef-
fect of the adder and that operate on 32-bit wide data (both
imagefill and sobel operate on pixels with 8-bit values).

Figure 12 shows how modulating the approximation af-
fects the amount of errors in the output of the application.
FFT is the same as shown in Figure 10 and require an REBR
of 1 in 100 million to not provide any errors in our case. Us-
ing Approx24 instead of Approx32 does hardly provide any

RBER = 1 in 102 RBER = 1 in 103 RBER = 1 in 104

RBER = 1 in 105 RBER = 1 in 106 RBER = 1 in 107

Input

Precise

Figure 13: Example outputs from the imagefill benchmark under di↵erent RBER.

Table 3: Energy Estimate for ↵t when Modulating
the Approximation.

Approx8 Approx16 Approx24 Approx32
Arithmetic 94% 88% 80% 72%
Register 95% 90% 86% 81%
Cache 94% 88% 82% 77%
Memory 95% 90% 86% 81%

benefit at all as the two curves tracks each other closely (↵t24
and ↵t, respectively). However, when reducing the approx-
imation to Approx16 the amount of errors in the output is
significantly reduced and an RBER of 1 in 10 million might
be acceptable for some use cases. Reducing the approxima-
tion further to Approx8 another magnitude increase in the
REBR could be acceptable.

Table 3 shows the energy reduction for arithmetic opera-
tions and the memory system when modulating the approx-
imation. Here we use the energy estimates for the Brent-
Kung adder instead of the Kogge-Stone as it shows better
results when modulating the approximation. This is why
the Approx32 results in a reduction of 28% instead of 16%,
as reported in Section 6.1.

7. CONCLUSION
The digital age has come to rely on rapid improvements

in performance, which has been driven by ever cheaper de-
vices as predicted by Moore’s law. However, contemporary
CMOS technologies are reaching their practical and phys-
ical limits. An alternative could be one of the many re-
searched and emerging nano technologies. Operating at the
nano scale poses many challenges, one of which is reliable

operations. We have presented a technique where reliability
can be modulated for a multi-value technology. By encod-
ing data either as binary or quaternary it is possible to trade
energy e�ciency against reliability. With this technique, we
might be one step closer to building systems based on emerg-
ing multi-value technologies.

Acknowledgment
This work was supported by the proactive collaborative
project TOLOP (318397) of the Seventh Framework Pro-
gram of the European Commission.

8. REFERENCES
[1] J. Verduijn, G. C. Tettamanzi, and S. Rogge. Wave

function control over a single donor atom. Nano
Letters, 13(4):1476–1480, 2013.

[2] V. Deshpande, R. Wacquez, M. Vinet, X. Jehl,
S. Barraud, R. Coquand, B. Roche, B. Voisin,
C. Vizioz, B. Previtali, L. Tosti, P. Perreau,
T. Poiroux, M. Sanquer, B. De Salvo, and O. Faynot.
300 K operating full-CMOS integrated single electron
transistor (SET)-FET circuits. In International IEEE
Electron Devices Meeting, pages 8.7.1–8.7.4, December
2012.

[3] MV Klymenko and F Remacle. Quantum dot
ternary-valued full-adder: Logic synthesis by a
multiobjective design optimization based on a genetic
algorithm. Journal of Applied Physics, 116(16):164316,
2014.

[4] M Seo, C Hong, S-Y Lee, HK Choi, N Kim, Y Chung,
V Umansky, and D Mahalu. Multi-valued logic gates
based on ballistic transport in quantum point
contacts. Scientific reports, 4, 2014.

[5] F Remacle, JR Heath, and RD Levine. Electrical
addressing of confined quantum systems for
quasiclassical computation and finite state logic
machines. Proceedings of the National Academy of
Sciences of the United States of America,
102(16):5653–5658, 2005.

[6] Dae-Seok Byeon, Sung-Soo Lee, Young-Ho Lim,
Jin-Sung Park, Wook-Kee Han, Pan-Suk Kwak,
Dong-Hwan Kim, Dong-Hyuk Chae, Seung-Hyun
Moon, Seung-Jae Lee, Hyun-Chul Cho, Jung-Woo
Lee, Moo-Sung Kim, Joon-Sung Yang, Young-Woo
Park, Duk-Won Bae, Jung-Dal Choi, Sung-Hoi Hur,
and Kang-Deog Suh. An 8 Gb multi-level NAND flash
memory with 63 nm STI CMOS process technology. In
Proceedings of the IEEE International Solid-State
Circuits Conference, pages 46–47 Vol. 1, February
2005.

[7] H.-S.P. Wong, S. Raoux, SangBum Kim, Jiale Liang,
John P. Reifenberg, B. Rajendran, Mehdi Asheghi,
and Kenneth E. Goodson. Phase change memory.
Proceedings of the IEEE, 98(12):2201–2227, December
2010.

[8] Jie Han and M. Orshansky. Approximate computing:
An emerging paradigm for energy-e�cient design. In
Proceedings of the IEEE European Test Symposium,
pages 1–6, May 2013.

[9] Adrian Sampson, Jacob Nelson, Karin Strauss, and
Luis Ceze. Approximate storage in solid-state
memories. In Proceedings of the ACM/IEEE Annual
International Symposium on Microarchitecture, pages
25–36, December 2013.

[10] Hiroshi Inokawa, Akira Fujiwara, and Yasuo
Takahashi. A multiple-valued logic and memory with
combined single-electron and metal-oxide-semi-
conductor transistors. IEEE Transactions on Electron
Devices, 50(2):462–470, 2003.

[11] Michael Klein, Gabriel P Lansbergen, Jan A Mol, Sven
Rogge, Raphael D Levine, and Francoise Remacle.
Reconfigurable logic devices on a single dopant
atom-operation up to a full adder by using electrical
spectroscopy. ChemPhysChem, 10(1):162–173, 2009.

[12] Romain Lavieville, François Triozon, Sylvain Barraud,
Andrea Corna, Xavier Jehl, Marc Sanquer, Jing Li,
Antoine Abisset, Ivan Duchemin, and Yann-Michel
Niquet. Quantum dot made in metal oxide
silicon-nanowire field e↵ect transistor working at room
temperature. Nano letters, 2015.

[13] Jukka P Pekola, Juha J Vartiainen, Mikko Möttönen,
Olli-Pentti Saira, Matthias Meschke, and Dmitri V
Averin. Hybrid single-electron transistor as a source of
quantized electric current. Nature Physics,
4(2):120–124, 2008.

[14] K. Nishiguchi, Y. Ono, and A. Fujiwara. Operation of
silicon single-electron devices at room temperature.
NTT Technical Reviews Letters, 5(6):1–6, 2007.

[15] M. Seo, C. Hong, S.-Y. Lee, H. K. Choi, N. Kim,
Y. Chung, V. Umansky, and D. Mahalu. Multi-valued
logic gates based on ballistic transport in quantum
point contacts. Scientific Reports, 4, January 2014.

[16] Peter M Kogge and Harold S Stone. A parallel
algorithm for the e�cient solution of a general class of
recurrence equations. IEEE Transactions on

Computers, 100(8):786–793, 1973.
[17] M. Själander, N. S. Nilsson, and S. Kaxiras. A tunable

cache for approximate computing. In Proceedings of
the IEEE International Symposium on Nanoscale
Architecture, pages 88–89, July 2014.

[18] H. Inokawa, A. Fujiwara, and Y. Takahashi. A
multiple-valued SRAM with combined single-electron
and MOS transistors. In Proceedings of the Device
Research Conference, pages 129–130, June 2001.

[19] H. Esmaeilzadeh, A. Sampson, L. Ceze, and
D. Burger. Architecture support for disciplined
approximate programming. In Proceedings of the
Architectural Support for Programming Languages and
Operating Systems, pages 301–312, 2012.

[20] Debabrata Mohapatra, Vinay K Chippa, Anand
Raghunathan, and Kaushik Roy. Design of
voltage-scalable meta-functions for approximate
computing. In Proceedings of the Conference on
Design, Automation and Test in Europe, pages 1–6.
IEEE, 2011.

[21] Andrew B Kahng, Seokhyeong Kang, Rakesh Kumar,
and John Sartori. Slack redistribution for graceful
degradation under voltage overscaling. In Proceedings
of the Asia and South Pacific Design Automation
Conference, pages 825–831. IEEE, 2010.

[22] A. Sampson, W. Dietl, E. Fortuna,
D. Gnanapragasam, L. Ceze, and D. Grossman.
EnerJ: Approximate data types for safe and general
low-power computation. In Proceedings of the ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 164–174, June
2011.

[23] Neal Mielke, Todd Marquart, Ning Wu, Je↵
Kessenich, Hanmant Belgal, Eric Schares, Falgun
Trivedi, Evan Goodness, and Leland R Nevill. Bit
error rate in NAND flash memories. In Proceedings of
the IEEE International Reliability Physics Symposium,
pages 9–19. IEEE, 2008.

[24] Naveen Muralimanohar, Rajeev Balasubramonian,
and Norman P. Jouppi. CACTI 6.0: A tool to model
large caches. Technical Report HPL-2009-85, HP
Laboratories, April 2009.

[25] Daniele Ielmini, Andrea L Lacaita, and Davide
Mantegazza. Recovery and drift dynamics of
resistance and threshold voltages in phase-change
memories. IEEE Transactions on Electron Devices,
54(2):308–315, 2007.

[26] S. Yeo, N. H. Seong, and H.-H. S. Lee. Can multi-level
cell PCM be reliable and usable? Analyzing the
impact of resistance drift. In Proceedings of the
Workshop on Duplicating, Deconstructing and
Debunking, June 2012.

[27] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai.
Error patterns in MLC NAND flash memory:
Measurement, characterization, and analysis. In
Proceedings of the Conference on Design, Automation
and Test in Europe, pages 521–526. IEEE, 2012.

