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In this thesis, first-principles calculations based on density functional theory have been
employed to investigate metal hydrogen interaction in transition, p-block and rare earth metals.
Furthermore, the accuracy of the stochastic quenching method was tested in describing the
structure of amorphous Fe(1-x)Zrx.

The investigated systems of transition metal hydrides are V-H and ScZr(CoNi)2-H. For V-H,
the main focus of the studies is the effect that strain has on the potential energy landscape which
governs the metal hydrogen interactions. The investigation has focused on how the properties of
hydrogen occupancy in the interstitial sites changes with strain and also how the hydrogen atoms
themselves exert strain on the vanadium structure to lower the energy. Results on diffusion,
induced strain and zero-point energy are presented which all reveal the considerable difference
between tetrahedral and octahedral site occupancy. Diffusion was studied by employing ab initio
molecular dynamics simulations to obtain diffusion coefficients and to map the movement of the
hydrogen atom. A description of hydrogen in vanadium is provided from a fundamental basis
that is expected to be applicable to any lattice gas system. For ScZr(CoNi)2-H, the difference
of hydrogen occupancy in various interstitial sites and the hydrogen-induced strain was also
investigated through calculations of the change in total volume as a function of hydrogen
concentration.

The fundamental properties of metal hydrogen bonding were investigated by studying the
Zintl phase hydrides that are constituted of the electropositive metal of Nd or Gd and the
electronegative metal Ga. Mixing metals of very different electronegativity gives rise to an
intricate potential energy landscape in which the incorporation of hydrogen will have a big
effect on both the electronic and atomic structure. From the theoretical side of the investigation,
structural parameters are presented along with the density of states and Bader charge analysis
to describe the hydrogen induced changes to the atomic and electronic structures.

Finally, the accuracy of the stochastic quenching method in describing amorphous Fe(1-x)Zrx

was evaluated by comparing simulated and measured EXAFS spectra. Once the structural
agreement had been established the simulated structures were characterized through radial
distribution functions and an analysis of the short-range order from Voronoi tessellation. The
structural changes with respect to the composition parameter x were also evaluated.
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1. Introduction

Throughout the history of scientific research, the tools available to the scien-

tists to either make experimental observations, or to predict them theoretically,

has evolved steadily during the ages with one era replacing the other. The evo-

lution of the tools can, e.g., be classified by considering what wavelengths in

the electromagnetic spectrum we are able to accurately observe. With the ad-

vent of techniques to control X-ray radiation, we could observe wavelengths

of the order of magnitude corresponding to atomic distances, i.e. angstrom.

The various properties of materials that could be observed in the visible part

of the electromagnetic spectrum or by mechanical measurements, could now

be attributed to the atomic structures and the bonding between atoms. With

light ranging from ultraviolet to infrared we can investigate the collective ex-

citation of atoms to describe properties that involve several atoms on the length

scale of nano to micrometers. We can predict electronic, optical, mechanical,

and thermal properties of model systems and even certain classes of realistic

materials purely on theoretical grounds. From simple models we have since

the advent of quantum mechanics and solid state theory been able to perform

calculations with pen and paper on the dispersion relation of electrons in pe-

riodic potentials, e.g., crystalline solids in the limit of free electron gas or

tight-binding approximation.

These developments make it today possible to qualitatively understand a

new material before performing any measurements, as results from theoretical

calculations offer detailed insights into the electronic and structural properties.

The limitations of the calculations, that we have always been faced with, is the

proper account of many-body interactions. An account of pairwise interaction

enables us to present a comprehensive theoretical analysis, however even in

this case we are limited by approximations we use in our calculations. There

are, however, nowadays, good methods for solving these problems, such as the

Density Functional Theory (DFT), which is a first-principles method that was

suggested already in 1964 (Ref.1). At that time the computational resources

were very limited but it was also the time when a lot of progress was made on

integrated circuits that would see computers evolve very quickly. With faster

computers and more efficient approximations we have been able to improve

the accuracy and the number of atoms in the simulations. Despite the compu-

tational power of today, the calculations of properties on the nanoscale, that

require several hundreds of atoms, are very costly if we aim for a better accu-

racy. The primitive lattices are sufficient for calculations of the electronic dis-

persion relation, whereas proper treatment of vibrational degrees of freedom
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(phonons) requires a repetition of the primitive cell in the form of a supercell.

There are many reasons why different sized unit cells are needed and a few of

them will be presented in this thesis as it is a recurring topic of discussion.

The work presented in this thesis is divided into three different chapters,

two of which concern hydrogen in metal and one that concerns amorphous

structures. The majority of the presented data on hydrogen in metal treat the

long-ranged elastic effect via hydrogen induced strain. From the experimental

side, the required time- and length-scales to observe these strain effects can

be achieved in for instance Nuclear Magnetic Resonance (NMR) or Neutron

Scattering. We investigate the dynamical effects of hydrogen in vanadium em-

ploying ab-initio Molecular Dynamics (AIMD) where the forces between the

atoms are treated quantum mechanically. The diffusion of hydrogen in vana-

dium is, in relative terms, very fast [2]. The limited time scales of AIMD will,

due to high computational cost, only allow us to study physical phenomena on

a time scale in the nanoseconds range. This is however enough in this system

for us to be able to calculate statistically valid diffusion coefficients at elevated

temperatures. We also employ a large supercell to be able to treat the hydro-

gen atoms as isolated. We will show that, due to significant anisotropy, a large

number of atoms is needed to describe the hydrogen-induced strain.

A great advantage of DFT simulations, and theoretical work in general, is

the ability to explore what lies beyond the limitations of what is currently ex-

perimentally possible. Properties such as temperature, pressure and, for this

thesis an important property, strain, can all be easily varied to investigate any

part of a phase diagram for a larger number of materials. Theoretical work

is also idealized in the sense that we have exact knowledge of the number of

atoms in the simulations and their structural parameters. We are however lim-

ited to only work with structures constituted of atoms in the thousands, whilst

a representation of a macroscopic sample would require a very large number

of atoms (cf. 1 g of vanadium contains ~1.2·1022 atoms). A macroscopic

sample would also contain defects and/or several structural phases.

Simulating an amorphous material requires a large supercell to replicate

long-range disorder. A real space representation of X-ray absorption mea-

surements in the shape of radial distribution function (RDF) for an amorphous

material will only show very weak indication of structural order after the first

few coordination peaks [3]. We therefore employ sufficiently large supercells

that extend to the region of disorder in the RDF. In both the work on hydrogen

and the work on amorphous structures we do treat disorder. In both cases, we

sample a number of structures until we reach convergence in the average total

energy.

The majority of the presented work in this thesis can be considered fun-

damental research. We investigate the properties of hydrogen in vanadium in

Papers I, II, III and IV. We present, what we expect to be, fundamental results

applicable to any system of a lattice gas concerning strain fields, diffusion,

clamping and lattice-gas phases. In Paper V we investigate the capacity for
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hydrogen storage when varying the metal compositions in a quaternary transi-

tion metal alloy. In Papers VI and VII we explore the fundamental properties

of hydrogen bonding to rare earth gallides, as hydrogen is known to have a

strong effect on the electronic structure in both rare earths and p-block ele-

ments [4, 5]. In Paper VIII we are studying the structural properties of amor-

phous iron-zirconium. We compare the real samples investigated by X-ray

absorption measurements to structures created with the stochastic quenching

method [6–8].

To put the research into a larger perspective, so to answer what the possible

applications are, then, for metal-hydrogen, we want to provide a fundamen-

tal insight into the metal-hydrogen interactions to drive the search for good

hydrogen storage system towards a more knowledge-based approach. With

knowledge-based research I refer here to research where there is a good basis

of knowledge concerning the fundamental properties before new materials are

synthesized and tested. Storing of hydrogen in metal offers great potential re-

garding both volumetric and gravimetric capacity [9–11]. The challenges are

many and there is still a long way to go before the goals are met concerning

economic viability to use hydrogen as an energy carrier on the large scale.

Much of the research today is oriented towards sampling different materials in

search of one that fulfills the set goals. In recent years, though, the progress

seems to have stagnated, and I believe that a better understanding of the fun-

damental properties of hydrides will help guide us towards better materials

for applications. Without a doubt, we must at some point become less depen-

dent on fossil fuels because of its effect on the global climate and because it

is simply not sustainable in the long term. There is already today a need for

energy storage application, as a significant part of the renewable energy is lost

because of overproduction. The demand for energy storage applications will,

with great certainty, increase in the coming years as we can see a stride to-

wards more self-sustainance regarding energy. As rooftops are being covered

by solar panels, the need for either on- or off-site storage of energy will be of

great importance.

The motivation behind the work on amorphous iron-zirconium in Paper VIII

is to structurally classify the material to relate the systems of various compo-

sitions to measured magnetic properties. The exchange interaction, which is

responsible for the ferromagnetic effect of iron, is expected to be closely re-

lated to the iron-iron distances and the coordination number. We also wanted

to validate the stochastic quenching method for amorphous iron-zirconium.
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2. Theoretical Background

Density functional theory (DFT) has been widely used in solid-state physics

calculations since the 1960s and it has proven to be very successful in many

applications, with hydrogen in metals considered in this thesis as being one of

them. In this thesis, DFT is the tool used to tackle the many-body problems

of hydrogen in metals and amorphous iron-zirconium. The systems that we

are modeling do not exhibit strong correlation which can be difficult to deal

with using DFT [12]. Furthermore, the considered materials in this thesis are

treated as non-magnetic.

2.1 The Many-Body problem
In general, it is very difficult to provide an exact treatment of quantum me-

chanical systems containing more than two identical particles as we then are

dealing with a many-body problem that can not be solved analytically. De-

veloping various approximations to the Schrödinger equation, taking into ac-

count periodic boundary conditions and including corresponding interactions

between the particles into the Hamiltonian, we can extract information that

relates to a macroscopic sample of the material being investigated.

ĤΨ = EΨ . (2.1)

The many-body Hamiltonian that properly treats all relevant interactions

can be written as

Ĥ = T̂e + T̂n +V̂nn +V̂ee +V̂ne, (2.2)

where

T̂e The kinetic energy of the electrons

T̂n The kinetic energy of the nuclei

V̂ee Coulomb-interaction between the electrons

V̂nn Coulomb-interaction between the nuclei

V̂ne Coulomb-interaction between the electrons and nuclei

Writing out these terms explicitly gives

Ĥ =− h̄2

2me

Nel

∑
i

∇2− h̄2

2

Nnuc

∑
k

∇2

Mk

+
1

2

Nel

∑
i�= j

e2∣∣ri− r j
∣∣ + 1

2

Nnuc

∑
k �=l

ZkZle2

|Rk−Rl | −
Nel ,Nnuc

∑
i,k

Zke2

|ri−Rk| . (2.1)
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In the following sections we present the most common ways of dealing with

the many-body problem in first-principles calculations.

2.2 Born-Oppenheimer approximation
The rest mass of protons and neutrons is roughly 1800 times larger than that

of an electron. This allows us, in an adiabatic approximation, to consider the

motion of the electrons and nuclei to be independent. In basic terms, we say

that the wave function is separable and can be factorized into its electronic and

nuclear components,

Ψtot = Ψel×Ψnuc. (2.3)

The nuclei are thus treated as being stationary and the Coulomb interaction

between the electrons and the nuclei is treated as if the electrons were moving

in an external potential (V̂ext). The Coulomb interaction between stationary

nuclei can therefore be left out of the Hamiltonian to be added later to the

total energy. With the nuclei considered as being stationary and the Coulomb-

interaction between nuclei treated as a contribution to the total energy that can

be added later. We can now simplify the Hamiltonian

Ĥ =− h̄2

2me

Nel

∑
i

∇2 +
1

2

Nel

∑
i�= j

e2∣∣ri− r j
∣∣ +V̂ext . (2.4)

Any other external field present can be added to the term V̂ext .

The many-electron eigenfunction is very difficult to calculate since all elec-

trons interact with each other. Summing over the number of electrons, N,

there is a total of N
2 (N−1) number of Coulomb-interactions present between

the electrons. Also considering that each electron has 3 degrees of freedom,

giving the system a total of 3N degrees of freedom. One way to vastly simplify

the system is to introduce a density functional which is purely determined by

the electron density n(r) as an argument that has only 3 degrees of freedom.

The density functionals and their use will be discussed in the next section.

2.3 Hohenberg-Kohn theorems
The paradigm of DFT is based on the two theorems by Hohenberg and Kohn

[13].

1. The external potential Vext(r) in a system of interacting particles is de-

termined by the ground-state electron density n0(r).
2. For any external potential, there exists a universal energy functional

F [n]. The minimum value of the energy functional for a specific ex-

ternal potential Vext(r) is the ground state energy where the density that

minimizes the functional is the ground state density n0(r).
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2.4 Kohn-Sham ansatz

To further simplify the problem we employ the Kohn-Sham (KS) ansatz [14].

It states that an “artificial” system of non-interacting particles in an effective

potential consisting of an external part (denoted as V̂ext) and an exchange-

correlation part that originates from the electron-electron interactions, will

have the same ground state electron density n0(r) as a system with interacting

particles. In the KS ansatz, the ground state total energy functional is written

as

E0[n(r)] = T [n(r)]+
∫

Vext(r)n(r)dr+
1

2

∫∫ n(r)n(r′)
|r− r′| drdr′+Exc[n(r)]+EII ,

(2.5)

where EII denotes the energy contribution from nuclei-nuclei interac-

tion. T [n(r)] is the kinetic energy of the non-interacting particles. Since the

particles are treated as non-interacting, the individual orbitals can be solved

separately with the single-particle KS equation

{
−1

2
∇2 +Ve f f (r)

}
ψi(r) = εiψi(r), (2.6)

where the single-particle orbitals are determined by diagonalization of the KS-

Hamiltonian. The effective potential is composed of three parts: the external

potential, the Hartree (or Coulomb) energy and the exchange-correlation en-

ergy,

Ve f f (r) =Vext(r)+VH(r)+Vxc(r), (2.7)

where the charge density can be written as

n(r) =
N

∑
i=1

|ψi(r)|2 . (2.8)

The KS equations are then solved iteratively with a self-consistent method un-

til a set value ΔE in the energy difference between two consecutive iterations

is reached. First, one makes a guess for the charge density n(r) to be used

to calculate the effective potential Ve f f (r). This potential is then used in the

one-particle KS equation to compute the orbitals which are used to calculate a

new charge density that can be fed back into the loop as a new guess.

We cannot solve the exchange-correlation potential exactly as it is what

separates our non-interacting system from an interacting one and we do not

know what it is, hence we must instead find a good approximation. It is crucial

to find a good approximation as the success of DFT, to a large extent, depends

on it. In the next section we will discuss a few approaches that can be used for

this.

14



2.5 Exchange and correlation functionals

One of the simplest exchange-correlation functionals is a functional that only

depends on the charge density at each point in space. These type of functionals

are referred to as Local Density Approximations (LDA) and they originate

from a homogeneous electron gas model

ELDA
xc [n] =

∫
n(r)εxc[n(r)]dr, (2.9)

where εxc[n(r)] is the exchange-correlation energy density, which is a function

of the density alone. To improve on this functional a gradient can be added so

that the exchange-correlation does not merely depend on the density in each

point in space but also on the rate at which the charge density varies. This type

of functional is called a Generalized Gradient Approximation (GGA). One of

the more widely used GGA functionals, which has also been employed in this

thesis, is the Perdew, Burke and Ernzerhof (PBE) functional [15, 16].

2.6 Bloch theorem

In a crystal with translational symmetry, a translational operation T̂ to find

equivalent points in the crystal is defined as

T = u1a1 +u2a2 +u3a3, (2.10)

where u1,u2,u3 are integers and a1,a2,a3 are the lattice vectors. In a periodic

lattice, the orbitals can be chosen in agreement with the Bloch wave function

Ψk(r) = uk(r)eik·r, (2.11)

where k is a vector in the first Brillouin zone and uk(r) is a function with

the same periodicity as the crystal lattice, i.e. uk(r) = uk(r+T). The Bloch

theorem [17, 18] thus states that, for a translationally invariant potential, the

corresponding wave function is periodic. Therefore, we can reduce the size of

our periodic system to the size of the unit cell, for which we need to find an

applicable form of uk(r).

2.7 Projector augmented-wave method

The projector augmented-wave method (PAW)[19, 20] is used in electronic

structure calculations to reduce the computational cost by transforming the

plane wave basis near the atomic core to a smooth wave function. The plane-

waves needed to describe the core electrons will oscillate rapidly and it will

thus require an infinite number of Fourier components to describe them, thus

making it computationally heavy to include an accurate description of them.
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The smooth wave functions are called pseudo wave functions and they are used

near the core region to describe non-valence electrons. In the PAW method a

linear operator τ̂ transforms the fictitious pseudo wave functions to the KS

single-particle functions (usually referred to as all-electron wave function)

|Ψ〉= τ̂ ˜|Ψ〉= (1̂+∑
a

τ̂a) ˜|Ψ〉, (2.12)

where τ̂a only acts inside the core region and a is the atom index. While in the

core-region, the pseudo wave function is more practical to be used to describe

the non-valence electrons, we require it to be identical to the all-electron wave

functions outside the core-region. In the core-region (ΩR), the pseudo waves

can be expanded into partial waves

˜|Ψ〉= ∑
i

˜|φi〉ci within ΩR. (2.13)

The corresponding all-electron wave function can then be written as

|Ψ〉= τ̂ ˜|Ψ〉= ∑
i
|φi〉ci within ΩR. (2.14)

We require the transformation τ to be linear which means that the coefficients

ci are linear functions of the pseudo wave functions and can be obtained by

multiplication with some projector function

ci = 〈p̃i|φ̃i〉. (2.15)

There is exactly one projector function per pseudo partial wave and the pro-

jector function must fulfill the condition

∑
i
|φ̃i〉〈 p̃i|= 1 within ΩR, (2.16)

which implies that

〈p̃i|φ̃ j〉= δi j. (2.17)

The transformation operator τ̂ can now be written as

τ̂ = 1̂+∑
i
(|φi〉− |φ̃i〉)〈p̃i|. (2.18)

Applying the transformation on the Hamiltonian of the KS fictitious system

will reduce the computational demand by transforming the plane wave basis

in the core-region for a “smooth” function.

2.8 Hellman-Feynman forces

A system of atoms which are not in an equilibrium state will have a non-zero

net force acting on them. The force can be calculated from the derivative of
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the total energy with respect to the spatial coordinates of the atoms

F =−∂E
∂R

. (2.19)

The Hellman-Feynman theorem allows us to relate the derivative of the energy

to the expectation value of the derivative of the Hamiltonian of the system. In

Dirac notation, the Hellman-Feynman theorem is written as

F =−∂E
∂R

=− ∂
∂R

〈Ψ| Ĥ |Ψ〉=

−〈Ψ| ∂ Ĥ
∂R

|Ψ〉−
〈

∂Ψ
∂R

∣∣∣∣ Ĥ |Ψ〉−〈Ψ| Ĥ
∣∣∣∣∂Ψ
∂R

〉
.

(2.20)

At the exact ground state solution, the energy is extremal with respect to all

possible variations of the wave function and the two last terms thus cancel out.

From the KS approach the only non-zero terms left after derivation with

respect to R are

F =−
∫ ∂Vext(r)

∂R
n(r)dr− ∂EII

∂R
. (2.21)

2.9 Zero-point energy

The zero-point energy is the lowest possible energy of a quantum mechanical

system. In the vicinity of a local minimum in the potential energy function,

the lowest-order change in energy is proportional to the square of the atomic

displacement. The zero-point energy can be easily obtained for a harmonic

oscillator which is in the lowest possible energy state allowed by Heisenberg’s

uncertainty principle.

Through second-order polynomial fit, we can obtain the spring-constant k
analogous with the classical spring potential function, i.e.

V (x) =
1

2
kx2 =

1

2
mω2x2, (2.22)

so that

ω =

√
k
m
. (2.23)

The lowest energy of a harmonic oscillator is given by

E =
(Δp)2

2m
+

1

2
mω2(Δx)2. (2.24)

Minimizing this function using the lower limit of the uncertainty principle

ΔxΔp =
h̄
2
, (2.25)
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gives the ground state energy of a harmonic oscillator

E =
h̄ω
2
. (2.26)

Zero-point energy corrections are particularly important for the hydrogen atoms

in a metal-hydrogen system as the light hydrogen atoms possess a much larger

oscillation frequency than the heavier metal atoms, as can be seen from equa-

tion 2.23.
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3. Transition metal-hydrogen

Transition metals are elements with partially filled d subshells; all elements in

group 3 to 12 are transition metals along with a few of the lanthanides that also

exhibit the same properties. There are many classes of metal-hydrogen sys-

tems, some of them form compounds with stoichiometric chemical formulas

and some do not. In this chapter, we present results on non-stoichiometric in-

terstitial metal-hydrogen systems with variable amounts of hydrogen [21, 22].

Our results contribute to the study of vanadium-hydrogen systems. Vanadium

is a good model system for studies on metal-hydrogen interaction because of

its very favorable kinetics [2]. The frequency of diffusion events is very high

in vanadium-hydrogen (VH), thus, a large quantity of statistical data can be

obtained in a short simulation time. This allows us to calculate statistically

accurate diffusion coefficients. We believe that our findings for the vanadium-

hydrogen system will help us understand the fundamentals of site occupancy

and diffusion in all transition metal-hydrogen systems. An important factor

that partly governs the diffusion is the hydrogen induced strain fields [23, 24].

In the VH system, we have studied both local and global effects of hydrogen

induced strain [25–30]. In Paper V we have investigated the hydrogen storage

capacity of the c15 Laves phase (Sc1−xZrx)(Co1−yNiy)2-Hz, where the focus

is on the global effect of hydrogen induced strain (i.e. change in volume due

to hydrogen uptake).

Interstitial metal-hydrogen systems are defined by the hydrogen atoms be-

ing situated in cavities in the lattice, i.e. interstitial sites [21, 22]. It is a bit mis-

leading to refer to interstitial metal-hydrogen systems as compounds because

the term “compounds” usually implies that the hydrogen is strongly bound

to the metal through covalent bonds. Interstitially bound hydrogen atoms are

however held in place largely by metallic bonds, i.e. electrostatic forces be-

tween free electrons and nuclei in the material. The metal and hydrogen atoms

form solid solutions where the dissociated hydrogen molecules are seen as the

solute in a metallic solvent, usually referred to as the α-phase. This disordered

α-phase is the most common phase at low hydrogen concentration and/or high

temperature [2]. There are several ordered phases for higher hydrogen concen-

trations at lower temperatures, usually denoted by β or γ [2, 21, 22]. Transi-

tions between different hydrogen phases are often accompanied by a structural

change of the hosting metal [23, 26, 31, 32] which in turn can give rise to var-

ious changes to other properties which we investigate in Paper I and II.

An important distinction in the work on vanadium is the uniaxial and bi-
axial strains. In Paper I we want to mimic the experimental condition of hy-

drogen uptake in clamped thin films where the hydrogen induced strain is
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uniaxial. In Papers II and IV we want to mimic the experimental condition

of in-plane clamping [26, 31] which causes a tensile strain in the out of plane

direction, hence “biaxial”. In the experiments, the vanadium films are grown

and held on substrates through strong bonds that do not allow in-plane move-

ment of the vanadium atoms on the substrate. When hydrogen is absorbed,

the volume expansion of the vanadium film is only allowed in the out-of-plane

direction perpendicular to the substrate. The in-plane dimensions (width) are

much larger that the out-of-plane extension (thickness) of the films (centime-

ters Vs. nanometers) so that any “bulging” on the sides of the films can be

neglected. Figure 3.1 is a simple schematic illustration of hydrogen uptake in

a substrate-bound vanadium film.

Figure 3.1. Visualization of hydrogen uptake in a substrate-bound vanadium film.

The thin films used in Papers III and IV for the experimental measurements

are called superlattices and as the name suggests their design is a bit more

sophisticated than a homogeneous thin film. A superlattice is a periodic struc-

ture consisting of bilayers of two or more different materials. The ratio of

the number of layers of the constituent materials in the bilayer is used to tai-

lor the properties of the superlattice. The material sandwiched between the

vanadium layers is usually one with a much lower hydrogen solubility so that

only a very small fraction of hydrogen atoms, at any given time, will reside

there. Iron has a very low solubility of hydrogen atoms but still offers fast

kinetics, i.e. absorbed hydrogen atoms will quickly diffuse through the iron

layers. There is, however, a mismatch in lattice constants between vanadium

and iron (dFe = 2.87 Å and dV = 3.04 Å), which causes a biaxial tensile strain

of the vanadium layers and a biaxial compressive strain of the iron layers in

the out of plane direction. Different strain states can be induced by altering the

ratio of the vanadium to iron layers. When the bilayers of vanadium are thin,

i.e. only a few atomic layers, the finite-size and interface effects will have

a big impact on the physical properties of hydrogen absorption [33]. In our

DFT simulations, we neglect any such effects as we only study bulk proper-
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ties. In Papers III and IV, the layers of vanadium in the superlattices used are

21 monolayers thick, which corresponds to roughly 60 Å. We therefore make

the approximation to treat vanadium as bulk in our model calculations since

the interface regions are small in relation to the “inner” part of the vanadium

layers.

3.1 Computational setup

In Chapter 2 we briefly introduced density functional theory (DFT). The de-

scribed theory is implemented in several software packages for atomic scale

modeling of materials. For our calculations we opted to use the Vienna Ab
initio Simulation Package (VASP) [34–37]. The used version of VASP in Pa-

per I has been modified by the Swedish National Infrastructure for Computing

(SNIC) to allow us to perform constrained cell relaxation.

The interactions between the electrons and the nuclei were calculated us-

ing the projector-augmented-wave method [19, 38]. The generalized gradi-

ent approximation (GGA) in the parametrization of Perdew-Burke-Ernzerhof

(GGA-PBE) [15, 16] was employed to approximate the exchange and corre-

lation terms in the DFT [1, 14] method. The GGA-PBE method has proven

to be very successful when dealing with transition metal-hydrogen systems in

the past [30, 31]. A conjugate gradient algorithm was used to relax the atomic

nuclei positions to a local minimum in the total energy landscape.

When performing calculations to determine preferred site occupancies and

volume expansion due to hydrogen induced strain, we need to take a few things

into consideration when setting up the system. The system needs to be large

enough so that at the lowest possible hydrogen concentration, the hydrogen

atom can be treated as isolated, i.e. very small H-H interaction due to periodic

boundary conditions. The system should be big enough so that at a greater

hydrogen concentration (e.g. [H/V]=0.5), the hydrogen can be distributed in a

disordered fashion to mimic an α-phase solid solution. We can, on the other

hand, expect that a large number of computations will be needed for any study

involving hydrogen induced strain effects in an α-phase solid solution, thus,

the system can not be exceedingly large because that would require too much

computational effort.

For the studies on vanadium in Papers I, II and IV, a 128 atoms body-

centered cubic bcc supercell has been used, corresponding to a 4 × 4 × 4

repeat of the 2 atoms bcc unit cell and 11.9 Å × 11.9 Å × 11.9 Å in volume

for the unstrained case, i.e. c/a = 1.00. To mimic the experimental conditions

of clamped thin films on substrates, the supercell is constrained in the x and

y-directions during relaxation of the volume. Volume expansion/compression

of the supercell is thus only allowed in the z-direction (corresponding to the

out-of-plane expansion of the vanadium film when absorbing hydrogen). A

128 atoms body-centered tetragonal (bct) supercell contains in total 512 Tz,
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256 Txy, 128 Oz and 256 Oxy interstitial sites, adding up to a total of 1152

high symmetry sites (see Figure 3.2). For the study on vanadium in Paper III,

different small size supercells were used to accommodate various hydrogen

concentrations.

For the c15 Laves structure, only the 24 atoms primitive cell was used with

its 8 b-, 32 e-, and 96 g-sites (see Figure 3.3). Apart from different unit cells,

only the number of k-points used to sample the Brillouin zone differs in the

computational setup between the two investigated systems. The Γ point alone

was used for the large VH system, while a 9 × 9 × 9 k-point grid was em-

ployed for the smaller c15 Laves structure.

3.2 Interstitial sites

As a simple approximation, we can consider a solid metal as being constituted

of stacked spherical atoms. When stacking spheres, not all space is filled, for

instance, the body-centered cubic structure has a packing efficiency of ∼68%.

That leaves 32% of the bcc unit cell for other atomic species to occupy. All

the transition metal atoms are significantly larger than the hydrogen atom,

the interstitial space found in the metal lattices can thus hold many hydrogen

atoms before overlapping orbitals causes large Born-Mayer repulsion [39].

The largest interstitial site, i.e. the point in the bcc primitive cell where the

nearest neighboring atom is as far away as possible, is called a tetrahedral site.

The second largest type of high symmetry interstitial in the bcc cell are the

octahedral sites.

If the bcc cell is uniaxially strained, thus forming a bct structure with

a = b �= c, formerly equivalent tetrahedral sites split into different sites, de-

noted by Tz and Txy, and likewise octahedral sites split into Oz and Oxy. The

tetrahedral and octahedral sites are illustrated in Figure 3.2. No distinction

is made between the x and y-oriented sites since they are equivalent in a bct
lattice strained along the z-direction. They are identical in the sense that a ro-

tation by 90◦ around the z-axis will map the x-sites onto the y-sites, and vice

versa.

The c15 Laves structure is an AB2 type of structure that has three unique

types of tetrahedral sites which are the preferred sites for hydrogen occupa-

tion. The tetrahedral sites are illustrated in Figure 3.3. Can we predict which

type of site will be energetically favorable for the hydrogen to occupy based

on the geometry of the sites? Adopting a hard sphere model allows us to cal-

culate the maximum sphere radius that can be accommodated in the interstitial

space formed by the metal atom spheres arranged in a bcc pattern. In units of

the metal atom sphere radius, the results are 0.155 for octahedral and 0.291 for

tetrahedral sites. For most transition metals, hydrogen uptake is an exothermic

reaction, i.e. the hydrogen atoms lowers their energy after being absorbed by

forming hydrogen-metal bonds. For the transition metals that absorb hydro-
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Figure 3.2. (a) Tetrahedral and (b) octahedral sites for the bcc cell. Large dark spheres

represent vanadium atoms and the small red, blue, light blue, and light red spheres

represent (according to their respective labels) different interstitial positions that hy-

drogen can occupy. The z-axis is aligned along the vertical direction, while the x- and

y-axes lie in the horizontal plane.

gen via endothermic reactions, there is typically large Born-Mayer repulsion

due to large overlap of the electronic orbitals, i.e. the interstitial sites are too

“narrow” [39].

A potential energy function can be expressed as the sum of a repulsive term

due to the overlap of electronic orbitals and an attractive term as a result of

electrostatic forces from sharing free electrons. Figure 3.4, from Ref.2, is a

plot of the energy of an H atom in an environment with a homogenous charge

density of magnitude n0. The minimum represents the most energetically fa-

vorable charge density for H occupancy. Most metals, including vanadium,

have interstitial sites with a charge density that is higher than the density which

yields the lowest energy of H occupancy.

Much of the work conducted on vanadium is aimed at investigating the

effect on the energetics of the hydrogen atoms when we alter the shape and

size of the interstitial sites by straining the vanadium lattice [23, 32, 40, 41].

3.2.1 Self-trapping

Self-trapping is a term used to describe the effect the hydrogen atom has on the

potential energy landscape [30, 42]. We will define the self-trapping energy as

the difference in energy before and after relaxation of the metal lattice when a

hydrogen atom is residing in an interstitial site. Figure 3.5 is a simple illustra-
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Figure 3.3. c15 Laves structure with three unique interstitial tetrahedral sites denoted

by b,e and g. The larger lighter spheres are A-atoms in a AB2 constellation and the

smaller darker spheres are B-atoms.

Figure 3.4. Hydrogen embedding energy as a function of surrounding charge density.

tion of self-trapping of a hydrogen atom (red dot) in a periodic potential. The

full line indicates a one-dimensional projection of the potential energy land-

scape experienced by a hydrogen atom in a metal lattice when the hydrogen

has not been allowed to exert strain on the metal lattice atoms. The dotted
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line indicates the potential landscape experienced by the hydrogen atom after

relaxation of the metal lattice atoms.

Figure 3.5. Illustration of self-trapping. The full and dashed lines indicate the poten-

tial energy landscape experienced by a hydrogen atom in one dimension before and

after relaxation of the hosting lattice, respectively. The red dot indicates a hydrogen

atom.

3.2.2 Effect of uniaxial tensile strain on preferred site occupancy

When uniaxially straining a lattice, we increase the volume. Figure 3.6 is a

simple illustration using a hard sphere model to compare the interstitial vol-

umes of the Tz and Oz sites before and after a uniaxial strain of 20%. The

spheres are fixed in the geometrical centers of the Tz and Oz sites, respectively.

Initially the Tz site can house the largest sphere, but when uniaxially straining

Figure 3.6. Visualization of the hard sphere model to compare interstitial volumes of

Tz (blue sphere) and Oz (red sphere) sites when uniaxially straining the lattice.

the lattice, the Oz site eventually becomes the largest. When also including

the local strain fields caused by the hydrogen atoms, the predicted shift in site

occupancy, based on energetics of hydrogen occupancy in the Tz and Oz sites,
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occurs within the investigated range of c/a (i.e. 1.00–1.07). As one might ex-

pect, it is found that the critical strain [23, 32, 40, 41] of equality in energetics

of hydrogen occupancy and the critical strain of equal interstitial volume, are

in fact of similar magnitude.

Figure 3.7, taken from Paper I shows the result of DFT calculations for the

energy of a single hydrogen atom in a 128 vanadium atoms supercell occupy-

ing either a Tz, Txy, Oz or an Oxy site as a function of c/a.
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Figure 3.7. Energy difference as a function of an externally applied global uniaxial

lattice strain c/a where ΔE = E(V +H)−E(V ). The dashed vertical line at c/a =
1.043 marks the critical uniaxial lattice strain for which hydrogen occupancy of Tz and

Oz sites become energetically equivalent.

When uniaxial tensile strain is applied, the volume is increased. At c/a =
1.043, the Oz sites becomes energetically favorable. When the volume of the

interstitial sites is altered, so is the charge density, with an increase in the

volume corresponding to a decrease in charge density. For vanadium, in the

c/a range of 1.00 to 1.07, the energy of hydrogen occupancy is lowered for

all sites. Decreasing the charge density is thus energetically favorable for H

occupancy in vanadium (c.f. Figure 3.4). Furthermore, we know from simple

geometrical considerations that the increase in volume of the Oz sites from

uniaxial strain proceeds at a higher rate than that of the Tz sites (see Figure

3.6) and that the volume of Oxy sites remains unchanged since the “top” and

“bottom” atoms of the constituent atoms in those octahedra are fixed. Thus,

the energy of hydrogen site occupancy in the Oxy decreases at a much lower

rate with respect to c/a than that of Oz site occupancy (see Figure 3.7).
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3.2.3 Zero-point energy and isotope effect

We have investigated the isotope effect of hydrogen and deuterium in vana-

dium from both experiments and first-principles calculations in Paper III.

The phase diagrams of V2H and V2D exhibits different ordering tempera-

tures [22, 43], in which, the different vibrational energy of the hydrogen and

deuterium has been identified as a major cause of this [44]. In our calcula-

tions we compare the enthalpy of formation between hydrogen and deuterium

in both T and Oz sites. In the experiments, the data referring to T site occu-

pancy (α phase) is that of bulk vanadium, while the data referring to Oz sites

occupancy (β phase), is that of Fe/V superlattices.

The zero-point energy (ZPE) is the result of a particle being trapped in

a potential well with the condition that the particle behaves like a quantum

harmonic oscillator in the ground state, i.e. the energy of the particle is E =
h̄ω/2 at T=0K. The hydrogen atoms in a vanadium lattice will experience

different potential landscapes in the various interstitial sites and it is reasonable

to assume that, with strain, the potential landscapes in the various sites changes

differently [2]. In our studies on hydrogen in vanadium in Papers I–IV, we

often refer to the hydrogen as being confined to sites and that there is a level

of confinement associated with a particular site. With the level of confinement

we mean the “narowness” of the potential energy well. The hydrogen atom

has 3 degrees of freedom and consequently there are 3 vibrational modes. The

force constant k and the corresponding normal coordinates of the vibration can

be found by diagonalization of the Hessian matrix (square matrix of second-

order partial derivatives). In the work on hydrogen and deuterium in vanadium

we neglect the vibrational energy of the vanadium atoms as the vanadium atom

is approximately 51 times heavier than hydrogen (and 25.5 times heavier than

deuterium). We also consider an adiabatic approximation when calculating the

vibrational energy of the hydrogen atoms, i.e. the potential energy landscape

is approximated as being frozen during the vibration of the hydrogen atoms.

Different size supercells were used to accommodate the hydrogen atoms

for the three investigated concentrations of [H/V]=0.25, 0.50 and 1.00. For

the concentration of 0.25 we used a supercell of the size (1×1×4) bcc unit

cells. Because of the large polarization of the local strain field induced by

the hydrogen atoms in the Oz sites we have opted to use a supercell of ample

size that allows for placement of the hydrogen atom such that the overlap of

the strain fields is significantly reduced and consequently also the energy. In

simpler terms we can say that hydrogen atoms in Oz sites does not want the

nearest neighbouring hydrogen atoms to occupy a site in the z-direction. The

strain field is isotropic in the case of T site occupancy but despite that we

employ a (1×1×4) supercell to reduce the numerical errors when comparing

the energetics of hydrogen in T and Oz sites. The enthalpy of formation is
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calculated with the formula:

Δh =
E[V +H(D)]− (E[V ]+ 1

2 E[H(D)2])

NH(D)
, (3.1)

in which, the first term is the energy of the vanadium lattice with the hydrogen

(or deuterium) self-trapped in it while the two last terms are the energy of the

separate constituents, i.e. the vanadium lattice and the hydrogen/deuterium

gas molecule. The total energy of the hydrogen/deuterium gas is calculated by

placing the hydrogen/deuterium atoms in an 8×8×8 Å box and relaxing the

interatomic distance and calculating the vibrational frequency to get the ZPE

correction to the total energy.

The calculations for T site occupancy were performed by using supercells

that were allowed to expand or contract without any restrictions during volume

relaxation. This is to mimic the effects of hydrogen in bulk vanadium.

For the calculations on Oz occupancy we used supercells, that were con-

stricted to only expand or contract in the z-direction so to mimic the uniaxially

constricted volume expansion/contraction of thin films.

In our calculations when comparing the enthalpy of formation for hydrides

and deuterides, the difference in energy between the isotopes stems solely

from the ZPE. There are no dynamical effects included in the relaxation of

the hydrogen/deuterium in the vanadium lattice. The vibrational frequency of

hydrogen is a factor
√

2 higher than that of deuterium (see Eq. 2.23) which

causes slightly larger induced strain from hydrogen occupancy. The effect is

not reproduced in our static calculations.

Table 3.3 shows the calculated enthalpy of formations for the two isotopes

and the difference between them. We can see that the isotope effect is greater

for the T site occupancy and that the isotope effect essentially does not change

with concentration for the Oz site occupancy. The increase in concentration

also means an increase in volume and for the case of T site occupancy, with

no constraints on the lattice, the volume expansion is uniform. For Oz site

occupancy we see the trend that the isotope effect decreases with concentra-

tion. Thus, constraining the volume expansion of the vanadium lattice has a

profound effect on the potential energy landscape.

The results are in agreement with earlier experimental findings of weaker

isotope effect in Oz site occupancy as compared to T site occupancy [22]. It is

clear that the ZPE is a contributing factor.

3.2.4 The combinatorics problem

Dealing with a supercell consisting of 128 vanadium atoms for a disordered

metal-hydrogen phase means having a very large number of possible hydrogen

distributions for a certain concentration. This is because we have 1152 high

symmetry sites in our supercell where hydrogen can reside. Ideally we would

28



Table 3.1. Formation enthalpies for H and D in T and Oz sites obtained from first-
principles calculations. Lattice parameters were fixed at a = b = 2.98 the calcula-
tions on the Oz-site occupancy. Volume expansion/contraction was only allowed in
the z direction. For T occupancy the unit cells were allowed to expand/contract in all
directions.

Occupancy c[H(D)/V] 0.25 0.50 1.00

ΔhH (meV/H) -251 -260 -292

T ΔhD(meV/D) -286 -296 -326

ΔhH -ΔhD[meV/H(D)] 35 36 34

ΔhH (meV/H) -171 -293 -296

Oz ΔhD(meV/D) -201 -317 -305

ΔhH -ΔhD[meV/H(D)] 30 24 9

like to find the ground state configurations for each concentration [H/V], i.e.

the hydrogen distribution that yields the lowest total energy of the system. We

do however have a finite temperature in the real vanadium-hydrogen system

which means that we can not neglect the contribution to the enthalpy from

changes in entropy. More order means a decrease in entropy and thus an in-

crease in enthalpy. An increase in entropy can weigh more strongly than a

decrease in total energy.

We have adopted a method of randomly distributing hydrogen into our

metal supercells and calculating the average total energy and volume. In this

manner, we will converge to a certain average energy and volume if we re-

peat this procedure many times as long as we include a large enough number

of random distributions. As an approximation, we do not consider partial oc-

cupancies of different types of interstitial sites in neither vanadium nor the

Laves system. Also, we do not make any assumptions regarding the preferred

distribution of hydrogen in the disordered phase.

Figure 3.8 shows the variation in total energy and equilibrium volume for

50 random distributions of 16 hydrogen atoms in a 128 vanadium atoms su-

percell for Tz occupancy (c.f. Figure 3.2). As can be seen from the red line,

which indicates the average, convergence is reached quite fast. The standard

deviation, indicated by the vertical bars, also converges fast. After 50 ran-

dom hydrogen distributions, the standard deviation is 4.6 meV per atom and

0.00039 in c/a.

3.3 Hydrogen-induced strain
In most metals, the interstitially absorbed hydrogen atoms will initially be

more influenced by the repulsive part of the forces than the attractive ones, i.e.
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Figure 3.8. Convergence of average c/a (a) and energy (b) for random distributions

of 16 hydrogen atoms at Tz sites in a 128 vanadium atoms supercell.

large overlap of the electronic orbitals causing repulsion. The hydrogen will

thus repel the metal atoms so to make its interstitial site larger, and thereby re-

duce the repulsive force. This is however not always the case as there are met-

als where absorbed hydrogen will attract and thereby retract metal atoms and

thus making the interstitial sites smaller. For instance, in amorphous materials

where there is a very large range of interstitial sites with different volumes, the

hydrogen atoms can explore them to find sites that are very favorable for oc-

cupation so that the first few atomic percent of hydrogen being absorbed in the

metal essentially keeps the total volume fixed. A difference in volume of the

interstitial sites will also mean a difference in charge density. The charge den-

sity dependent repulsive and attractive interaction of the hydrogen and metal

atoms electrons can be minimized [2, 45, 46]. The most energetically favor-

able place for hydrogen occupation in transition metals is thus linked to the

charge density in the various sites.

Each absorbed hydrogen atom causes a small local strain field in the metal

lattice [25–30]. When the hydrogen concentration is increased, the sum of

these small local strains combines to give rise to an increase in the volume of

the metal lattice. The arrows in Figure 3.9 indicates the displacement of the

constituent atoms of the tetrahedral and octahedral sites, respectively, in the

bcc lattice of vanadium when occupied by hydrogen.

The difference in electronegativity between hydrogen and the host metal

atoms can be an indicator of how large these strains will be in various metals.

The hydrogen atoms possess larger electronegativity than the metals inves-

tigated in this thesis, which causes the hydrogen atom to localize some of

the neighboring free electrons [47–49]. The effective charge of the hydrogen

atoms is thus negative. This results in the metallic bindings of the surround-

ing metal atoms to diminish, which in turn allows the hydrogen to repel them

more.

The volume increase from hydrogen absorption is nearly linear with in-

creasing concentration for disordered phases [50]. The increase in volume
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Figure 3.9. The strain on surrounding vanadium atoms by hydrogen occupying a (a)

Tz site or (b) Oz site. The arrows represent the displacement vectors, i.e., how much

the V atoms are “pushed” away by the H atom. For better visibility, the length of the

arrows has been scaled by a factor of 30.

for hydrogen absorption in vanadium is 1.61 Å3 per added H atom in the

low concentration α-phase region. Each vanadium atom occupies 14 Å3,

meaning that to reach a concentration of [H/V]=1 in the α-phase, there would

be an 11.4% increase in total volume. The corresponding number for

Sc(1−x)Zrx(Co(1−y)Niy)2 is 2.72± 0.14 Å3 per added H atom for occupancy in

the e-sites (see Figure 3.3) for (x,y)= (0.25,0.50),(0.50,0.50) and (0.75,0.50).
The e-sites were found to be energetically favorable at low hydrogen con-

centrations and approximated to be favorable also at higher concentrations

([H/V]=0 to 1.00). The Sc to Zr ratio has a negligible effect on the hydrogen

induced volume (see Figure 3.10).

3.3.1 Simulations on volume expansion

Using random distributions of hydrogen in the supercell of vanadium and

the unit cell of the c15 Laves phase (Sc1−xZrx)(Co1−yNiy)2-Hz, the follow-

ing results were obtained when calculating the response of hydrogen being

implanted in the metal lattices. In the investigated ranges of hydrogen con-

centration, H/M from 0 to 1.0 for (Sc1−xZrx)(Co1−yNiy)2-Hz and 0 to 0.5 for

the vanadium-hydrogen system, volume expansion is approximately linear, as

shown in Figure 3.10, taken from Paper V. The two datasets in Figure 3.11

show the different responses of the system when hydrogen occupies either Tz
sites or Oz sites (c.f. Figure 3.2). The increase in volume due to hydrogen up-

take stems from the small strains that each hydrogen atom causes in the metal.

As can be seen in Figure 3.9, taken from Paper I, the strain on the constituent

atoms in the Oz site is very different from that of the Tz site. The strain field

is strongly anisotropic for Oz site occupancy, while it is nearly isotropic for Tz
occupancy. Since we have a large strain component in the z-direction for Oz
site occupancy and because we only allow volume increase in the z-direction
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Figure 3.10. Total volume of the C15 Laves phase unit cell as a function of the hy-

drogen to metal ratio [H/M]. Experimental data is shown as symbols connected by

dashed lines while theoretical data is presented by the same set of symbols connected

through full lines. The error bars are given by ± half the standard deviation. In the

top panel (a) the amount of Sc is held constant while the ratio of Co to Ni is varied. In

the bottom panel (b) the ratio of Co and Ni is held constant while the ratio of Sc to Zr

is varied.

to mimic the experimental conditions, we find a much higher rate of increase

in volume when occupying Oz sites, as compared to Tz sites.

3.3.2 Change in site occupancy and hysteresis

From Figure 3.7, we know that Tz sites are energetically favorable at low strain

for a hydrogen concentration of [H/V]=1/128. If we externally strain the su-

percell uniaxially by altering c/a, the potential landscape in the various in-

terstitial sites will change according to the slopes of the curves in Figure 3.7.

The vertical dashed line at c/a= 1.043 indicates where the curves of Tz and Oz
cross. This means that the Oz sites are energetically favorable for c/a > 1.043.
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Figure 3.11. The uniaxial lattice strain c/a resulting from varying the concentration

of hydrogen occupying exclusively either Tz sites (blue data points and lines) or Oz
sites (red data points and lines) in bcc vanadium. The horizontal black dashed line at

c/a= 1.043 marks the critical uniaxial lattice strain for which the hydrogen occupancy

of Tz and Oz site becomes equal in energy, as seen in Figure 3.7. The vertical colored

dashed lines indicate at which hydrogen concentration the critical c/a ratio of 1.043 is

reached for occupancy of Tz ([H/V] = 0.363) and Oz ([H/V] = 0.177) sites, respectively,

when there is no initial strain (i.e. c/a = 1.00 for [H/V]=0). The dotted lines represent

the case of an initial strain of c/a = 1.03 before any hydrogen has entered the system.

The critical c/a ratio is reached at [H/V] = 0.107 for Tz occupancy and 0.054 for Oz
occupancy.

If we instead increase the hydrogen concentration, as explained in the pre-

vious sections, and relax the structure to the equilibrium volume, we expect to

see similar changes to the potential landscape. Thus, as an approximation, we

disregard the hydrogen-hydrogen interactions, i.e. we say that the energetics

of the hydrogen atoms is independent of the concentration and that the critical

c/a ratio remains unchanged at 1.043 no matter how many H atoms we load

into our system.

Figure 3.11, taken from Paper I is the change in volume as a function of

the hydrogen concentration. The horizontal dashed line is the critical c/a ratio

for change in occupancy, taken from Figure 3.7. When the hydrogen-induced

change to the c/a ratio reaches the critical value of 1.043, we predict a shift in

site occupancy from Tz to Oz, indicated by the upward arrow in Figure 3.11.

The shift in site occupancy is accompanied by a further increase of c/a since

we go from isotropic hydrogen-induced local strains to strongly anisotropic

strains (c.f. Figure 3.9). The z-component of the strain in the case of Oz site

occupancy is very large and since we only allow volume expansion in the z-

direction, we predict an increase in volume (and therefore in the c/a ratio)
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after the shift in site occupancy is completed. The shift in occupancy is a self-

amplified process: every hydrogen atom making the shift will contribute to

the increase in volume, thus making the Oz sites more energetically favorable

since we are moving towards larger c/a in Figure 3.7, which favors the Oz
sites (β -phase) more than the Tz sites because of the steeper descent of the

curve for the energetics of the Oz sites (see Figure 3.7). It will thus be easier

for the following hydrogen atoms to make the shift in site occupancy. All

hydrogen atoms will thus eventually occupy Oz sites and the resulting strain is

c/a = 1.102. We thus have, in terms of strain, moved away from the critical

value of 1.043.

If we start taking hydrogen out of our system, we will reduce the strain

and again move towards the critical c/a value of 1.043. When we reach the

critical c/a value, the site occupancy is shifted back to Tz. Again the shift is

self-amplified since every single hydrogen that changes its site occupancy will

induce a small decrease in the volume of the system which favors occupancy

of Tz sites. The Tz to Oz and the Oz to Tz shifts in occupancy thus occur

at different hydrogen concentrations [H/V], as indicated by the two vertical

lines in Figure 3.11. We thus predict hysteresis in volume during loading and

unloading of hydrogen in the constrained vanadium film. This phenomenon

has been experimentally observed [22, 31].

3.3.3 Shift in site occupancy from energetics

Each data point in Figure 3.11 has been calculated from the average of 50 ran-

dom hydrogen distributions, as explained in Section 3.2.4. Using the average

energy for each of these data points and comparing the total energies of Tz
and Oz occupancy as a function of hydrogen concentration, we can predict at

what concentration the shift in site occupancy occurs. Results can be viewed

in Figure 3.12. The horizontal dashed line at c/a = 1.043 in Figure 3.11 inter-

sects the datasets of Tz and Oz at different concentrations [H/V]. But we know

from Figure 3.7 that the energy of site occupancy at Tz and Oz are the same at

the strain state corresponding to c/a = 1.043. Thus, at two different hydrogen

concentrations, [H/V] = 0.363 and [H/V] = 0.177, the H atoms in the Tz sites

and the Oz, respectively, will have the same energy of site occupancy. The two

vertical dashed line indicate these concentrations. At these points we approx-

imate that the activation energy of shift in site occupancy is near to zero and

that the shift will, therefore, happen spontaneously (i.e. Tz to Oz at [H/V] =

0.363 and Oz to Tz at [H/V] = 0.177). The shifts can, however, occur anywhere

between the two vertical lines since the H atoms then change their strain state

to either suite occupancy at the Oz or Tz sites (i.e. the strain state of the system

being either more or less than c/a = 1.043). But in the region between the

vertical lines, the activation energy will be larger than 0. If we however only

look at the energetics, there can be only one concentration [H/V] correspond-
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Figure 3.12. Energy difference between Tz and Oz occupancy at optimal c/a ratios as

a function of hydrogen concentration. ΔE = (ETz −EOz)/NH where NH is the number

of hydrogen atoms in the simulation. Data points are for average values and the bars

indicate ± one standard deviation (defined as the square root of the variance). Lines

are second order polynomial fits.

ing to equality in total energy between having all H atoms either in Tz sites or

Oz sites. This is the only concentration where a shift in site occupancy will

not alter the total energy of the system. This occurs at [H/V]=0.34 (c.f. Figure

3.12).

3.4 Hydrogen diffusion

Fick formulated the law of diffusion in 1855, relating the diffusion-facilitated

flux to the concentration gradient [51], referred to as chemical diffusion. Be-

fore that, the motion of very small grains had been observed on water, in the

absence of any concentration gradients (or chemical potentials). This obser-

vation was explained by introducing the concept of very small entities that

would later be termed atoms and molecules. The very small building blocks

of water were believed to be interacting with the small grains and making them

move by colliding with them. This type of motion is called Brownian motion,

named after the botanist Robert Brown who discovered the phenomenon in

1827 (Ref. 52). In 1905, Albert Einstein explained the interaction of the water

molecules with the small grains [53].

Diffusion of hydrogen in a metal lattice is atomistically described by the

interaction between the hydrogen atoms and the metal atoms. Hydrogen in

transition metals can be considered as an ideal system for studies of the rate
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of diffusion, as the changes in electronic structure are small during diffusion

events and because the diffusion obeys Arrhenius law at elevated temperatures

[54].

There are different diffusion mechanisms that play important roles depend-

ing on the temperature region. In the low temperature region, the phonon-

electron coupling is very weak so that the H atom can diffuse without changing

the phonon state, this is referred to as coherent tunneling [2]. With increas-

ing temperature, the phonon interaction increases and as a consequence, the

probability of two neighboring sites being brought to energetic coincidence

is increased. When the sites are level in energy, the H atom can diffuse be-

tween the sites in what is referred to as phonon-assisted tunneling [2]. If the

temperature is increased further, the phonon-assistance can bring the H atom

over the barrier (activation energy Ea) between the sites and we have classical

diffusion. This is called the classical regime of diffusion [2].

Even though the forces acting on the atoms are calculated from quantum

mechanics, no quantum mechanical effects are included in the Molecular Dy-

namics (MD) simulation throughout this Thesis. The atoms are treated as

classical particles. Tunneling is not possible and the total energy of the parti-

cles does not contain any zero-point energy corrections. From the wave nature

of particles, we know the importance of tunneling when talking about the mo-

tion of small particles in the low temperature regime. With hydrogen being

the lightest atom, its corresponding de Broglie wavelength is the longest of all

elements.

It is thus very important that the temperature is high enough so that classical

diffusion is the dominant diffusion mechanism. The thermal energy of a par-

ticle at room temperature is 0.026 eV, as given by kbT. Though the hydrogen

activation energies are usually much larger than that (cf. 0.045 eV in α-phase

vanadium [2]). In classical dynamics, for a hydrogen atom trapped in a frozen

potential energy landscape, the hydrogen will never diffuse. Rather than the

dynamics of the hydrogen itself, it is the dynamics of the potential energy

landscape that is the key to understanding the diffusion of hydrogen in transi-

tion metals. For an adiabatic transition of hydrogen, the vibrational frequency

of the atoms of the host lattice are the ones that play a crucial role. There is a

correlation between the Debye frequency of the host lattice and the diffusion

coefficient of the hydrogen atom as the frequency of attempted jumps made

by the hydrogen is linked with the Debye frequency [2]. It is known that the

diffusion coefficients of the isotopes H, D and T converge as the temperature

is increased [2], the Debye frequency dependence on the diffusion is a prob-

able explanation for this. Though if the temperature is increased beyond the

melting temperature of the host lattice, the particles are no longer confined in

potential wells and the atoms would undergo free motion like diffusion and

we would thus expect the lighter isotope to diffuse the fastest. In the low tem-

perature region, the mass of the isotopes is very important as tunneling is the

dominant diffusion mechanism.
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3.4.1 Ab initio Molecular Dynamics

We utilize ab initio quantum molecular dynamics to treat the thermal motions

of atoms. The motions are governed by Newton’s second law of motion

FI = MIR̈I , (3.2)

where RI and FI are the position and force on nuclei I with mass MI . The

double dots denote the second time derative, i.e. the acceleration.

The VASP code utilizes Born-Oppenheimer MD which allows for decou-

pling of the nuclei and the electrons. Likewise are the calculations decoupled

because the electronic degrees of freedom are treated first with the nuclei kept

frozen. The self-consistent Kohn-Sham equations are solved and the forces

acting on the nuclei are calculated and their positions are updated accord-

ingly, i.e. the optimization of the electronic structure and the movement of

the nuclei are decoupled. The nuclei are usually referred to as moving on a

Born-Oppenheimer potential energy surface.

Temperature is related to the energy via equipartition, where at thermal

equilibrium, the energy is shared equally between all atoms. If not specified

for each atom, the initial velocities and the resulting kinetic energy of the

atoms, are assigned in a random manner according to the Maxwell-Boltzmann

distribution, with the constraint that the center of mass of the system must be

fixed.

The initial time steps of the simulation will result in unphysical energies

of the system due to the random velocities that are given to the atoms. The

initial time steps of the simulation must be used for equilibration and thus be

discarded. The equilibration is one of the limiting factors of MD simulations,

especially when the temperature is altered throughout the simulation. Depend-

ing on the complexity of the system, a significant amount of simulation time

will be needed for equilibration.

For simplicity, it is common to look at a global property of the system, such

as the total energy or pressure to avoid calculating an ensemble average. Apart

from the volume and number of particles, which are usually kept fixed along

with the temperature (canonical NVT ensemble), we can choose any global

property. The stability of this property over time will tell us whether or not the

system is equilibrated.

Figure 3.13 shows the total energy with respect to time for an MD sim-

ulation of hydrogen in vanadium. The total energy can initially be seen to

fluctuate a lot as compared to the later part of the simulation. The red curve

is produced by applying a fast Fourier transform (FFT) filter to the signal.

The horizontal line is the average total energy of the later equilibrated part

of the simulation. It is clear that one should at least discard the first couple

of thousands fs of the simulation. In all our MD simulations of hydrogen in

vanadium, we consistently discarded the first 10000 fs of data in each set.
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Figure 3.13. Equilibration of MD simulation of hydrogen in vanadium.

3.4.2 Jump-angle distribution

One way of describing the direction of diffusion in a lattice gas model is to

calculate the jump-angle distribution (JAD) [55]. The jump-angle is defined as

the angle between two consecutive jumps, e.g. two jumps in the same direction

constitutes a 0◦ jump-angle, while jumping back and forth constitutes a 180◦
jump-angle, and so forth.

If we consider the nearest T -T neighbors as the longest allowed jumps,

while also including O sites, there is a total of 6 possible jump-angles in the

bcc lattice. The possible jump-angles are illustrated in Figure 3.14.

All jumps during the MD simulation are counted and normalized to one to

give a probability distribution of the various types of occurring jump-angles.

In a completely random jump model, all jumps have equal probability. It is

when we introduce some constriction on the diffusion that we see a partition-

ing of the jump-angles. A general assumption that one can make regarding

the interpretation of the JAD is that a preference for a certain jump-angle (or

a few jump-angles) means a high level of constriction on the diffusion. If the

distribution is shifted towards low jump-angles we have in the general case

quicker diffusion than if the jump-angles are high.

3.4.3 Effect of biaxial tensile strain on diffusion of hydrogen in
vanadium

The high ductility of vanadium allows the material to tolerate high strain be-

fore structural deformations are formed such that the structure is no longer

monocrystalline body center tetragonal. Along with its good kinetics of diffu-
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Figure 3.14. Possible jump-angles between interstitial sites in a bcc lattice.

sion [54] these properties make vanadium well suitable for studies of strain-

induced metal-hydrogen properties.

We have studied the diffusion of hydrogen in vanadium using ab initio
molecular dynamics (MD) simulations. The aim is to explore the difference

in diffusion between the α and β -phase configurations with a focus on diffu-

sion paths and diffusion coefficients. What is studied is the self-diffusion (or

tracer-diffusion) of the hydrogen as it jumps between interstitial sites in the

metal lattice. Self-diffusion of the hydrogen means that the diffusion in not

caused by a chemical potential. The diffusion coefficients D are calculated us-

ing the formula of interstitial lattice diffusion derived from the Chudley-Elliot
model [56] and is given by

D =
d2

6τ
, (3.3)

where d is the distance between interstitial sites and τ is the mean residence

time.

In the body-centered tetragonal (bct) structure there are three types of tetra-

hedral sites and three types of octahedral sites that originate from being ori-

ented in different directions with respect to the direction that the lattice is

strained along (see Figure 3.2). From experiments, the preferred site occu-

pancy of hydrogen in vanadium has been determined to be interstitial tetra-
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hedral sites in the α phase [31]. As discussed earlier, the preferred site occu-

pancy of hydrogen is known to be linked to the strain state of the structure [23,

24, 31, 32, 40, 41]. When vanadium is subjected to tensile strain, the preferred

site occupancy will shift from tetrahedral to octahedral [23, 24, 31, 32, 40, 41]

(β -phase configuration). Biaxial compressive strain is applied in the x- and

y-directions which result in a tensile strain in the z-direction due to the Pois-

son response. The strain in the x- and y-directions are of the same magnitude,

this will render the Tx and Ty sites identical and the same is true for the Ox and

Oy sites. The x and y-sites are identical except for a 90◦ rotation around the

z-axis. We will, therefore, use the mutual notations Txy and Oxy. In the case of

no strain (i.e. c/a = 1.00), there is no distinction and in most of the literature,

the sites are denoted T and O.

When we investigated the effect of uniaxial strain on the energetics of hy-

drogen in vanadium in Paper I, we found that energy of a self-trapped hydro-

gen atom at the Tz and Oz sites at the strain state around c/a = 1.05 are equal.

We therefore deemed it interesting to investigate the diffusive properties at

that strain state. As a reference, we also investigated the diffusive properties

for the case of no strain (i.e. c/a = 1.00), in which, the system is known to

be in the α-phase (T -site occupancy) and the diffusion coefficients have been

measured experimentally in many studies. To also investigate the low concen-

tration β -phase configuration (Oz-site occupancy), we chose a strain state of

c/a = 1.10 where we expect a considerable energetic preference for Oz-site

occupancy. Furthermore, the strain state of the β phase in bulk VH0.5 is close

to c/a = 1.10 (Ref. 2). We can thus make qualitative comparisons between

experimental findings in the VH0.5 hydride with our results in the same strain

state but in the low concentration region.

In Paper I the uniaxial tensile strain was achieved by keeping the supercell

fixed in the xy-plane and we either varied the strain in the z-direction manually

while keeping the hydrogen concentration fixed or by increasing the hydrogen

concentration and performing constrained cell relaxation in the z-direction. In

Paper II we instead investigated the effect of biaxial tensile strain by contract-

ing the supercell in the x and y directions and then performing constrained cell

relaxation in the z-direction. Several values for x = y were tested until the sub-

sequent Poisson response in the z-direction yielded the desired strain states of

c/a = 1.05 and 1.10.

Figure 3.15 shows the potential energy surfaces (PES) for the strain states

of c/a = 1.00, 1.05 and 1.10. The small spheres indicate the positions of the

interstitial sites on a (100) surface with the color coding following the same

pattern as those in Figure 3.2. The hydrogen atom was first relaxed into a self-

trapped state in the vanadium supercell, then the vanadium atoms were held

fixed in those positions while we mapped the PES by calculating the energy

for several positions of the hydrogen atom on a square grid on the (100) sur-

face. That is, we are mapping the landscape of the self-trapped hydrogen atom

(cf. dashed line in Figure 3.5). The total energy in the initial simulation of the
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self-trapped hydrogen atom is set to 0 eV, i.e. the energy scale is such that the

numbers on the energy axis show the increase (or decrease) in energy required

to move the hydrogen atom on the (100) surface. For c/a = 1.00, the PES

clearly shows the expected energetic favorability of T -site occupancy and the

saddle point that is the most probable T → T diffusion path. At c/a = 1.05,

the PES looks quite flat in and around the Oz site and we can also see that there

is now a clear distinction between the Oz and Oxy sites, with the latter being

substantially higher in energy. The flatness of the PES at c/a = 1.05 is also

expected based on the experimentally observed decrease in zero-point energy

in the β -phase as compared to the α-phase [2], which is also investigated by

us in Paper III. In our earlier work on uniaxially strained vanadium in Paper

I we found that the Tz and Oz sites were near equal in energy at the strain

state of c/a = 1.05 in the case of comparing the cases of the hydrogen being

self-trapped in either site. In the current case of biaxial strain at c/a = 1.05,

there is a 0.29 eV difference in energy between the Tz and Oz sites when com-

paring the energy of the positions of the red and blue spheres in Figure 3.15

at c/a = 1.05. This is however from static calculations at 0K where no dy-

namical effects can interfere with the self-trapping of the hydrogen atom. The

strains imposed on the constituent atoms of the Tz and Oz sites from accom-

modating a hydrogen atom was investigated in Paper I. It is however not only

the hydrogen atom that diffuses, the strain field also diffuses together with the

hydrogen as a quasiparticle. The bound state of the hydrogen and its accompa-

nying strain field is usually referred to as the polaron picture [2, 57]. The PES

only provides us with a piece of the puzzle when it comes to the understand-

ing of diffusion of hydrogen in vanadium, or more generally, the diffusion of

a lattice gas.

Figure 3.15. Potential energy surfaces of hydrogen in vanadium.

To investigate the hydrogen distribution in the 4 unique sites (Tz,Txy,Oz and

Oxy) over time in the MD simulations, we have in Figure 3.16 plotted isosur-

faces of the distribution. The 4×4×4 bcc cells are mapped onto one bcc unit-

cell. The iso-surfaces are 3-dimensional histograms that are cut in the [100]

planes of the bcc unit cell. The arbitrary units of hydrogen density increase

from blue to red.
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Figure 3.16. Isosurfaces of the hydrogen distribution. Density increases from blue to

red.

The hydrogen distribution in the MD simulations at c/a = 1.00 is in agree-

ment with the known T site occupancy (cf. Figure 3.2) in bulk vanadium in

the α phase [2]. From the PES we established that the Oz sites are “open” for

hydrogen occupation as the energy minimum is at (or in the vicinity) of the Oz
sites and that the confinement of the hydrogen atom is increased as the tensile

strain increases. In the isosurfaces, we can see the same trend.

When comparing the isosurfaces for 600 K and 1000 K, the main difference

is that the results for 1000 K are less well defined. With the increased tem-

perature the atoms have higher kinetic energy which in turn means that they

can be displaced further from their respective equilibrium positions. Hence we

have more yellow and red on the isosurfaces at 600 K than at 1000 K because

of stronger localization of the hydrogen atom at a lower temperature.

At c/a = 1.10 it is apparent from the isosurfaces that the exact geometrical

positions of the Oz sites are not the most stable as the center is blue and thus

in the low end of the spectra while a red region can be seen around the Oz
site which indicates high density. From studying the pair distribution function

given by X-ray and neutron diffraction data for β -V2D, Itoh and Fukunaga

found that the D atoms are displaced 0.08(2) Å away from the Oz centers [58].

Our corresponding results for β phase configuration in a diluted V-H system

for c/a = 1.10 are 0.134 Å at 600 K and 0.198 Å at 1000 K, calculated from

the radial distribution in the [001] plane with respect to the geometrical center

of the Oz site. The radial distribution can be seen in Figure 3.17.
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Figure 3.17. Radial distribution of the H atom trapped in a Oz site at c/a = 1.10. The

vertical lines indicate the peak positions.

Table 3.2 shows the calculated diffusion coefficients D and experimental

values Dexp. The last column represents the average nearest V-H distance. The

600 K data for c/a = 1.10 was omitted because insufficient hydrogen jumps

were recorded during the simulation to give a statistically valid result. We can

see a substantial drop in diffusivity with strain. In Paper IV, the experimental

ratio of diffusion when comparing the α and β phase configurations in the low

concentration limit, Dα /Dβ , is found to be in the range of 3 to 5, depending

on the temperature (∼400–500 K). From the MD simulation, the smallest ra-

tio is given by D1.00/D1.05 at 1000 K, it is 1.58. The largest ratio is given by

D1.00/D1.10 at 1000 K, it is 4.95. The ratio is obviously very dependent on the

strain state. The exact strain state of the V film in the experiments is not known

but believed to be close to 3% [23], thus we have a large mismatch in strain

and can only ascertain the qualitative agreement that tensile strain slows down

diffusion. ”...a dramatic difference in the rate of hydrogen diffusion in the two

phases...” were the words J.M Rowe et al. used to described the change in

the rate of diffusion before and after crossing the α to β phase-boundary for

the VH0.570 hydride [59]. From nuclear magnetic resonance (NRM) measure-

ments, they found an approximated activation energy of 0.155 eV. Asano et
al. reported an activation energy of 0.266 eV from NMR measurements on

β -phase VH0.68 [60]. In Paper IV we experimentally obtained an activation

energy of 0.217(17) in the low concentration limit. Utilizing Arrhenius law

and the diffusion coefficients at 600 K and 1000 K for c/a = 1.05, an activa-

tion energy of 0.252 eV is obtained from our MD simulations.

We know that when tensile strain is applied, the preferred site occupancy

is shifted more and more from T sites to Oz sites and that the movement in

the xy-plane becomes restricted (see Figure 3.15). To investigate the diffusion

43



Table 3.2. Diffusion coefficients calculated from mean residence time τ or, corre-
spondingly, the jump rate 1/τ and the average jump-length d (see Eq. 3.3).

Temperature: 600 K

c/a D [cm2/s] Dexp[cm2/s ] Mean H-V dist [Å]

1.00 9.00 × 10−5 13.2±3.5 × 10−5[61] 1.6694

1.05 1.85 × 10−5 1.6600

1.10 - 1.6926

Temperature: 1000 K

1.00 20.5 × 10−5 18.6±4.4 × 10−5[61] 1.6504

1.05 13.0 × 10−5 1.6384

1.10 4.14 × 10−5 1.6574

path, we study the jump-angle distribution (JAD) (Figure 3.18) and we also

record all jumps to calculate the fractions of jumps from any type of site to

any other type of site which is given in Table 3.3.

Figure 3.18. Probability of the angle between two consecutive jumps of the H atom

at, a) T=600 K and b) T=1000 K for c/a = 1.00, 1.05 and 1.10.

Two of the more distinct features of the JAD when altering the strain state

are the increase in 180◦ jumps and the decrease in the 45◦ and 60◦ jumps.

We know from previous studies that the preferred site occupancy is shifted

from T to Oz when tensile strain is applied and that movement in the xy-plane

becomes restricted. It is reasonable to ask how the hydrogen moves between

the Oz sites, or correspondingly, how hydrogen breaks out of the 4Tz+Oz sites.

We still maintain the geometrical T and O centers as the site positions despite

of changes to the PES with strain. We know that the Oxy sites are energetically

very unfavorable (cf. Figure 3.15) so it is a very unlikely diffusion path. The

only two jump angles that break the hydrogen out of the 4Tz+Oz sites without

interaction with the Oxy sites are 0◦ and 45◦. These jumps include interaction

with the Txy sites and from Table 3.3 we can see that for c/a = 1.05 and 1.10

that the Tz ↔ Txy jumps play a big role in the diffusion when also considering
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Table 3.3. Fractions of H-jumps between any of the four interstitial sites Tz, Txy, Oz
or Oxy.

Temperature: 600 K Temperature: 1000 K

Int. sites c/a = 1.00 c/a = 1.05 c/a = 1.10 c/a = 1.00 c/a = 1.05 c/a = 1.10

Tz ↔ Tz 0.214 0.202 0.059 0.186 0.206 0.119

Tz ↔ Txy 0.373 0.036 0.007 0.323 0.144 0.049

Tz ↔ Oz 0.148 0.750 0.934 0.158 0.528 0.800

Tz ↔ Oxy 0.135 0.005 0.000 0.161 0.057 0.012

Txy ↔ Txy 0.007 0.000 0.000 0.012 0.004 0.000

Txy ↔ Oz 0.002 0.000 0.001 0.008 0.009 0.010

Txy ↔ Oxy 0.121 0.006 0.000 0.148 0.049 0.010

Oz ↔ Oz 0.000 0.000 0.000 0.000 0.000 0.000

Oz ↔ Oxy 0.000 0.000 0.000 0.004 0.003 0.000

Oxy ↔ Oxy 0.000 0.000 0.000 0.002 0.000 0.000

that the high probability jumps Tz ↔ Tz and Tz ↔ Oz are contained in the

4Tz+Oz site. It is also worth noting that no direct Oz ↔ Oz jump was recorded

during the MD simulations.

The conclusion about diffusion in the β phase configuration is a significant

drop in diffusion coefficient that depends on the temperature and strain state.

Up to a critical point, the biaxial tensile strain increases the confinement of

the hydrogen atom to the 4Tz+Oz sites. The Txy sites are the main mediators of

diffusion in the β phase configuration.
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4. Zintl phase hydride

In the previous chapter, we investigated the transition metal-hydrogen systems

of V-H and ScZr(NiCo)2-H in which the hydrogen is, predominantly, bound to

the metal via metallic bonds that allow for varying compositions of hydrogen

in interstitial sites. The Zintl phase hydrides are composed of an electropos-

itive metal, such as the alkaline metals, alkaline earth metals or rare earth

(RE) metals and an electronegative p-block metal. For the most part, hydrides

formed with an s-block element are of ionic type and hydrides formed with

p-block metals are covalent.

The Zintl phase materials investigated by us in Papers VI,VII are NdGaHx
and GdGaHx, respectively. These materials, and Zintl phase hydrides in gen-

eral, do not offer good volumetric or gravimetric storage properties of hydro-

gen. For hydrogen storage applications, Zintl phase hydrides are not the best

candidates. What these materials instead offer us are opportunities to study

the fundamental properties of hydrogen induced changes to the structure and

physical properties as they are known to dramatically change with the absorp-

tion of hydrogen [4, 5, 62].

The theoretical part of the studies are based on DFT as implemented in the

Vienna ab intio simulation package (VASP). Structural optimization can of-

fer great insight into the hydrogen induced effect on the structural properties.

Studying the local and projected density of states and charge distribution of

the atoms of the optimized electronic structure can we get information about

the bonding. We also calculate the enthalpy of formation for several hydro-

gen concentrations to determine the stability of the hydrides. Testing several

concentrations is motivated for Zintl phase hydrides as, during hydrogena-

tion, intermediate phases are often observed when varying the hydrogen gas

pressure and temperature. In Zintl phase hydrides, the formation energies for

hydrogen occupation at different sites can differ a great deal because of the

local electronic environments at the sites.

4.1 Computational setup

For NdGa and GaGd in Papers VI and VII, respectively, the CrB type structure

visualized in Figure 4.1 was used. A 21×7×27 Monkhorst-Pack [63] k-point

mesh was employed to sample the Brillouin zone. For calculations of partial

occupancy of the H1 sites, which are presented as blue dots in Figure 4.1,

a supercell was created by a threefold expansion of the CrB unit cell in the
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x-direction. For calculations on the supercell, the k-point mesh was reduced

to 7×7×27. The H2 molecule was calculated in a 8×8×8 Å box with Γ-

point sampling of the Brillouin zone. For the REGaHx calculations, the kinetic

energy cutoff for the plane waves was set to 600 eV. The electronic structure,

exchange and correlation and the relaxation of the nuclei are treated in the

same way as described in Section 3.1.

Figure 4.1. CrB type structure of NdGa and GdGa. The green and blue dots indicate

the H1 and H2 positions.

4.2 Bonding

The theoretical side of the investigations on the Zintl phase hydrides is, to a

large extent, aimed at describing the bonding of the hydrogen atoms to the

p-block metal Ga and the rare earth metals Nd and Gd to provide a description

of how hydrogen affects the electronic and atomic structures. The difference

in electronegativity between the constituents makes the Zintl phase hydrides

particularly interesting to study because of the intricate bonds that occur.

As a first approximation, we can look at the differences in the tabulated val-

ues of electronegativity of the constituents, which is, especially for a binary

hydride, a good indicator of the bonding type. If there is a big difference in

electronegativity we expect ionic nature of the bond and if the electronegativ-
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ities are near equal then we expect predominantly covalent bonding [49]. Ga

is close to H in electronegativity while Nd and Gd are much lower.

Hybridized electronic orbitals when comparing the site projected density

of states of the H atoms electron with the valence electrons of the other con-

stituent atoms indicates covalent bonding. From the spd decomposed density

of states can we get information about which electrons are involved in the

bonding and also the type of bonding, e.g. σ or π bonds.

We can determine the ionicity of the bonding by studying the charge trans-

fer between atoms.

4.3 Bader charge analysis

We have utilized Bader charge analysis to calculate the atomic charges [64,

65]. The charge is calculated by integration of the charge density of the “Bader

volume” of the atoms. The Bader volume is the volume of charge that belongs

to an atom. To properly treat the Bader volume is the most crucial step of the

Bader charge analysis. In Bader charge analysis this is, as the default setting,

done by identifying the zero-flux surface of the charge density around each

atom, i.e. ∇ρ(r) · n̂ = 0.

In Papers VI and VII, the charges are given in units of the elementary charge

e.

4.4 Results and discussion

From experiments during hydrogenation, intermediate phases are observed for

both NdGaHx and GdGaHx for 0≤x≤2. Calculations of stability of hydrogen

occupation at the H1 and H2 sites (see Figure 4.1) revealed that the enthalpy

of formation of the two formations REGa + (1/2)H2 = REGaH1 and REGa +

(1/2)H2 = REGaH2, that H1 occupancy is 0.41 and 0.43 eV more energeti-

cally favorable over H2 occupancy for NdGaH and GdGaH, respectively per

formula unit REGaH. Thus, the H1 positions are filled first during hydrogena-

tion in both NdGaHx and GdGaHx. The H1 sites are of a tetrahedral shape and

formed by the RE metals in the two compounds (i.e. Nd or Gd), while the H2

sites are coordinated by 2 Ga atoms and 3 RE atoms in a trigonal bipyramidal

formation. The appearances of the H1 and H2 sites are presented more clearly

in Figure 4.2. The blue H2 marker is positioned at the geometrical center of

the trigonal bipyramidal site. We did, however, discover that the center posi-

tions was metastable and that the energy was lowered by 0.01 eV per formula

unit by shifting the H atom towards either of the Ga atoms and thus reducing

the symmetry. For NdGaH1+x the H atoms in the trigonal bipyramidal sites

are relaxed to a distance of 1.8 Å and 2.4 Å to the Ga atoms on either side (red
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Figure 4.2. Visualization of, (a) tetrahedral and (b) trigonal bipyramidal of the CrB

structure.

Ga atoms in Figure 4.2) and 1.9 Å and 2.3 Å for GdGaH1+x which indicates

covalent Ga-H bonding.

For partial occupancy of the H2 sites, all the H1 sites were first filled and

then H atoms were randomly distributed into the H2 sites of the 3×1×1 super-

cell of the CrB structure. Several calculations of random hydrogen distribu-

tions were performed until the average total energies and structural parameters

were converged (cf. Section 3.2.4) for REGaH1.33, REGaH1.66 and REGaH2.

Figure 4.3 shows the heat of formation calculated according to

ΔE =
1

1+ x

[
E(REGaH1+x)− (E(REGa)+

1+ x
2

E(H2))

]
(4.1)

for 0≤x≤1. E denotes the total energy of the enclosed-in-brackets system.

The red bars indicates ± the standard deviation from sampling several hydro-

gen distributions in the trigonal bipyramidal sites. The blue dots indicates the

lowest energy distribution found. From the heat of formation, we can see that

NdGaHx is slightly more stable but that the general trends for NdGaHx and

GdGaHx are very similar.

The structural parameters from experiments are well reproduced by DFT

and presented in Table 4.1.

When filling the tetrahedral sites and thus forming REGaH1, the lattice

parameter a decreases and b increases while c remains essentially the same

after hydrogenation. The incorporation of hydrogen only has a very small

effect on the total volume.

Simple models of approximating the electronic “imbalance” can give us an

idea of how many hydrogen atoms per formula unit the structure will want

to hold to compensate for this imbalance. The number of nearest neighbors,

considering a bond to each neighbor, and the number of valence electrons

available for bonding will give us an idea of the imbalance. Hydrogen has a

large electronegativity and will thus attract electrons. Negatively charged hy-

drogen is referred to as being in a hydridic state. The introduction of hydrogen

49



-0.4

-0.5

-0.6

-0.7

-0.8
1 1.2 1.4 1.6 1.8 2.0

x

Δ E
(e

V
/H

)

GdGaHx

NdGaHx

Figure 4.3. Heat of formation for NdGaHx and GdGaHx for 1≤x≤2.

Table 4.1. Lattice parameters of CrB structure from DFT and experiments.

DFT Experiments

Int. sites c/a = 1.00 c/a = 1.05 c/a = 1.10 c/a = 1.00 c/a = 1.05 c/a = 1.10

NdGa 4.4625 11.3735 4.1885 4.4306(3) 11.2478(8) 4.1806(3)

NdGaH 4.2211 12.0192 4.2013

NdGaH1.33 4.1801 12.1142 4.2009

NdGaH1.50 4.1750 12.1488 4.1968

NdGaH1.66 4.1796 12.1703 4.1903 4.1103(7) 12.253(2) 4.1665(8)

NdGaH2.00 4.2125 12.2074 4.1800

GdGa 4.3891 11.0250 4.0970 4.340(3) 11.012(2) 4.105(3)

GdGaH 4.0728 11.6885 4.1199

GdGaH1.33 4.0346 11.8071 4.1105

GdGaH1.50 4.0298 11.9021 4.1022

GdGaH1.66 4.0270 12.0092 4.0906 3.9867(7) 12.024(2) 4.1009(6)

GdGaH2.00 4.1023 11.8529 4.0834

in these type of materials is thus very likely to have a large influence on the

electronic structures as new covalent and ionic bonds are formed.

Table 4.2 shows the calculated Bader charges. The trends for NdGaHx and

GdGaHx are very similar. As expected, the more electronegative p-block metal

Ga carries a negative charge. When filling the H1 sites, both the RE and the

Ga atoms contribute to the charge of the hydrogen atoms. When filling the H2

sites, it is evident that there is a H2-Ga bond, as, almost all charge transfer is

from the Ga atoms to the hydrogen atoms in the H2 positions while the charges

of the H1 hydrogen atoms and the Nd atoms remain essentially the same.

Figure 4.4 shows the density of states (DOS) for NdGaHx for x=0, 1 and

2 with partial contributions of Ga, H1 and H2 in (a) and partial contributions

of Ga px, Ga py + pz in (b). The Fermi level is set to 0 eV and is indicated

by horizontal lines in the top figures. Filling the H1 tetrahedral sites and thus

forming NdGaH has only a small effect on the electronic structure. With the

hydrogen atoms in the tetrahedral sites being coordinated by Nd atoms, no di-
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Table 4.2. Calculated Bader charges in units of the elementary charge e.

Nd Ga H1 H2

NdGa 1.0394 -1.0394

NdGaH 1.4589 −0.7929 −0.6659

NdGaH2 1.5390 −0.3789 −0.6461 −0.5139

Gd Ga H1 H2

GdGa 1.3604 -1.3604

GdGaH 1.5402 -0.8467 -0.6935

GdGaH2 1.6205 -0.4094 -0.6784 -0.5326

rect hybridization with the Ga atoms is to be expected and thus the partial Ga

DOS can be seen to remain essentially unchanged. The DOS at Fermi level

changes considerably when going from NdGa to NdGaH and from NdGaH

to NdGaH2 as a pseudogap can be seen to form. This is expected when the

electron imbalance has been mended by the introduction of hydrogen as more

states are made available at lower energies. The contribution of the H1 and H2

hydrogen atoms to the DOS are very different. For H1 we can see a narrow

peak and thus only weak dispersion. This means that the bond is predomi-

nantly of ionic type and that the hydrogen is hydridic. The contribution of H2

hydrogen to the DOS is clearly very different. In the lower plots where we

show the partial contributions of Ga px, Ga py + pz and H2. The partial distri-

bution of H2 is spread over a large energy and is essentially mirrored by the

partial distribution of Ga. It is evident that H2 bonds are of covalent character,

as opposed to the more ionic nature of the H1 bonds. The Ga px contribu-

tion is heavily affected by the introduction of H2 hydrogen atoms and we thus

conclude, as one would expect from the symmetry considerations, that the H2

hydrogen is carried by a bond to the Ga px orbital as the –Ga–H2–Ga–H2–

chains run in the x-direction.

The total DOS for GdGa, GdGaH and GdGaH2 are shown in Figure 4.5.

The DOS for NdGaHx and GdGaHx exhibit very similar electronic structures.
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Figure 4.4. (a) Electronic density of states (DOS) for NdGa, NdGaH, and NdGaH2

with partial contributions of Ga, H1, and H2. (b) Partial DOS for Ga px,Ga py+pz, and

H2 for NdGa and NdGaH2
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Figure 4.5. Total electronic density of states (DOS) for GdGa, GdGaH, and GdGaH2
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5. Amorphous Iron-Zirconium

An amorphous material is a solid material in a structurally nonstable equilib-

rium. The structure of an amorphous material is defined by short-range order

and long range disorder [3]. It has been known for a long time that quench-

ing (heating and rapid cooling) a material has, most notably, significant effect

on the mechanical properties of the material, such as hardening and protection

against corrosion [66, 67]. A disordered material has the ability to better dissi-

pate energy through spreading out the shear and strain in the material [66, 68].

The resistance to corrosion is believed to partly stem from the absence of grain

boundaries and dislocations in amorphous materials. More recently the mag-

netic properties of amorphous materials have caught the attention of many re-

searchers [69]. The structure, interatomic distances and coordination numbers

can be altered through quenching, alloying and implantation of smaller atoms.

This will affect the exchange interaction between the atoms and consequently

also the magnetic properties of the material. Amorphous materials thus have

a large range of applications that makes them interesting for the industry.

There are many studies on amorphous materials where a theory for sphere

packing has been employed to predict the structural properties [70–74]. These

studies range from very simple models, e.g. Vegard’s law [75], which works

fairly well for many alloys as a first order approximation to more advanced

mathematical models. The highest packing fraction of identical spheres is

that of a close packed structure (hcp or fcc) which has a packing fraction of

0.74. When packing spheres of different radii, higher packing fractions can

be achieved. In the case of two different types of spheres, the highest pack-

ing fraction is achieved when the larger type of sphere occupies 70 to 80% of

the total volume, regardless of the relative volume of the spheres [71]. The

packing fraction increases when the relative volume increases. The packing

fraction of a random closed packed structure is 0.64 and that number has been

produced in a large variety of experiments and simulations [3, 70]. Making

the assumption that an amorphous structure can be approximated with a close

random packed structure and using the atomic volumes of the atoms in their

respective crystalline phases, we can estimate the density of our binary amor-

phous material to what we expect to be in qualitative agreement with the real

samples. We are employing density functional calculations to investigate the

structure of amorphous FeZr. The computational details of the simulations are

explained in Section 5.1. Due to the high computational cost of a full vol-

ume relaxation, we expected computationally heavy calculations because of

the required number of atoms that needs to be included. Under that premise,
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we decided to not perform volume relaxation of the investigated compositions

of FeZr and instead opted to use set densities. Test calculations of different

densities given by both empirical data and sphere packing models showed that

the ratio of the peak positions of the radial distribution function (RDF) re-

mained essentially the same. The short-range order that we define by Voronoi

polyhedra also remained essentially the same for the tested densities. We are

therefore not concerned with the absolute changes in interatomic distances, as

they do of course change with density. They do however scale with the vol-

ume for the tested densities which is another way of saying that the relative

peak positions do not change. We do instead focus on the evolution of the

relative peak positions of the RDF and the Voronoi polyhedra when we alter

the Fe1−xZrx composition.

What all computational modelling of amorphous materials has in common

is the requirement to include sufficiently many atoms so that the long-range

disorder can be modeled. Long-range disorder means that the RDF is essen-

tially flat and equal to one if normalized with respect to an ideal gas. The most

common way to model disordered systems is by rapid quenching in molecular

dynamics simulations [76–78]. As explained earlier, molecular dynamics sim-

ulations are computationally very heavy. Usually, the material is equilibrated

at some elevated temperature above the melting point and then rapidly cooled

(quenching). The computational cost to mimic the experimental cooling rates

is very expensive. The computational cooling rates are usually of the order

of 1012 K/s, while in experiments, the corresponding number is of the order

of 107 K/s. In our work on amorphous FeZr in Paper VIII we have instead

adopted the less heavy stochastic quenching method which can be seen as a

shortcut when generating amorphous structures as compared to MD simula-

tions [6–8]. Details on the stochastic quenching method are given in Section

5.2.

5.1 Computational setup

Supercells consisting of 200 atoms were used to model the amorphous FeZr

structures. A minimum of 50 structures was simulated for each investigated

FeZr composition to ensure that the average total energy of the structures was

converged (cf. Section 3.2.4). The Γ-point alone was used to sample the

Brillouin zone. The electronic structure, exchange and correlation and the

relaxation of the nuclei are treated in the same way as described in Sections

3.1 and 4.1.
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5.2 Stochastic Quenching

An alternative to the computationally heavy temperature equilibration in MD

simulations is the relaxation of stochastic atomic configurations to a near en-

ergy minimum on the potential energy landscape [6–8]. The only constraint

in the creation of the stochastic configurations is the minimum allowed dis-

tance between nearest neighboring atoms. One of the main reason for this is

to avoid numerical complications with the conjugate gradient algorithm if two

or more atoms would sit very close to each other and thus cause very large

energies in the potential energy landscape. Comparisons of structures gener-

ated with the constraint of either 0.5 Å or 1.4 Å minimum allowed distance

between the nearest neighboring atoms resulted in negligible differences. The

computational cost was however improved significantly when using 1.4 Å as

compared to 0.5 Å. Though by applying this constraint we introduce order,

and we have to be cautious about starting the relaxation of the atoms from an

already ordered state. A good measure of order is the characteristics of the

RDF. The RDF of a perfect crystalline material will show the discrete peak

positions of the 1st, 2nd, 3rd... and so forth nearest neighbor distances. If we

take the perfect crystal and slightly distort the atomic positions, thus creating

disorder, we will cause broadening of the peaks in the RDF. If we keep distort-

ing then we will eventually have no structure at all, i.e. the pair distribution

function is, for a large enough system, completely flat.

5.3 Voronoi Tessellation

Voronoi tessellation is a method that can be used for characterizing the short-

range order of both amorphous and crystalline materials. Starting from any

atom, lines are drawn to all nearby atoms. A perpendicular plane is drawn

either at the midpoint between the atoms or at a point determined by the radii

of atoms in the case of different species, e.g. the plane is drawn at the point

where the atoms touch. In our calculations, we used half of the first peak

position of the partial RDFs as the radii of the constituent atoms. The smallest

enclosed volume is called a Voronoi polyhedron. Some of the surfaces of

the polyhedra can be very small, with small in this case meaning that they

only constitute a very small portion of the total surface area. We therefore

introduce a cutoff for the smallest allowed/included surface area with respect

to the total surface area. Figure 5.1 shows the average coordination number

calculated from the Voronoi indexes as a function of relative surface area cutoff

for Fe0.93Zr0.07, Fe0.90Zr0.10 and Fe0.80Zr0.20. We opted to use a 1% cutoff

as it is near the inflection point of the first derivative. Each atom will have

an associated polyhedron and the whole volume of the cell will be filled by

these polyhedra without any gaps. Voronoi polyhedra are often used whenever

the volume of an atom in a bulk material is needed, e.g. for integration of
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the electron density to get the charge of an atom (cf. Bader charge analysis,

Section 4.3).
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Figure 5.1. On the left hand side is the average coordination numbers as a function

of relative area cutoff and on the right hand side is its first derivative. Dashed vertical

line indicates the chosen cutoff.

The various polyhedra will be represented by Voronoi indexes in the form

〈n3,n4,n5, ...〉where ni denotes the number of surfaces with i number of edges.

For example, 〈0,6,0,0,0〉 denotes a shape with 6 faces, where, each face has

4 edges, i.e. a cube in the case of all faces being a square. The fraction of var-

ious polyhedra will give us in-depth information on the short-range structure.

The set of polyhedra will, with great certainty, be unique for all amorphous

materials and thus be a way to classify their individual structures. There will

though, most likely, be a very large variety of polyhedra and most of them

with very small fractions. When presenting data from Voronoi tessellation,

it is common to only show the polyhedra that constitute more that a chosen

minimum fraction of the total number of different polyhedra, as there will be,

depending on the size of your system, a very large number of polyhedra.

From the Voronoi indexes we define the coordination number as ∑
i

ni, or in

other words, the number of faces that constitute the polyhedron is the coor-

dination number. The earlier mentioned polyhedra, 〈0,6,0,0,0〉, would then

indicate a coordination number of 0+6+0+0+0=6.

We have used the software Voro++ to calculate the Voronoi indexes [79].

5.4 Results and discussion

We have investigated Fe0.93Zr0.07, Fe0.90Zr0.10 and Fe0.80Zr0.20 from both ex-

periments and density functional calculations. Our aim is to evaluate the

stochastic quenching method for amorphous Fe1−xZrx and how the structures
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evolve when we alter the composition parameter x. From earlier experimen-

tal work, the amorphous FeZr displays varying critical magnetic temperature

when the composition is changed [69]. Despite our calculations being non

spin-polarized, we expect our structural characterization of these various com-

positions of FexZr1−x will provide some insight into the magnetic properties

as the Fe-Fe distances and the coordination numbers are strongly correlated

with the exchange energy.

Figure 5.2 shows the partial RDFs for Fe0.93Zr0.07, Fe0.90Zr0.10 and

Fe0.80Zr0.20 where the sum of the partial constituents equal the total. The Zr-

Zr data has also been given in separate boxes for better visibility. A common

feature of all amorphous materials, per definition, is the lack of long-range

order, i.e. g(r)=1 when r is large, where, g(r) is the probability of finding

another atom at a distance r from any reference atom. We can see in the

RDF that there is almost no structural order beyond 7 Å and that Fe0.80Zr0.20

seems slightly more disordered than Fe0.93Zr0.07 and Fe0.90Zr0.10 as the RDF

is flatter. Another distinct feature of an amorphous material is the so-called

“splitting” of the second peak, which, for comparison, is not seen in liquids.

The second and third peak, as indicated in the top RDF in Figure 5.2 with

vertical lines, are properties of the RCP structure [3]. In the top left corner of

Figure 5.2 is a simple illustration of the three distances that are indicated by

vertical lines in the RDF.

Another attribute of the RDFs that stands it out is the shoulder on the first

peak and it is clear that it is ascribed to the Fe-Zr partial RDF. In more general

terms, we can say that the shoulder on the first peak is ascribed to the random

packing of different size spheres.

To better quantify the RDF results, we provide Table 5.1 in which we list

the distances to the first three peaks, where, the second and third peaks are

given in units of the first peak position. A general trend that we can see is

the decreasing of the Fe-Fe distance when the Zr content is increased. From

earlier experimental work, an increase in average magnetic moment per Fe

atom and Curie temperature was observed when the Zr content was increased

up to a critical value [69]. This is consistent with lowering of the exchange

energy when the Fe-Fe distance is shortened.

To provide more information on the short-range structure, we have per-

formed Voronoi tesselation calculations from which we present the distribu-

tion of coordination numbers in Figure 5.3 and the fraction of different poly-

hedra in Figure 5.4. We can see that the distribution of coordination numbers

becomes more smeared when we increase the Zr content. This is consequence

of the different radii of the Fe and Zr atoms. A big atom can be encircled by

many small atoms, which is the explanation for the bimodal appearance of the

distribution [71]. The inverse case of a small atom being encircled by larger

atoms is the explanation to the increase in smaller coordination numbers.

We limit the presented Voronoi polyhedra to those with a fraction of more

than 0.01. The different shaded regions indicate a different number of sur-
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Figure 5.2. Radial distribution functions of Fe0.93Zr0.07, Fe0.90Zr0.10 and Fe0.80Zr0.20.
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Fe0.93Zr0.07 R1(Å) R2/R1 R3/R1

Total 2.43 1.72 1.99

Fe-Fe 2.43 1.72 2.00

Fe-Zr 2.93 1.61 1.82

Zr-Zr 3.50 1.52 1.60

Fe0.90Zr0.10 R1(Å) R2/R1 R3/R1

Total 2.42 1.71 2.00

Fe-Fe 2.42 1.71 2.01

Fe-Zr 2.89 1.61 1.85

Zr-Zr 3.53 1.53 1.62

Fe0.80Zr0.20 R1(Å) R2/R1 R3/R1

Total 2.40 1.71 2.00

Fe-Fe 2.40 1.70 2.01

Fe-Zr 2.85 1.61 1.81

Zr-Zr 3.41 1.56 1.64
Table 5.1. Peak positions in the radial distribution functions.
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faces (or coordination numbers) of the polyhedra. We can see a large degree

of consistency in the close range structure, as several Voronoi polyhedra are

reproduced in the three cases.
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Figure 5.4. Fractions of Voronoi polyhedra where polyhedra with a fraction less than

0.01 have been excluded.

The physical significance of the near range order as described by Voronoi

polyhedra requires further studies but it is very feasible that, for instance, the

magnetic and mechanical properties can be interpreted from the Voronoi poly-

hedra.
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6. Conclusions and outlook

We have demonstrated that first-principles Density Functional Theory (DFT)

calculations can accurately describe the properties of hydrogen in metal. Our

results are in good agreement with experimental findings for the investigated

systems of V-H, ScZr(CoNi)2-H, NdGa-H and GdGa-H. The focus of the work

on hydrogen in vanadium has been the strain-induced effects on the potential

energy landscape. We showed that the strain state of V-H has a profound effect

on the phase diagram by comparing the stability of the different high symme-

try interstitial sites for hydrogen occupancy as a function of c/a. We found that

the preferred site occupancy is shifted from tetrahedral to octahedral when ten-

sile strain is applied. The shift in site occupancy itself induces a change in the

strain state of the system, from which we predict a hysteresis behavior in the

volume/strain during the absorption and desorption of hydrogen in a clamped

thin film of vanadium. The experimentally observed difference in the pressure-

concentration isotherms for absorption and desorption in clamped vanadium

films can be attributed to the proposed hysteresis from DFT calculations. The

calculation for the ScZr(CoNi)2-H system also deals with the stability of dif-

ferent interstitial sites, and the induced strain from hydrogen absorption. We

compared experimental and theoretical results on the hydrogen-induced vol-

ume expansion and found good agreement. We also confirmed the expected

near-linear volume increase with hydrogen concentration in transition metals.

From both Molecular Dynamics (MD) simulations and experimental mea-

surements on the V-H system, we have found that the diffusion coefficient

decreases significantly when strain is applied as the hydrogen atoms become

more confined. The difference between tetrahedral and octahedral site occu-

pancy is further investigated by comparing the heat of formation of hydrogen

and deuterium to showcase the significance of zero point energy (ZPE) in the

isotope effects. Fundamental research on the isotope effects can help promote

applications for separation of the isotopes hydrogen, deuterium and tritium.

Vanadium-hydrogen is a good model system for investigations of metal-

hydrogen interaction as it has a rather complex phase diagram which entails

that there is a rich array of fundamental physics insights to be gathered from

this system. From theory, we can calculate the free energy to be able to more

accurately describe the phase transitions and to incorporate temperature and

pressure in the static calculations. As we have so far focused on the effect

of tensile strain on the potential energy surface, it would also be prudent to

investigate the effect of compressive strain. It is reasonable to assume that

compressive strain will promote quicker diffusion. From test calculations of
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hydrogen in vanadium at the strain state of c/a=0.95 performed by us, we

see a higher diffusion coefficient as compared to c/a≥1.00. In material-based

applications for hydrogen storage, the kinetics of diffusion is very important

as the working temperature, for practical reasons, should be manageable from

an engineering perspective. Thus, it is important to improve our understanding

of the fundamental physics that governs the diffusion of lattice gases.

In the Zintl phase NdGa-H and GdGa-H systems, we investigated the bond-

ing of the hydrogen atoms to rare earth and gallium atom. As these systems

exhibit pronounced changes in structural and physical properties with the in-

troduction of hydrogen, they can be considered good model systems for stud-

ies of hydrogen bonding. The structural properties determined from experi-

ments are in good agreement with those calculated by DFT. We studied the

partial density of states (DOS) and the Bader charges to determine how hy-

drogen was bonded to the material. These type of materials where hydrogen

is covalently bound to p-block or rare earth metals are usually referred to as

“chemical hydrides”. Chemical hydrides are showing good promise concern-

ing both gravimetric energy density and working temperature. A better under-

standing of the fundamental properties here could help to promote the needed

research to meet the goals of stored energy per dollar/mass/volume to make

hydrogen an economical and practical option as an energy carrier.

For the amorphous iron-zirconium, we investigated the level of accuracy at

which we can describe this material using the stochastic quenching method.

Comparison of structures generated with the stochastic quenching method

with real samples that were structurally described by Extended X-ray Ab-

sorption Fine Structure (EXAFS). With structural agreement confirmed, we

moved on to classify the structures by Radial Distribution Function (RDF)

and polyhedra derived from Voronoi tessellation. Finding the correlation be-

tween the structure and the magnetic properties could, with the use of simple

sphere-stacking models, allow us to create structures with desired magnetic

properties. We found a shortening of the Fe-Fe bond when the Zr content

was increased, which can explain the experimentally observed decrease in the

magnetic moment and Curie temperature.
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7. Svensk sammanfattning

Syftet med materialteori är att karaktärisera materials egenskaper utifrån inter-

aktionerna mellan deras små beståndsdelar, atomkärnorna och elektronerna.

Elektrisk ledningsförmåga, värmekapacitet, magnetiska och mekaniska egen-

skaper härrör alla från hur atomerna är ordnade i materialet och hur elek-

tronerna är fördelade mellan atomerna för att, likt ett lim, hålla samman ma-

terialet genom den elektromagnetiska växelverkan. Vi kan exakt formalisera

den elektromagnetiska växelverkan via Schrödingerekvationen. Det föreligger

dock väldigt stora svårigheter att hitta en lösning på Schrödingerekvationen då

vi vill beskriva ett system som innehåller fler än två partiklar. Vi kallar detta

för ett flerkroppsproblem. Istället för att söka ett exakt sett att beskriva inter-

aktionerna mellan dessa kroppar/partiklar så söker vi istället de bästa sätten

att approximera dessa. I denna avhandling har vi tillämpat en första-princip

metod baserad på täthetsfunktionalteori (Eng: density functional theory) som

låter oss beräkna en god approximation till Schrödingerekvationen genom att

behandla elektronerna som ett moln liggandes kring atomkärnorna. Molnet

av elektroner kan beskrivas av en täthetsfunktional som endast beror av en

parameter, vektorn r. Framgången med täthetsfunktionalteori hänger mycket

på hur väl vi kan beskriva elektron-elektron interaktionen. Täthetsfunktional-

teorin formulerades redan 1965, på den tiden hade vi dock inte tillräckligt

med datorkraft för att kunna behandla några större system med god nog-

grannhet. Täthetsfunktionaleorin sammanföll dock med en revolution inom

integrerade kretsar som ledde till att datorer utvecklades i snabb takt. När

datorerna blev bättre kunde större system behandlas och bättre approxima-

tioner för att beskriva elektron-elektron interaktionen kunde tillämpas. Idag

kan många fysikaliska egenskaper i system innehållandes flera tusen atomer

beskrivas med god precision.

I denna avhandling beskriver vi hur väte interagerar med övergångsmet-

aller, metaller från p-blocket och sällsynta jordartsmetaller. Syftet är att få

en ökad förståelse för de fundamentala koncept som leder till att väte binder

till metallen och hur vätet i sin tur också påverkar metallen. Väte orsakar

små töjningar som globalt sett manifesterar sig som en ändring i volym. Vätet

påverkar också det tidigare nämnda “molnet” av elektroner i metallen. Ändrin-

gen kan kartläggas genom att man beräknar elektronernas energier i metallen

före och efter väte har absorberats för att på så vis kunna se vätets påverkan

på elektronisk nivå.

Vi har undersökt hur väte i övergångsmetallen vanadin påverkas om vi töjer

den. Töjning leder till att atom-atom avstånden ändras vilket i sin tur leder till
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att elektronmolnet omkonfigureras. Vi har då på ett tillsynes enkelt sätt ändrat

förhållandet för väteatomer i metallen. Vi beskriver detta som en ändring av

energilandskapet. Att kunna förändra energilandskapet i en metall är ett sätt

för oss att undersöka de fundamentala egenskaperna av väte i metall som näs-

tan uteslutande beror av just energilandskapet. Vanadin är en extra intressant

metall i detta avseende då den uppvisar en stor påverkan då den töjs. Som

tidigare nämnt så ändras volymen av en metall när den absorberar väte, det är

alltså inte bara en yttre påverkan som kan töja metallen, utan det sker också

inifrån genom de sammanlagda små töjningarna orsakade av väteatomerna.

En väteatom bär på en elektron, denna elektron kommer att binda till en

metall via delvis kovalenta, joniska och metalliska bindningar. Vi har un-

dersökt hur väte binder till de sällsynta jordartsmetallerna neodymium och

gadolinium samt gallium från p-blocket i periodiska systemet. I legeringar

bestående av en sällsynt jordartsmetall och ett grundämne från p-blocket har

väte en stor påverkan på elektronfigurationen, de lämpar sig därför till funda-

mental forskning om vätes inverkan.

För att sätta forskningen om väte i metall i ett större perspektiv så är det

främst ett nytt medel för att lagra energi med en högre energitäthet per vikt-

och volymenhet än vad dagens vanligt förekommande batterier kan erbjuda.

Vätgasmolekyler bär på mycket energi då de gärna vill bilda nya föreningar

med andra typer av atomer och på så vis frigöra energi i form av värme. En

sådan förening är till exempel vatten (H2O). En mix av väte och syre är därför

väldigt lättantändlig och rik på energi. En förbränningsmotor som drivs på

väte kommer alltså att producera utsläpp i form av vatten. En av de större

utmaningarna med att driva en bil på vätgas är att få med sig vätet i bilen på

ett säkert sätt. Den enklaste lösningen är att ta med sig vätet i gasform i en

tryckbehållare. Risken det medför är dock att behållaren kan gå sönder och

som följd kan vätgasen snabbt blandas med syre. Om man istället binder väte

i en metall så kan inte vätet fly lika fort i händelse av att systemet skadas.

Efterfrågan på stationära system för energilagring kommer också att öka i takt

med att vi producerar mer förnyelsebar energi från till exempel vindkraft och

solceller. Idag går mycket energi förlorad på grund av överproduktion, det

vore därför bra att kunna lagra den energin för användning när produktionen

inte motsvarar energiförbrukningen. Då väte i metall erbjuder en potentiellt

stor mängd energi per volym och viktenhet så är det ett alternativ som måste

utvärderas grundligt.

I sista delen av avhandlingen har vi undersökt det amorfa tillståndet av en

legering bestående av järn och zirkonium. Att ett material är amorft innebär

att det, till skillnad från ett kristallint, inte har en struktur som enkelt kan klas-

sificeras med ett gitter och ett fåtal ordnade atomer (enhetscell). En amorf

struktur kan enklast beskrivas som någonting oordnat men det är inte riktigt

sant. Det måste finnas ordning i ett amorft material då det råder krafter mellan

atomerna som inte kommer att tillåta att det inbördes avståndet mellan atomer

blir för litet. Vi har tillämpat metoden stokastisk nedkylning (Eng: stochas-
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tic quenching) för att generera amorfa strukturer. Metoden innebär att man

börjar från en initialt slumpmässig ordning av atomer och därefter, med hjälp

av täthetsfunktionalteori implementerad i ett datorprogram, beräkna krafterna

mellan atomerna för att på så vis kunna uppdaterar atomernas positioner tills

de resulterande krafterna på atomerna är väldigt nära noll. Gör man detta i

små steg så kommer strukturen att hamna i ett så kallat metastabilt amorft

tillstånd. Dessa av oss skapade strukturer från teoretiska modeller har blivit

jämförda med riktiga prover av amorft järn-zirkonium. När vi kunde fastslå

att vi med stokastisk nedkylning kunde skapa realistiska amorfa strukturer så

var nästa steg att strukturellt definiera dessa strukturer. När sammansättnin-

gen av järn och zirkonium ändras så ändras också de fysiska egenskaperna

hos materialet, bland annat ändras de magnetiska egenskaperna. Dessa än-

dringar kan med stor sannolikhet tillskrivas ändringarna av strukturen som en

följd av ändringen i sammansättningen. Att kunna klassificera strukturen av

ett amorft material där de fysikaliska egenskaperna ännu inte har mätts ex-

perimentellt kan ge oss en antydan om vad experimenten kommer att ge. I

amorft järn-zirkonium kommer de magnetiska egenskaperna bero mycket på

avståndet mellan järnatomerna och hur många av grannatomerna som också är

järnatomer.
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