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This work proposes a novel scheme to facilitate heterogeneous systems with unified virtual memory.
Research proposals, implement coherence protocols for sequential consistency (SC) between CPU cores, and
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1. INTRODUCTION
As fused devices become state-of-the-art (AMD APUs [AMD 2013], and Intel
Sandybridge–Broadwell CPUs with integrated graphics), the need for easier-to-use,
general-purpose programming models increases. A fused architecture is essentially a
heterogeneous, clustered system, with two distinct clusters: the CPU and the GPU clus-
ter. Each, has its own cache hierarchy, with private L1s and a shared L2, while the two
clusters may share a global lower-level cache (e.g., L3), or directly the main memory.
Each cluster has distinctly different characteristics and compute capabilities, which
necessitate a different approach. For example, the CPU cluster is latency-sensitive
and optimized to run complex, highly-irregular codes, while the GPU cluster is capa-
ble of tolerating high access latencies but restricted to a data-parallel programming
model (e.g., CUDA [Nvidia 2015] or OpenCL [Munshi et al. 2011]).

Although both OpenCL and CUDA have made big strides to facilitate the program-
mer with the ability to easily offload data-parallel tasks to the GPU, synchronization
and memory copies remain a burden, and in many cases introduce inefficiencies (e.g.,
if memory copies do not overlap with computation). Since the data-parallel program-
ming model was not designed with coherence in mind, the programmer is responsible
to handle data migration explicitly—that is, between GPU shared memory and device
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Fig. 1. Access latencies from a CPU core to some level of the memory hierarchy using a heterogeneous
version of MOESI/VI [Power et al. 2015] protocol. GPU L2 (LC) is the latency measured from a CPU core to
the GPU L2 under low congestion (e.g., at the end of a kernel execution), while GPU L2 (HC) is the latency
under heavy congestion (e.g., when all GPU SMs generate traffic to it).

memory, and between main memory and device memory (in non-fused contemporary
systems). While caches exist both in CPUs and GPUs, there is currently no practi-
cal end-to-end (any cache to any other cache) coherence, to simplify the programming
models. Providing end-to-end hardware coherence for heterogeneous systems is prov-
ing to be a challenging task, due to the different bandwidth/latency demands of CPUs
and GPUs.

The first step to make those systems more programming friendly is to provide a
cache-coherent unified address space. Research proposals, either employ sequential
consistency (SC) protocols to maintain coherence between devices (CPU–GPU) such as
[Power et al. 2013; Power et al. 2015], or exchange some programming ease for sim-
plicity and adopt release consistency (RC) such as [Singh et al. 2013; Hechtman et al.
2014]. To maintain SC across devices, every write performed by a GPU core is eagerly
made visible to the device and to the entire system. For simplicity, this entails a write-
through protocol for the GPU, with the downside of creating tremendous pressure on
the GPU’s own last-level cache, due to the massive parallelism of the streaming mul-
tiprocessors (SMs). Unsurprisingly, this pressure on the GPU L2 and the directory
becomes one of the major roadblocks towards implementing system-wide coherence1.

Our experimentation shows that such coherence (which involves indirection and for-
warding), introduces enormous access latencies to the CPU for those blocks that are
owned by the GPU, when its own L2 cache is under heavy congestion, as shown in
Figure 1. For most applications, this latency is prohibitive (on average 5× slower than
accessing the main memory). Although high latencies are not usually a serious prob-
lem for GPU cores, they become rather severe for the latency-sensitive CPU cores.
Therefore, the CPU should avoid interaction with the GPU shared cache for latency
purposes. The use of regional directories as proposed in heterogeneous system coher-

1A significant contribution of [Power et al. 2013], is to analyze heterogeneous system bottlenecks. Our obser-
vations about the system bottlenecks are in complete accordance with their findings despite using a different
simulation infrastructure. The details are discussed in Section 5.
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ence (HSC) [Power et al. 2013], significantly reduces the bandwidth and MSHRs pres-
sure of these systems, but still maintains most of the complexity required to support
SC, such as invalidations and indirections.

Our starting point to provide a unified virtual memory (UVM) for future heteroge-
neous systems without the overheads of SC proposals, is to relax the memory con-
sistency constrains. For that we adopt the heterogeneous-race-free (HRF) consistency
model [Hower et al. 2014]. In contrast to SC that maintains a store order at any given
point of the execution, HRF (similar to SC for DRF [Adve and Hill 1990]) uses syn-
chronization scopes, and assumes race free execution of the program between synchro-
nization points. Since a heterogeneous system is a clustered, hierarchical system, cores
within a single cluster can synchronize among themselves, in groups or all together,
while the whole cluster (device) can synchronize with another cluster hierarchically.
In our approach we employ an asymmetrical cluster synchronization, which simplifies
both the architecture and the programming model. This allows an individual CPU core
to synchronize with any other CPU core, or with the whole GPU cluster, and vise versa,
while a single GPU core cannot synchronize with a single CPU core without enforcing
device synchronization (for the whole GPU).

To efficiently support the HRF consistency model and introduce coherence in the
system we use the VIPS-M [Ros and Kaxiras 2012] protocol and its hierarchical exten-
sion, VIPS-H [Ros et al. 2015]. These protocols are based on self-invalidation (during
synchronization), and both rely on private/shared classification of data blocks, which is
performed by the operating system (OS) using the page table and the TLBs. Dirty pri-
vate blocks, update the next level using write-back (upon replacement), while shared
blocks use write-through and self-invalidate at synchronization points.

Supporting address translations for fused heterogeneous systems is another chal-
lenging task. As proposed by [Power et al. 2014] efficiently supporting GPU address
translation, requires a private TLB at each SM, a shared second level TLB between
cores, and a highly multi-threaded page-walker. Although such an approach is efficient
in performance, it comes with the trade-off of using complex hardware structures (such
as multiple private, fully-associative L1-TLBs, and page-walkers), which increase the
dynamic power of the core. Our approach simplifies the MMU design with the introduc-
tion of virtual cache coherence [Kaxiras and Ros 2013] for the private caches, which
eliminates the need for a private TLB at each GPU SM. Instead, we use a shared
(among all SMs) TLB near the GPU L2, and virtually-indexed, virtually-tagged (VIVT)
GPU L1 caches that eliminate the need for translations. This, saves all the transla-
tion energy for the L1 hits, while it maintains the effectiveness of a shared GPU TLB
[Power et al. 2014]. Since in our approach TLBs also keep page classification, the GPU
TLB keeps the device classification between CPU/GPU. From the CPU, this informa-
tion is available through a Mirror-TLB, which reflects if the page is accessed by the
GPU. If a page is stored in the GPU TLB and is also accessed by the CPU, it is shared.
Else, if it is accessed solely by the CPU, this page cannot exist in the GPU TLB (and
therefore, in the Mirror-TLB) and is considered private to the CPU cluster (although
it might be shared between CPU cores).

This paper is organized in the following manner. Section 2 gives the overview of the
synchronization model, the proposed architecture and describes the design of system
components. Section 3 append the details of the experimentation setup. Section 4 eval-
uates our approach over contemporary systems while Section 5 provides a comparison
with related research proposals. Section 6 is the related work, and finally Section 7
summarizes the goals of this paper.
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Fig. 2. Different synchronization primitives of a heterogeneous x86/CUDA system.

2. PROPOSED SYSTEM ARCHITECTURE
This section explains the proposed system architecture and all its required compo-
nents. We start our analysis by introducing the memory consistency model supported
by our architecture. Then, we explain the adaptive heterogeneous data classification
of our proposal, and the coherence protocol (VIPS-G) that supports it. Afterwards, we
append the detailed design of the caches and TLB, and explain the required modifica-
tions in those structures to maintain the data classification. Finally, the last subsection
summarizes our proposal and provides an overview of the system.

2.1. Scoped Synchronization
Contemporary GPUs use a weakly-ordered memory model to make writes visible to
different levels of the memory hierarchy. Therefore, heterogeneous applications re-
quire well-defined synchronization scopes, explicitly stated by the programmer. This
approach has the advantage of reduced traffic, because stores are not required to be-
come eagerly visible in the entire system. The trade-off of this memory model, is a
slightly increased programming complexity. Our observation is that the latest research
proposals for future heterogeneous systems such as the HRF memory model, closely
resemble existing GPGPU programming models such as CUDA and OpenCL. Although
in contemporary heterogeneous systems there is a well-defined ordering model for the
GPU cluster, this does not extend system-wide. Therefore, research proposals (e.g.,
HSC) employ sequential consistency for the CPU cores and between devices. Instead,
we adopt the HRF model for the whole system, by carefully interpreting the existing
synchronization primitives of contemporary systems, as shown in Figure 2.

For simplicity and compatibility with existing applications and libraries, we adapt
our programming model to the existing CPU/GPU synchronization primitives. This
allows us to run most of the existing heterogeneous applications unmodified (or with
minimal modifications), while the architecture and the libraries abstract the details.
Inside the CPU cluster we adopt a SC for data-race free (DRF) model which is sup-
ported by the VIPS coherence protocol [Ros and Kaxiras 2012]. From the program-
mer’s perspective two threads running on different CPU cores can explicitly synchro-
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nize using pthread semantics2 e.g., with a call to pthread barrier wait() or through
pthread mutex lock()/unlock(). During synchronization we need to FLUSH the shared
blocks of the CPU L1 caches involved, but as long as the data are not required to be
visible to the GPU, no further action is required to the CPU L2 cache. To make all
changes performed by any CPU thread (that has already committed them to L2) vis-
ible system-wide, some thread needs to explicitly call cpu flush llc(). This triggers a
last level (L2) cache flush3 that writes back any remaining dirty shared blocks to the
memory and invalidates all shared blocks4.

For the GPU we adopt the CUDA semantics unmodified. According to [Nvidia 2015]
threadfence block() forces writes performed by the calling thread to shared and global

memory to become visible by all threads in the thread block. Additionally, reads from
the calling thread see the updates performed by other threads in the thread block to
shared and global memory. Since threads within the same block share the same L1
cache, no action is required by the memory system. Similarly, threadfence() forces
writes of the calling thread to shared and global memory to become visible by all
threads in the device. In our approach this entails a GPU L1 cache flush. Since many
GPU threads share the same L1 (within the thread block), it is important to ensure
that they have all made their changes visible to the thread block before one of them
can call threadfence() (e.g., the first thread of each block that participates in the syn-
chronization). Flushing the cache also ensures that loads after synchronization will
read the updated values from other thread blocks, instead of stale data. Finally, there
is also support for global synchronization across devices (CPU and GPU). For that,
threadfence system() or cudaDeviceSynchronize() can be used to ensure that GPU last

level (L2) cache is flushed. The caller blocks until the device (GPU) has completed all
preceding requested tasks. Before unblocking and after all kernels end an explicit call
to threadfence system() is performed that flushes the GPU last level cache, so that
writes become visible in the entire system. This also ensure that GPU threads after
this fence will read the updated values for writes performed by the CPU.

Listing 1 gives a C/CUDA style (pseudo-code) example of a multi-threaded heteroge-
neous application5. The CPU has a few threads that are responsible for different jobs,
e.g., one of them may perform some I/O into a region of a shared buffer, while another
could act as the GPU arbitrator which spawns GPU kernels and explicitly handles
synchronization between devices. This is performed in two steps: (i) ensure that CPU
threads have flushed the corresponding private caches using the pthread barrier wait
and the last level using cpu flush llc() and (ii) call cudaDeviceSynchronize() to wait
for kernel completion and flush the GPU last level cache. The GPU is running a typi-
cal GPGPU kernel that operates on global and shared data, and synchronize threads
within a thread block using syncthreads() or even across blocks with threadfence().
The later is solely performed by the first thread of the thread-block and results to flush-
ing L1 into the GPU L2. In this example flushing the GPU L2 is implicit at kernel end.
If such synchronization is required before the kernel end, threadfence system() can be
used from within the GPU kernel.

2To support the SC for DRF model we modify the pthread synchronization primitives with explicit memory
fences that flush private caches with the help of the protocol
3A FLUSH ALL message is forwarded to the CPU L2 and the core blocks until the operation is complete
4The protocol, as explained in Section 2.2, is responsible for the classification of the blocks as private/shared
which allows us to filter and selectively invalidate only shared blocks during synchronizations to reduce
NoC traffic and memory bandwidth.
5The example omit the initialization details and in some cases we use a more abstract syntax to save space
e.g., (args, ...) in function calls means any arguments that are not important for the example.
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/∗ CPU thread code ∗/
void ∗thread func ( void ∗ t data ) {

do {
// i f poss ib l e do some work

// Sync and flush CPU private caches
int res = pthread barrier wait (&barrier ) ;
i f ( res == PTHREAD BARRIER SERIAL THREAD) {

// Make writes v i s i b l e system wide
c p u f l u s h l l c ( ) ;

// Start GPU kernels . . .
kernel run<<<dimX, dimY>>>(args , . . . ) ;
cudaDeviceSynchronize ( ) ;

}
else {

// Error handling and
// worker threads preparation
// for the next i t e r a t i o n . . .

}
} while ( ! complete ) ;

}

/∗ GPU kernel code ∗/
g l o b a l void kernel run ( args , . . . ) {

shared float l o ca l data [ SIZE ] ;

int bx = blockIdx . x ;
int by = blockIdx . y ;
int tx=threadIdx . x ;
int ty=threadIdx . y ;

// Do some work on local data
// and global data . . .

syncthreads ( ) ;

// Do some more work on local data
syncthreads ( ) ;

i f ( tx==0 && bx==0) {
// Do some work for the whole
// thread block and synchronize .

threadfence ( ) ;
}

}

Listing 1: Synchronization example of a multi-threaded heterogeneous application at different levels.

2.2. Heterogeneous Data Classification
Weak consistency models such as DRF and HRF require flushing and self invalida-
tion of the caches that participate in the synchronization. Because self-invalidating
and writing back every block stored in the cache at every synchronization point is
an overkill, a filtering of the blocks that need to be flushed is required. In our ap-
proach, we perform selective flushing based on the observation that private blocks are
not accessed by other processing units, and consequently, do not need to be flushed.
Therefore, private blocks are allowed to cross synchronization points without the need
to write-back dirty data and invalidate. On the contrary, shared blocks have to be
written-back (if dirty) and self-invalidate, in order for the cache to get an updated copy
of the data in the next epoch. To reduce the amount of dirty shared blocks at synchro-
nization points we use a coalesced (delayed) write-through policy for these blocks.

To detect private blocks, a simple and accurate classification is required. Based on
previous proposals of [Hardavellas et al. 2009; Cuesta et al. 2011; Ros and Kaxiras
2012; Ros et al. 2015], we employ a classification of pages performed by the page table
upon TLB misses. This classification can be flat or hierarchical. The flat classification
[Hardavellas et al. 2009; Cuesta et al. 2011; Ros and Kaxiras 2012] is simpler since it
only requires changing the state of each accessed page once, when it becomes shared,
while the hierarchical [Ros et al. 2015] is more suitable for clustered hierarchies, but
it requires multi-level classification and may involve multiple interrupts. For example,
in a transition for a page that was initially shared only within a cluster and becomes
globally shared among all clusters, all the cores previously sharing the page must be
interrupted.

In prior work of [Ros and Kaxiras 2012; Ros et al. 2015], in both flat and hierar-
chical approaches when a page becomes shared it does not revert to private unless if
the page is evicted from memory. In fused devices, where the computation interleaves
between the CPU and the GPU, all data eventually become shared, which jeopardizes
the efficiency of the last level caches in the system. Therefore, we enable classification
adaptivity for device coherence (between CPU/GPU). A logical diagram of the proposed
system is illustrated in Figure 3 (right), as opposed to a homogeneous non-adaptive
system (left). Our approach suggests: (i) no classification using a write-though protocol
(2-state VI) for the GPU (between GPU L1s), and (ii) a heterogeneous classification
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Fig. 3. Logical diagram of a homogeneous - hierarchical (on the left), versus an asymmetrical (heteroge-
neous) - adaptive (on the right) memory organization for data classification

(using a 3-state protocol) for the CPU cores and the entire GPU, optimized to enable
adaptation for across-device coherence.

2.2.1. No-Classification within the GPU. GPGPU applications benefit little from tempo-
ral locality (compared to traditional CPU applications) as shown in [Che et al. 2009].
Therefore, we treat all data blocks in the GPU L1 caches as shared, and use a simple
write-through V/I protocol. Removing classification from the GPU L1s is an important
simplification factor for a GPU design. This makes the entire GPU cluster look like a
single node6 in the logical diagram of Figure 3. To ensure program order, the program-
mer has to explicitly flush and self-invalidate each level of the cache using fences (as
explained in Section 2.1).

2.2.2. Asymmetrical classification for CPU cores and the GPU. For the CPU cores and the
entire GPU we use a hybrid classification, which is flat within the CPU cluster and the
entire GPU, and adaptive between devices. This is achieved by grouping all GPU cores
within the same logical core, and place it symmetrically to the CPU cores, as shown in
Figure 3. The main difference between the CPU cores and the GPU is that the GPU
bypasses the CPU L2 and instead reads from main memory (or potentially a 3rd level
cache). This necessitates a hybrid approach to maintain coherence between devices as
explained in 2.2.3, because neither a purely flat nor a hierarchical approach can be
used efficiently. Figure 4 illustrates different valid states of page classification in the
system.

The flat classification of the CPU cluster is similar to VIPS-M [Ros and Kaxiras
2012]. The first time that a core accesses a page and a TLB miss takes place (and
possibly a page fault), the page is classified as Private (Figure 4.a). As long as no
other core requests a block within the page, the page remains private and dirty data
are written back only upon evictions. When a block that belongs to a private page is
requested from a different core or device (e.g., GPU), the page becomes Shared. This
transition happens with a downgrade (Private to Shared) request to the owner of the
private page. When this occurs, all dirty blocks of this page have to be written back
at the lower level of the memory hierarchy. When a page becomes shared, we do not
distinguish between which cores or clusters it turned shared. Instead, it is considered
universally shared, for the whole system using a flat classification (as in VIPS-M).
This information is non-volatile across the entire program execution, except for the
pages that are evicted from the page-table, which will be classified as private to the

6Additionally, the use of virtual (VIVT) GPU L1 caches, in combination with a single shared GPU TLB near
the L2 supports the logical placement of the entire GPU in the same level with the CPU cores (section 2.5).
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Fig. 4. Examples of different valid states of page classification in the system.

first device that will access them again. Figure 4.b shows an example of two CPU cores
sharing a page. The page is marked as shared in the page-table and therefore, if GPU
requests the page it will directly get it as shared without the need for a downgrade in
the second level, as opposed to a purely hierarchical approach.

If the data owner is a CPU core and the data requestor is another CPU core, the
common level of sharing is the CPU L2, while if the second is the GPU, the common
level of sharing is the main memory. Therefore, we use a different type of (deep) write-
back that forwards the writes to the main memory when the request comes from the
GPU. The classification between the CPU cores and the entire GPU asymmetrically
placed to the same level (as another logical core), is non-adaptive —that is, when a
page becomes shared, remains shared until it is evicted from the page table. This re-
duces the number of required downgrades based on prior execution history, but may
result in turning every page in the system eventually shared. To avoid that, we use a
second level of classification between devices (CPU/GPU) which is volatile and offers
adaptivity as explained below.

2.2.3. Adaptation between devices. The classification adaptation between devices is
achieved by adjusting the CPU L2 coherence state based on the GPU L2 classifica-
tion. If a page is accessed by both the CPU and the GPU, then this page is classified as
shared both in the CPU TLBs and in the GPU TLB as shown in Figure 4.c. Assuming
that the CPU L2 could easily look up the GPU TLB for a shared entry, then this entry
could be directly used as the classification between devices (the existence of the page
denotes that a page is shared). If the GPU does not participate in the shared classifi-
cation, then no entry is available for this page in the GPU TLB, and this page can be
considered private to the CPU cluster as shown in Figure 4.b. We enable the lookup of
the GPU classification from the CPU L2 with the use of a Mirror-TLB near the CPU
L2. This mechanism enables the adaptive classification between devices with the result
of better filtering of the blocks that are flushed and self-invalidated in the CPU L2
(private blocks do not participate in this process).

Considering a page as private for the CPU in the absence of an entry in the GPU
TLB, generates an implicit transition at page replacements in the GPU TLB: an up-
grade (Shared to Private) transition due to page eviction in the GPU TLB. Although
this adaptivity is desired in the protocol and was the main target of our design, spe-
cial attention is required to maintain correctness during shared to private transitions
across devices. To avoid stale data in the CPU, one option would be to invalidate the
data in the CPU so that an updated copy of the data is refetched from memory after
the transition. This approach suffers from a high invalidation penalty, and also reduces
the CPU L2 effectiveness since it may invalidate useful data.

To attack this problem, we use Private/Shared (P/S) bits in the L2 cache which are
initialized based on the GPU classification. When we allocate a block in the cache, we
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also store its current coherence state locally (in the P/S bit). Two types of transitions
can occur: private to shared and shared to private. Private to shared transitions are
performed by flushing dirty private blocks and mark them as shared, in order to be
invalidated at the next fence (similar to [Ros and Kaxiras 2012]). Shared to private
transitions do not require any action since blocks are already marked as shared (in
the cache P/S bit), and will be self-invalidated at the corresponding fence.

2.3. False-Sharing Prevention
Our approach uses write-through for all blocks that belong to shared pages. Therefore,
it is possible that two write requests for the same block are received concurrently at the
lower level, from different requesters. This occurs when two different cores or devices
try to modify, either the same word within the same cache line, or different words that
belong to the same cache line. The first is a true data race, and therefore the protocol
cannot guarantee the correctness of the result because the execution is not DRF/HRF.
In the second case no actual race exists, but if a coherence protocol operates at cache-
line granularity, merging the correct data becomes impossible. In our approach, we
resolve false sharing at word granularity, using (i) a coalescing write-buffer and (ii) by
sending diffs7 on write messages.

Each message is of variable size from 1 word to a whole cache line, including a
bitmap that encodes which are the dirty words in the corresponding cache line —for
example, for a 128Byte wide cache line we need 32bits to encode all the dirty words
in a message. Although the message packs all the dirty words of the cache line con-
catenated, the diff maintains the encoding for each word’s position. Therefore, we can
compress, extract, and merge all dirty words properly. We keep diffs only for the shared
blocks, since only those blocks are prone to false sharing. This is achieved with the help
of a coalescing write-buffer near each cache, that keeps the dirty word bitmap while
the data are updated directly in the cache.

When the buffer becomes full, we issue a write-back to the proper level of the mem-
ory hierarchy for the oldest entry in the write-buffer, and free this entry. Because the
cache already contains the correct values for the block, it is set clean when the lower
level acknowledges the write-back. When the page upgrades from shared to private,
the diffs at the write-buffer are no longer required, since false-sharing does not apply
to private page blocks. Therefore, we free all write-buffer entries that belong to the
newly upgraded private page, but we maintain the dirty bit in the cache. This helps
towards minimizing the cost of a page upgrade transition, and keeps up with the de-
mands of the latency sensitive nature of the CPU.

2.4. TLB and Cache Design
The most important components to maintain coherence in our system are the TLBs
and the page-table. Apart from the fields required for the translation (e.g., tag), our
proposal extends the TLBs with a Private/Shared (P/S) bit to keep the page classifica-
tion, and a bitmap of Valid/Invalid (V/I) bits to indicate whether each cache line that
is mapped to a page is valid or not 8. We migrate the V/I bits from the cache to the TLB,
for all those caches that the TLB keeps the page classification, and call these caches
state-less (because the V/I state of each block is kept externally). Figure 5, shows the

7Diffs has been widely used in distributed shared memory systems like Cashmere [Dwarkadas et al. 1999],
Treadmarks [Amza et al. 1996] and Argo [Kaxiras et al. 2015], as well as in DRF coherence protocols such
as VIPS [Ros and Kaxiras 2012]
8The idea of decoupling cache fields from the cache structure has been extensively used in earlier work.
[Sembrant et al. 2013] proposed a way to make tag-less caches by mapping the index of a cache block in the
TLB and additionally keep the cache way in which the block belongs, while [Seshadri et al. 2014] propose a
mechanism to store Dirty-Block Index in an external structure.
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Fig. 5. Extended TLB design used to facilitate fast self-invalidations during synchronization.

overall design of the extended TLB in our approach 9. This design provides an efficient
way to bulk reset the shared blocks of each page selectively, or for all shared pages
(e.g., during self-invalidations). During synchronization, we reset the V/I bits for all
blocks belonging to the page, while the tag and the classification bit remain valid in
the TLB for future use. This facility comes with the trade-off of cache underutilization
for applications that have low spatial locality (e.g., valid-blocks span across pages).

Our system uses TLBs in combination with state-less caches for the CPU L1 data
caches and the GPU L2 cache. These TLBs are indexed using virtual address. Adap-
tive classification (Section 2.2.3) between devices requires a mechanism to provide fast
lookups of the GPU coherency state from the CPU L2 cache. Therefore, besides the
main TLBs, we place a Mirror-TLB 10 near the CPU L2 cache, which allow us to re-
trieve the classification of the GPU TLB from the CPU. The mirror-TLB is also indexed
using virtual addresses (VIPT). Since neither the GPU TLB nor the mirror-TLB is
fully-associative, we need to ensure that entries map to the same set in the GPU TLB
and the mirror-TLB. Therefore, updates from the GPU TLB carries the index where
the entry is stored in the GPU TLB and the physical address tag, which is also stored
in the GPU TLB. Messages from L1 to L2 convey the virtual index along with the
physical address tag, which is only a few bits (in our case 5 bits for a 32-set, 32-way
TLB). The virtual index is then used to select the TLB set while the physical address
is compared with the TLB tag. Since the CPU L2 already maintains classification (P/S
bits), the mirror-TLB is used only to acquire the classification of newly allocated blocks
(when no previous classification exist in the cache).

2.5. Overall Design and Address Spaces
This section summarizes the overall design of the system, which consists of two clus-
ters: the CPU and the GPU, as shown in Figure 6. Each cluster may have different
voltage/clock domains and meet different technology trends. The CPU design adopts an

9The example in Figure 5 shows only one way of a 1024 entries 32-way set-associative TLB. The size of the
V/I bitmap in this example is 32 because we use a cache line of 128-Bytes.
10A similar idea has been proposed in the Piranha architecture [Barroso et al. 2000], where in order to
simplify coherence and avoid snooping at the L1s, duplicate tags and state are stored between L1s and L2
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Fig. 6. The memory hierarchy proposed for a fused CPU/GPU system showing the address spaces, the
caches, and the TLBs

existing state-of-the-art multi-core CPU with private L1 instruction and data caches, a
private TLB at each core, and a shared L2. In our approach, both data and instruction
CPU L1 caches are virtually indexed, physically tagged (VIPT)—although a virtually
indexed, virtually tagged (VIVT) configuration is also possible. For the data L1 caches
we use a state-less design (V/I bits are external to the TLB). The TLB handles the
translations, the data classification (P/S bits), and also retains the V/I bits of each
state-less cache. For each access, along with the translation we also get the classifica-
tion from the TLB which comes without extra latency overhead.

For the GPU L1, we use virtually indexed, virtually tagged (VIVT) caches, which
eliminate the need for TLB translations upon a hit, which significantly simplify the
GPU MMU design. For these caches, we do not employ a private/shared classification,
due to the low temporal data reuse observed in GPU workloads, which makes private
and shared blocks perform similarly. This suggests the use of a simple (V/I) write-
through protocol, which is further optimized to coalesce writes on a small write-buffer.
Unlike state-of-the-art proposals that use non-allocate writes for the GPU L1s, we
employ a write-allocate policy for the misses. This is driven by the use of a shared
TLB for the entire GPU, that suggests minimizing L1 misses in order to reduce TLB
pressure. As shown in our evaluation (Section 3), this policy improves the performance
of all the evaluated GPGPU applications.

The GPU L2 is designed to handle the enormous write pressure of the GPU L1s, and
to maintain the coherence of the whole device with the rest of the system; therefore, it
is highly multi-banked. The GPU L2 is physically indexed, physically tagged (PIPT),
and therefore it requires a translation before accessing it. For that, we use a shared
GPU TLB (accessed before the L2) to handle the translations from GPU SMs, and also
to keep the classification for the whole device. Similarly to the GPU L2, the CPU L2 is
also physically indexed, physically tagged (PIPT) and has the Mirror-TLB attached to
assist the adaptive classification between devices. In addition to TLBs, the classifica-
tion for P/S pages is also stored in the page-table. This allows us to retrieve the history
of pages and classify them based on their previous state (when available), even when
pages are not present in the TLBs due to a replacement.
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Table I. Cache and memory specifications. DRAM configuration is based on Hynix H5GQ1H24AFR
data-sheet [Hynix 2013]. MSHRs are per bank e.g., CPU L2 has a total of 256 while GPU L2 has a
total of 1536. GPU L1 is unified both for instruction and data.

Device Type Size Assoc. Banks MSHRs/B. Latency(ns) Bandwidth
CPU L1 Data 64K 8 1 128 2ns
CPU L1 Instr. 32K 4 1 128 2ns
GPU L1 I & D 64K 8 1 64 8ns
CPU L2 I & D 4M 64 8 32 16ns+2ns
GPU L2 I & D 2M 32 16 96 18ns+8ns
Memory GDDR-5 4G 58ns+L1+L2 180GB/s

3. EXPERIMENTAL SETUP
This section describes the infrastructure and the settings used to evaluate our system.
We evaluate our system proposal using gem5-gpu [Power et al. 2015]: a cycle-accurate
simulator that integrates gem5 [Binkert et al. 2011] CPU simulator with GPGPU-Sim
[Bakhoda et al. 2009] GPU simulator. The two simulators are connected using RUBY
memory system (integrated in gem5), which is used to simulate the memory hierarchy
and the system coherence. The GPU energy is estimated using GPUWattch [Leng et al.
2013] power simulator, which is build-in to gem5-gpu. To estimate the dynamic energy
of the MMU (e.g., TLBs), the caches, and the NoC in higher detail, we use McPAT [Li
et al. 2009] and Cacti [Thoziyoor et al. 2008; Muralimanohar et al. 2009]. We model a
fused heterogeneous CPU/GPU architecture with unified DRAM for both devices, sim-
ilar to the default gem5-gpu implementation (VI Hammer fusion). Timing simulation
is performed in detailed mode, using an out-of-order (OoO) x86 architecture for the
CPU, and a Fermi-like GPU configuration. This takes into consideration the core type
(CPU/GPU) and architecture, the cache latencies, the network congestion, as well as
the TLB hit/miss penalties. We model our GPU TLB with the same size and hit/miss
latencies with the reference gem5-gpu second level TLB.

The simulation parameters are selected to depict a state-of-the-art CPU/GPU tech-
nology. For the CPU, we use 32KB private, instruction and data caches, 8-ways set
associative with low hit latencies as shown in Table I. For the GPU, we use a unified
64KB L1 cache similar to [Power et al. 2015]. The latencies of the GPU caches are
higher than those of the CPUs, to depict technology trends. Table I reports latencies
both in cycles (device local), and in nanoseconds since CPU and GPU are running in
different frequency domains, 2GHz for the CPU and 700MHz for the GPU respectively.
GPU L2 handles the traffic from 16 write-though GPU L1s, which creates enormous
pressure. To relieve this pressure and avoid long access latencies due to congestion, we
split the L2 into 16 banks and use 96 MSHRs per bank. CPU L2 is taking significantly
less pressure due to (i) application demands, and (ii) much lower CPU L1 miss ratios,
and therefore we split it into 8 banks and use 32 MSHRs per bank. Finally, we simulate
4GB GDDR-5 with 180GB/s bandwidth (based on Hynix H5GQ1H24AFR [Hynix 2013]
specifications) as main memory for both devices. This decision is inspired by Sony PS4,
which commercially introduced high-bandwidth GDDR-5 as system memory.

We perform our evaluation in a subset of the Rodinia [Che et al. 2009] benchmark
suite, which has been modified by the gem5-gpu community to work in unified memory
address space. Additionally, we include a 7-point stencil kernel from parboil [Stratton
et al. 2012] benchmark suite, manually crafted to work with unified memory. Finally,
we include wave and octreepart from the workloads used in [Singh et al. 2013]. All
these applications are written in CUDA with well-defined synchronization scopes that
fits well with the HRF semantics proposed in this paper.
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Fig. 7. Average latencies from GPU SMs to any level of the memory hierarchy for VI Hammer
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Fig. 8. Average latencies from GPU SMs to any level of the memory hierarchy for VIPS-G

4. EVALUATION AND QUANTITATIVE COMPARISON
This section evaluates our approach of VIPS-G against a state-of-the-art heteroge-
neous system coherence implementation (VI Hammer) in gem5-gpu. The later simu-
lates a contemporary GPU using a write-through protocol, with write-invalidate and
non-allocate writes. The CPU used is a contemporary OoO multi-core running MOESI
protocol. The classification between devices is kept in a shared directory. We start
this section with an analysis of the system bottlenecks. Similar to HSC, we observe
that the greatest system bottleneck is the GPU L2 and for VI Hammer the directory.
Therefore, we shift our attention to the GPU. For the performance, we measure the
GPU parallel total execution time as reported by the GPU simulator. We exclude the
initialization part because it is performed solely by a single CPU core, which makes
its performance very similar in both protocols. The reported time includes all synchro-
nization and communication overhead between multiple calls of the same or different
kernels. To explain the performance benefit of our approach versus the reference, we
plot both the miss ratios and latencies at various levels of the memory hierarchy. Fi-
nally, we conclude our study with a performance and energy analysis of the proposed
architecture.
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Fig. 9. GPU L1 miss-ratio for VIPS-G versus VI Hammer
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Fig. 10. GPU L2 miss-ratio for VIPS-G versus VI Hammer

4.1. Bottleneck Analysis
Similar to Figure 1, which shows the access latencies from a CPU core to other system
components, Figures 7 and 8 show the latencies from a GPU SM to any level of the
memory hierarchy that respond with the data upon a request. For example, “SM to
CPU” is the average latency for a GPU SM to access a data-block which is originally
owned by the CPU. “SM to GPU L1” is the latency of a GPU L1 hit, “SM to GPU L2”
is the latency of a GPU L2, while “SM to Memory” is the memory access latency for a
GPU SM. For VIPS-G, there is no “SM to CPU” bar in Figure 8 because we forbid direct
CPU–GPU communication, as explained in Section 1. A substantial difference between
the two approaches, is that VI Hammer uses non-allocate writes for stores and always
invalidate the block after a store (even on hits), while VIPS-G uses allocate writes and
do not invalidate the block after a store.

The first observation of Figures 7 and 8 is the deviation of the latencies measured
compared to the nominal cache latencies that are shown in Table I. The measured
latencies are fairly high, due to congestion in different levels of the memory hierarchy
(especially in the GPU L2). For VI Hammer the accesses from a GPU SM to the CPU, in
most cases have a similar latency as accessing the main memory, while they increase
the NoC pressure on the CPU side. Our approach minimizes this pressure with the
use of the HRF consistency model in which, an updated copy of the data comes directly
from the memory after synchronization. The only direct communication between CPU
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and GPU is a page downgrade (private to shared transition), which comes at a slightly
higher cost compared to a single VI Hammer coherence request, but applies to all
blocks of a page, since it is a bulk operation. Therefore, the corresponding downgrade
latency per block is significantly lower.

Within the GPU cluster, we observe that VIPS-G has, almost an order of magnitude
lower L1 access latency than VI Hammer. This is because store hits do not strictly force
the block to invalidate after use as in VI Hammer. In the later, only one application
(particlefilter) is not severely penalized, while the rest are highly affected due to their
high store/load ratio. On average the non-allocate write policy introduces high penal-
ties to VI Hammer, and contributes to the congestion of the GPU L2. This is shown in
Figures 7 and 8 for bars “SM to GPU L2”, where we observe that VI Hammer has a
significantly greater penalty due to congestion by 4× on average. This makes the ac-
cesses to the GPU L2 cost almost the same as the memory accesses (and in some cases
even more), and characterizes the GPU L2 and the directory as the bottlenecks of a
system that uses VI Hammer. VIPS-G on the other hand is directory-less, and gener-
ates less burst traffic to the GPU L2 due to write-allocate non-invalidate policy of the
L1s, which significantly reduces the L2 access latency.

Another important factor of performance is the hit-ratio as shown in Figures 9 and
10 for the GPU L1 and L2 respectively. Our first observation is that the GPU L1
miss ratio is rather high (compared to the miss ratio observed in CPUs). We find that
VI Hammer has a dramatically higher average miss ratio (≈ 55%) compared to VIPS-G
(≈ 8%), as shown in Figure 9. The reason is again the stores. VI Hammer invalidates
the block at every store (even when it is a hit); therefore, the load/store ratio of each
application affects the total L1 miss-ratio. The most extreme case is lavaMD [Szafaryn
et al. 2011; Che et al. 2009] where VI Hammer constantly invalidates all blocks due to
stores, while for VIPS-G, the use of write-allocate policy reduces the miss ratio at less
than 1%. Other applications that are also severely harmed by this policy are backprop,
gaussian, and particle-filter while the rest of the evaluated workloads are less affected.

Figure 10 shows the GPU L2 miss ratios. Some applications like: hotspot, bfs, srad,
and stencil have a lower miss ratio in VIPS-G compared to VI Hammer. There are two
reasons for this: first the higher hit-ratio for stores in VIPS-G, and second the high
number of GET-S requests for blocks that are in a modified state of the MOESI proto-
col, which are eventually invalidated. On the other hand, there are some applications
like backprop, lavaMD, and streamcluster for which VIPS-G has a higher miss ratio.
The reason is the use of TLB to keep the V/I block, which comes with the cost of cache
under-utilization when there is low spatial block-locality per page, which in turn af-
fects the miss ratio. Despite the higher L2 miss ratio in some applications, the lower
cache access latency together with the higher L1 utilization, amortizes the penalty in
performance.

4.2. Performance Analysis
As already discussed in Section 4.1, our proposed architecture has better cache hit ra-
tio (for every application at the L1, and for some applications at the L2), and lower
access latencies compared to VI Hammer. This results in significant performance im-
provements, as shown in Figure 11. On average, we achieve a 45% speedup over
VI Hammer while some applications like lavaMD and streamcluster have an immense
speedup of over 2.7×. Other applications, like: gaussian, srad, and stencil have a good
speedup of ≈ 1.8× while the rest of the workloads benefit less. This leads to IPC
improvement, with VIPS-G sustaining over 50% higher IPC on average compared to
VI Hammer, as shown in Figure 12.
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Fig. 11. Normalized speedup.
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Fig. 12. Average IPC per GPU core.

4.3. Power Analysis
The high performance achieved by our approach, comes with the cost of higher power
drain, due to the better utilization of SMs. For those applications that we significantly
improve the performance, we observe an increase in the power consumption, as shown
in Figure 13. Despite the higher power consumption, the final energy, and energy-
delay product (EDP) are significantly lower (due to the performance improvements),
as shown in Figure 14. To estimate the total power of the GPU we use GPUWattch
[Leng et al. 2013], modeling 22nm technology for a 16 SM integrated GPU. Figure 14
shows that our approach, achieves a significant EDP reduction of 45% and around 20%
on average lower energy, compared to VI Hammer. For some applications like lavaMD
and streamcluster, we observe over 50% energy reduction, due the performance im-
provements achieved.

Apart from the aggregate energy estimation for the GPU core (performed by
GPUWattch) which yields an average 20% improvement, we perform a more detailed
study of the energy consumption of various system components such as: the GPU-
MMU, the caches, and the NoC, using McPAT [Li et al. 2009]. Figure 15 shows the
normalized (to VI Hammer) energy per evaluated component. Unsurprisingly, the use
of virtual coherence and the elimination of private TLBs at each SM, results in 70%
dynamic energy reduction for the MMU (even by not accounting the page-walker en-
ergy for VI Hammer). For the GPU caches, we observe that the energy savings follow
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et al. 2013] for a 16 SM GPU.
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Fig. 15. Normalized per component energy for VIPS-G (baseline is VI Hammer).

the performance trend, because the total cache energy is dominated by leakage, and
is therefore heavily affected by the execution time instead of the total accesses to the
cache. Finally, for the NoC energy of the GPU cluster, we observe that some applica-
tions have slightly higher dynamic NoC energy due to the higher traffic created by
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our decision to use a write-allocate policy in the GPU caches. Contrary to stores, for
which write coalescing on the write-buffer, and the use of variable-size messages can
potentially reduce NoC traffic, data responses from the lower level send the whole
block. This slightly increases the overall NoC traffic for some applications (e.g., srad,
hotspot, and bfs), while some other benefit significantly (e.g., lavaMD and backprop)
by this policy. On average, we observe a 25% NoC energy reduction.

4.4. Area Reduction Analysis
One of the main goals of our proposal is to simplify the GPU MMU. This is achieved
by removing the private TLBs from the SMs, and instead use virtual L1s and a single,
shared TLB close to the GPU L2 (with similar configuration to the GPU L2-TLB of
VI Hammer) for the translations of the entire cluster. A conservative11 area analysis
using Cacti, shows that our MMU requires at least 49% less area compared to an ap-
proach that has private TLBs, such as the one proposed by [Power et al. 2014] and used
by [Power et al. 2015]. For VI Hammer we model 16 private TLBs with 32 entries, fully
set-associative, and a shared 1024 entries 32-way set-associative TLB, while VIPS-G
uses only a single 1024 entries 32-way set-associative extended TLB —that is, in the
latter, we also account the extra area for the classification, owner, and V/I bits.

5. QUALITATIVE COMPARISON
In this section, we qualitatively compare our approach with prior research proposals.

To address the high bandwidth and MSRHs demands of future GPUs, HSC [Power
et al. 2013] uses a regional directory and buffers in both CPU and GPU L2 caches
to filter directory probes. If the permission can be acquired by the region buffer, the
requestor directly accesses the memory through a dedicated interconnect, otherwise
it has to access the directory before accessing the memory. To support fused archi-
tectures, they adopt a GPU MMU design similar to [Power et al. 2014] for the ad-
dress translations. Compared to our approach, HSC simplifies device coherence since
it removes the requirement for explicit synchronization between devices. Inside GPU,
threads synchronize using the same primitives as in our work and in most contempo-
rary GPUs. The advantage of our approach is simplicity. We achieve equally good per-
formance without the need of region buffers, by totally eliminating the directory, and
with a significantly simpler MMU design. The GPU TLB in our approach, serves as a
region directory (region size of one page), but without the extra hardware overhead.
Furthermore, the use of virtual coherence in the GPU L1s is an additional simplifica-
tion factor which reduces power and area by removing the private TLBs.

Temporal Coherence (TC) proposed by [Singh et al. 2013] is an alternative that pro-
vides relaxed memory consistency12. Time based coherence such as TC requires syn-
chronized counters, which is: (i) hard to implement across devices that run on differ-
ent voltage – clock domains (such as CPU–GPU) and (ii) a single time-stamp mech-
anism is inefficient for irregular applications [Esteve et al. 2015], as those expected
to run in the CPU on future heterogeneous systems [Arora et al. 2012]. The major
roadblock of TC-weak is the write propagation time. Although writes are not delayed
in TC-weak, the new values are visible to the other cores only after their time-stamp
expires. In contrast, our approach employs atomic operations for races, which are guar-
anteed to update the corresponding cache level directly and make the changes visible

11In our study, we model only the TLB area excluding the TLB page-walkers and their caches, due to limi-
tations of the tools. This leads to a conservative estimation of the achieved benefit.
12Based on their findings TC-Weak outperforms TC-Strong by 30% and we therefore discuss TC-Weak only.
Since their proposal leaves CPU–GPU coherence as future work, we omit a direct quantitative comparison.
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to other threads with lower latency (without delays). This ensures the progress of other
threads—for example, when loads are employed for spin-waiting.

QuickRelease (QR) [Hechtman et al. 2014] is a release consistency approach that
use FIFO queues to enforce partial store order, so that synchronization can complete
without frequent cache flushes. In our approach, a write-buffer is used to minimize
data-flushing during synchronization, similar to QR FIFOs. The insertion of fences
in the write-buffer in QuickRelease, is equivalent to flushing the write-buffer in our
approach. One of the advantages of our approach is that we do not need separate
read/write caches, and therefore the cache design is minimally affected. Furthermore,
our approach does not require broadcasts to invalidate stale copies, because our caches
self-invalidate at the corresponding synchronization operation.

6. RELATED WORK
As fused heterogeneous systems becomes the dominant future architecture, significant
effort is spent both from the industry and academia to simplify their programming
model. HSA Foundation members (e.g., AMD) are committed to provide heterogeneous
coherence in future systems. NVIDIA, also facilitates their latest CUDA versions with
UVM (unified virtual memory) to eliminate memory copies from host to device. State-
of-the-art academic proposals, such as heterogeneous system coherence (HSC) [Power
et al. 2013], recognizes the need for an efficient hardware solution. Their study adopts
a SC memory model for CPU inter-core and CPU–GPU coherence in combination with
a simple write-through policy for the GPU. They enlighten various bottlenecks in the
system, such as MSHRs and bandwidth pressure, and try to address directory design
challenges for future systems with the use of region coherence. Our approach considers
the benefits of regional coherence, while we try to apply it without the overhead of a
directory, region buffers near the L2 caches, and dedicated interconnects between the
L2s and the memory. For that, we adopt VIPS-M [Ros and Kaxiras 2012] approach of
page coherence. Our study shows that a fixed page-size granularity is very efficient in
terms of performance and energy, and comes with minimal extra cost for the system
because it can be directly tracked in the TLB.

[Hechtman and Sorin 2013] show that the memory consistency model on massively-
threaded throughput-oriented processors (such as GPGPUs), has an insignificant im-
pact on performance. However, there are various significant constrains to consider
such as energy-efficiency, area, and implementation complexity. Our main goal is to
simplify the architecture and we therefore adopt the HRF memory model [Hower et al.
2014]. We show that there is significant room for improvements in every aspect of the
system and in most of the cases, simplifications come even with a performance benefit.
The use of the HRF memory model, line up with various existing systems that already
use scoped synchronization at various levels —for instance, Power7 [Kalla et al. 2010]
architecture uses scoped broadcasts. On programming models, MPI [Gropp et al. 1999]
provides a functionality for ”scoped consistency synchronization”, while CUDA syn-
chronization semantics can be easily interpreted as scoped synchronization primitives
for the GPU.

Inspired by [Kaxiras and Ros 2013] we introduce virtual coherence for the GPU,
to eliminate most of the translation overhead and complexity. In contrast with [Power
et al. 2014] proposal that relies on private TLBs at every GPU SM in coordination with
a highly multi-threaded page-walker for the translations, we use a single shared TLB
for the whole GPU attached to the L2 and virtual (VIVT) address for the GPU L1s.
This is possible with the use of a coherence protocol such as VIPS-G, which is based
on self-invalidation, and therefore does not involve upwards traffic as in the case of SC
protocols.
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Our protocol (VIPS-G) substantially differs from earlier VIPS protocol versions by
being entirely heterogeneous. This is done by using only a subset of the protocol (V/I
only) for an entire cluster (inside the GPU), and by designing device coherence to be
asymmetrical and adaptive. [Ros et al. 2015] in VIPS-H protocol, propose a generic
(homogeneous) hierarchical approach. Such an approach involves the interruption of
several cores—for example, when a page transition from partially shared to globally
shared occurs at L2. Instead, we employ an adaptive, hybrid data-classification with
the use of the GPU TLB and it’s mirror-TLB to minimize software interactions for
coherence purposes in the GPU. Finally, although not evaluated in this work, VIPS-G
can also benefit from efficient spin-waiting techniques that do not rely on invalidations
[Ros and Kaxiras 2015], thus allowing better performance without extra complexity.

7. CONCLUSIONS
Heterogeneous architectures pose new challenges for the design of future systems. To
ease the programming models, device fusion along with the use of a unified memory
address space becomes crucial. Our goal is to show that this can be achieved efficiently
by simplifying the architecture, instead of making future heterogeneous systems more
complicated. By carefully interpreting existing synchronization primitives, we allow
legacy codes to run directly into our infrastructure, and support future applications
to be written in an easier way by taking advantage of the unified virtual memory.
The introduction of virtual-coherence for the GPU enables us to simplify the MMU
design significantly, reduce the required TLB area by 50%, and achieve up to 70% MMU
energy savings. By relaxing strict SC constraints with the use of the HRF consistency
model, we are able to significantly simplify the protocol. For this, we propose VIPS-G,
a heterogeneous protocol carefully designed to eliminate the bottlenecks created by
the data parallel GPU execution, and maintain coherency efficiently inside the GPU
cluster, and between clusters. Thanks to the heterogeneous adaptive classification, our
coherence approach is much simpler to implement, and yet more efficient. Overall, we
achieve an average 45% speedup, over 20% energy savings, and significantly lower
EDP (over 45%).
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Murcia” under the project ”Jóvenes Lı́deres en Investigación” 18956/JLI/13.

REFERENCES
Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering – a New Definition. In Proceedings of the 17th

ACM/IEEE International Symposium on Computer Architecture (ISCA). 2–14.
AMD. 2013. APU TM. (2013). http://www.amd.com/en-us/innovations/software-technologies/apu
Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu, Ramakrishnan Rajamony,

Weimin Yu, and Willy Zwaenepoel. 1996. TreadMarks: Shared Memory Computing on Networks of
Workstations. IEEE, Computer 29, 2 (Feb 1996), 18–28.

Manish Arora, Siddhartha Nath, Subhra Mazumdar, Scott B. Baden, and Dean M. Tullsen. 2012. Redefining
the Role of the CPU in the Era of CPU-GPU Integration. IEEE, Micro 32, 6 (Nov 2012), 4–16.

Ali Bakhoda, George L. Yuan, Wilson W.L. Fung, Henry Wong, and Tor M. Aamodt. 2009. Analyzing CUDA
workloads using a detailed GPU simulator. In Proceedings of the 2009 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS). 163–174.
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