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Abstract
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Graphene, the thinnest material with a stable 2D structure, is a potential alternative for silicon-
based electronics. However, zero band gap of graphene causes a poor on-off ratio of current
thus making it unsuitable for logic operations. This problem prompted scientists to find other
suitable 2D materials. Creating vacancy defects or synthesizing hybrid 2D planar interfaces with
other 2D materials, is also quite promising for modifying graphene properties. Experimental
productions of these materials lead to the formation of possible defects and impurities with
significant influence in device properties. Hence, a detailed understanding of the effects of
impurities and defects on the properties of 2D systems is quite important.

In this thesis, detailed studies have been done on the effects of impurities and defects on
graphene, hybrid graphene/h-BN and graphene/graphane structures, silicene and transition
metal dichalcogenides (TMDs) by ab-initio density functional theory (DFT). We have also
looked into the possibilities of realizing magnetic nanostructures, trapped at the vacancy defects
in graphene, at the reconstructed edges of graphene nanoribbons, at the planar hybrid h-BN
graphene structures, and in graphene/graphane interfaces. A thorough investigation of diffusion
of Fe adatoms and clusters by ab-initio molecular dynamics simulations have been carried out
along with the study of their magnetic properties. It has been shown that the formation of Fe
clusters at the vacancy sites is quite robust. We have also demonstrated that the quasiperiodic
3D heterostructures of graphene and h-BN are more stable than their regular counterpart and
certain configurations can open up a band gap. Using our extensive studies on defects, we have
shown that defect states occur in the gap region of TMDs and they have a strong signature in
optical absorption spectra. Defects in silicene and graphene cause an increase in scattering and
hence an increase in local currents, which may be detrimental for electronic devices. Last but
not the least, defects in graphene can also be used to facilitate gas sensing of molecules as well
as and local site selective fluorination. 
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Part I:
Introduction & The Theoretical Formalism





1. Introduction

“Where shall I begin, please your Majesty?”
he asked. “Begin at the beginning,” the King
said gravely, “and go on till you come to the
end: then stop.”

— Lewis Carroll, Alice in Wonderland

Electronics, a field of science and engineering, deals with electronic devices
made of various electrical components e.g., vacuum tubes, diodes, transistors,
integrated circuits, etc. [1]. One of the initial discoveries and inventions in
the history of electronics goes way back in 1745, when Kleist and Musschen-
broek invented Leyden jar, which was the original form of capacitor. Since
then, various inventions and discoveries made by numerous notable scientists
and inventors built a solid foundation in development of electronic technology.
However, the invention of diode (the simpler version of vacuum tube) using
the principle of “Edison Effect” by Fleming in 1905, triggered the beginning
of modern electronics. Vacuum tubes became integral part of electronics dur-
ing the early part of 20th century and the invention of these vacuum tubes
made the technologies like radio, television, telephone networks, computers,
etc. popular and widespread. However, the use of vacuum tubes made these
technologies costly and the devices bulky.

Humans have always been mesmerized by the miniaturization’s of modern
day electronic devices. The semiconductor devices, which were invented in
1940s, made it possible to manufacture smaller, durable, cheaper, and efficient
solid-state devices than vacuum tubes. Consequently, these solid-state devices
e.g., transistors, gradually started to replace the vacuum tubes in the electronic
devices during 1950s. In the pursuit of smaller size, integrated circuits (ICs)
were invented. The scaling-down of devices is profoundly dependent on the
size of integrated circuits (IC), which are the heart and brain of modern day
electrical and electronic devices. The ICs are made of large number of tiny
electronic circuits, which are created on a wafer made of pure semiconductor
material, mainly silicon.

Silicon-based electronics, however, restricts the further scaling down of
sizes. The performance of these electronic devices depend on the mobility
of charge carriers e.g., negatively charged ‘electrons’ and positively charged
‘holes’. As the size of these chips are getting smaller and complex, the abil-
ity to move electrons around are reaching its practical limits due to amount of
heat dissipation, leakage between the circuits, doping problems, etc. Hence,
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in pursuit of new materials and technologies as a possible substitute to sili-
con is already under way. One of the promising alternative is to use quantum
properties e.g., spin of electrons. The spins of electrons can be aligned either
up or down, which are alike internal bar magnets. The flipping of spins does
not require energy to move charge carriers physically, a property that scientists
are eager to use for transporting information in ‘spintronic’ devices. Among
several other alternatives [2], such as multigate transistors, III-V compound
semiconductors, germanium nanodevices, carbon nanotubes, etc., graphene, a
two dimensional monolayer of carbon atoms arranged in a honeycomb lattice
[3, 4], has become most promising.

Theoreticians have been studying properties of graphene or ‘2D graphite’
for quite sometime since 1950s [3, 5, 6]. However, in 2004, the experimen-
tal realization of creating a stable structure of two dimensional (2D) graphene
from the three dimensional (3D) graphite [4] brought graphene into the lime-
light of materials research as the potential alternative to the silicon-based elec-
tronics.

So what makes graphene so interesting? The answer lies in some extraor-
dinary properties of graphene. First, graphene fits in perfectly for the need
of ‘nano’ devices because it is the thinnest material with a highly stable two-
dimensional structure. Secondly, graphene has an extremely high charge car-
rier mobility even at ambient conditions, 200×103 cm2 V−1 s−1 at a carrier
density of 1012 cm−2 [7, 8], which remains uninfluenced by temperature, elec-
trical or chemical doping. The possibility of tuning charge carriers continu-
ously from electron to hole [9], which is known as ambipolar field effect, also
makes graphene an interesting contender for the device fabrications.

The reason of these exotic properties lies in the fact that the charge car-
riers in graphene imitate relativistic particles. Hence, they are described by
Dirac equation with zero rest mass and effective Fermi velocity vF ≈ 106 m
s−1 [10]. This relativistic nature is reflected in remarkable graphene properties
like anomalous quantum Hall effects (QHE) [11, 12], minimum quantum con-
ductivity [13, 14] and Klein tunneling [15]. Ballistic transport is also feasible
in graphene due to its high carrier mobility and long mean free path, which is
suitable from the electronic device point of view.

Although graphene has zero carrier density near the Dirac points, it does not
have a band gap and the use of graphene in digital electronics is restricted due
to the occurrence of minimum quantum conductivity. This leads to a very poor
Ion/Ioff ratio ∼ 101 – 102 [16], which is not suitable for transistor applica-
tions. Hence it is necessary to manipulate the properties of graphene. Among
the various attempts that have been made to introduce a semiconductor gap in
graphene and modify its properties [17–26], creating defects are of particular
interest. The nature and type of defects in graphene have been discussed ex-
tensively by Castro Neto et al. [10] and Banhart et al. [27]. Both intrinsic and
extrinsic defects are possible in graphene. In particular, graphene is prone to
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form vacancy defects [28, 29]. Such defects can affect the electronic structure
and hence transport properties of graphene [26, 30–32].

The lack of band gap in graphene also prompted scientists to investigate
other alternative two dimensional materials with possible band gaps. There
exist a large number of layered crystalline solid-state materials with weak in-
ter layer interaction from which a stable single layer 2D materials can be ex-
tracted [33]. These family of “beyond graphene” 2D materials can be classi-
fied further in smaller sub-classes such as 2D allotropes (graphyne, borophene,
germanene, silicene, stanene, phosphorene), compounds (graphane, hexago-
nal boron nitride, germanane, transition metal dichalcogenides, etc.) [17, 21,
34–44]. Transition metal dichalcogenides were well known for quite some-
times [45] and Frindt et al. have shown that a few and single layer of metal
dichalcogenides can be mechanically and chemically exfoliated from the van
der Walls layered metal dichalcogenides [46, 47]. However, the potential of
these 2D materials became apparent after an extraordinary research interest in
graphene. Many of the 2D materials that had not been considered to exist have
been synthesized using state-of-the-art experimental technologies. These 2D
materials can be used in various wide range of applications due to their inter-
esting electronic and structural properties, which are quite different from their
bulk counterpart [48–53].

However, to use these various properties in commercial electronic devices,
the 2D materials have to be prepared in a scalable way. In today’s available ex-
perimental techniques, chemical vapor deposition method has become one of
the first choices to make large scale fabrication of 2D materials. Nonetheless,
defects such as edges, heterostructures, grain boundaries, vacancies, intersti-
tial impurities are quite common in CVD prepared samples [27, 54–56]. These
defects can be easily observed using various experimental techniques e.g.,
transmission electron microscopy (TEM) or scanning tunneling microscopy
(STM) [57, 58]. Generally, these defects influence the properties of pristine
materials. Hence it is important to investigate and thoroughly understand the
role of defects either for avoiding their formation or for deliberate engineer-
ing. Sometimes defects can have destructive effects on device properties [54].
However, in nano scale, defects can introduce new functionalities, which can
be beneficial for applications [59, 60].

A parallel approach in modifying graphene properties due to absence of
band gap, is to build a hybrid material involving graphene and other 2D ma-
terials. Among other alternative 2D materials [48], hexagonal boron nitride
(h–BN) appears to be a perfect candidate in this regard. Hexagonal boron ni-
tride is isoelectronic to graphene, has similar lattice constant (only ∼ 1.6 %
mismatch), yet having different band structure than graphene, which leads to a
complementary electronic structure [49, 61]. Ab-initio theoretical calculations
on these hybrid materials reveal opening of a variable band gap [62–64], carrier
induced magnetism [65], minimum thermal conductance [66] and interfacial
electronic reconstruction [67, 68]. Controlled experimental synthesis of planar
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hybrid structure of hexagonal boron nitride and graphene sheets with tunable
separate graphene and h–BN regions [69–71] expands a great possibility of
device fabrication, e. g., 2D field-effect transistors [72]. Graphane, hydro-
genated graphene, is also a very good choice of making hybrid structures with
graphene. These hybrid structures of graphene/graphane can mimic the prop-
erties of graphene nanoribbons [73–77]. Hence these materials can be useful
in various potential applications.

In this thesis, we have employed ab-initio density functional theory based
methods to investigate the influence of defects and impurities on the prop-
erties of 2D materials, such as graphene, silicene (2D sheet of silicon), 2D
transition metal dichalcogenides, hybrid structures of graphene/graphane and
graphene/h-BN. We have also looked into the opportunities of forming mag-
netic nanostructures on these interface structures, defected graphene, edge re-
constructed zigzag graphene nanoribbons, etc. Transport properties of graphene
and silicene in presence of various kinds of defects have been studied to iden-
tify defect-specific signatures. The effects of defects on gas sensing properties
of graphene and on functionalization of graphene using Fe and F have been
discussed.

The thesis is arranged in three parts – Part I, II, and III. Part I of the
thesis contains two chapters – Introduction in Chapter 1 and brief formalism of
density functional theory and computational methods in Chapter 2. The Part II
of the thesis, summary of the results, also contains two chapters – Chapter 3
and Chapter 4. Chapter 3 consists of short summaries on the results obtained
involving impurities in 2D systems whereas the effects of defects are discussed
in Chapter 4. Finally the last part of the thesis, Part III, contains final remarks
on the thesis. Here also two chapters are the constituents of this part. The
discussions about final conclusions and outlooks are contained in Chapter 5.
Last but not the least, Chapter 6 contains the summary of this thesis in Swedish
language. For more detailed results and discussion, readers are encouraged to
read the original research papers and manuscripts attached at the end of the
thesis.
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2. Theoretical Methods

This is the Construct. It is our loading
program. We can load anything from clothes,
to weapons to training simulations. Anything
we need.

— Morpheus, The Matrix

Electrons and nuclei are the fundamental particles that determine the physi-
cal and chemical characteristics of materials. The atomic and molecular prop-
erties such as magnetic, optical, transport and crystal structures of materials
are crucially dependent on the respective electronic structure. Therefore, de-
termination of the electronic structure has always been in the focus of con-
densed matter physics and chemistry community. However, solutions of the
electronic structure are not straight forward due to the fact that the electronic
interactions in matter are quantum mechanical in nature and the complexity of
describing them in a quantum mechanical system increases significantly with
the increasing number of the electrons . This bottleneck leads to the branch of
physics called “many-body physics”.

2.1 Many body problem
The state of a many particle system is described by all electron wave function,
ψ({r⃗i, R⃗α}, t), which in general depends on position and time. The dynamics
for non-relativistic systems are controlled by a time-dependent Schrödinger
equation

iℏ
∂ψ

∂t
= Ĥψ . (2.1)

Ĥ , the Hamiltonian, represents the total energy operator and has the follow-
ing form for a many body system, which consists of a number of interacting
electrons and nuclei

Ĥ = − ℏ2

2me

∑
i

∇2
i −

∑
α

ℏ2

2Mα
∇2

α −
∑
i

∑
α

Zαe
2

|r⃗i − R⃗α|

+
∑
i

∑
j>i

e2

|r⃗i − r⃗j |
+
∑
α

∑
β>α

ZαZβe
2

|R⃗α − R⃗β|
, (2.2)
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Figure 2.1. Schematics of instantaneous positions of atoms and electrons in a many
body system. Small (red) and big (green) circles represent electrons and nuclei respec-
tively. Size of the circles are not in scale.

where me and Mα are the mass of electron and αth nucleus respectively,
and r⃗i, R⃗α are the position of ith electron, αth nucleus respectively as de-
picted schematically in Fig. 2.1. Zα is the atomic number of the correspond-
ing nucleus. The first and the second term of the equation 2.2 are the kinetic
energy of the electrons and nuclei, respectively. The remaining three terms
are the potential energy due to the Coulomb interaction between electron-
nucleus, electron-electron and nucleus-nucleus, respectively. The Hamiltonian
does not contain any explicit time dependent term. Therefore it is possible to
write the wave function as a simple product of a spatial and a time-dependent
parts, ψ

(
{r⃗i, R⃗α}, t

)
= ϕE

(
{r⃗i, R⃗α}

)
e−iEt, which leads to a simpler time-

independent form of equation 2.1

Ĥψ = Eψ , (2.3)

where E is the total energy of the system.
However, solving the Schrödinger equation in this form is limited to a very

small number of systems. Thus, to be applicable for all types of systems, ap-
proximations need to be incorporated. The first approximation utilizes the fact
that the nuclei are ∼ 103 times heavier compared to the electrons and thus their
motion are significantly slower than the electronic motion. Thus it is plausi-
ble that on the time scale at which the nuclei move, the electrons very rapidly
adapt to the instantaneous position of the configuration of nuclei. Therefore

18



the nuclei wave functions are independent of the electronic coordinates, and
the wave function of the system can be split into the product of nuclei and
electronic terms. This separation of electronic and nuclear motion is known
as the Born-Oppenheimer approximation [78]. Thus the Hamiltonian can be
separated into the nuclei part and the electronic part can be written as follows,

Ĥe = − ℏ2

2me

∑
i

∇2
i −

∑
i

∑
α

Zαe
2

|r⃗i − R⃗α|
+
∑
i

∑
j>i

e2

|r⃗i − r⃗j |
. (2.4)

The nuclei-nuclei interaction,
∑

α

∑
β>α

ZαZβe2

|R⃗α−R⃗β |
, is treated classically by the

Ewald method. The total energy of the system is then calculated by adding this
nuclei-nuclei interaction.

Even after this approximation, the solution of the Schrödinger equation is
not easy because of the two following reasons,

1. The number of electrons in solid, N ∼ 1023. Therefore, total 4N
variables require to describe the many-body electronic wave function.

2. The motion of an electron in solids is affected by the presence of other
electrons through electron-electron correlation term

∑
i

∑
j>i

e2

|r⃗i−r⃗j | .
Therefore, to obtain any feasible solution, different schemes have been devised
to approximate the many-body problem.

The first approach to solve the problem was introduced by Hartree by con-
structing the many electron wave function as a product of single electron wave
functions. Solving using the variational principle, single particle Hamiltonian
equations (Hartree equations) can be found. These equations are similar to
the Schrödinger equation with an effective ‘Hartree’ potential. However, this
approach does not consider antisymmetric description of the fermionic wave
function.

Hartree-Fock formalism incorporated this fact by constructing many body
electron wave function in a Slater determinant form. By using a variational
method, similar Hamiltonian equations can be obtained. However, this for-
malism introduces an extra potential, named as exchange potential, along with
the Hartree potential. This formalism is quite successful for small finite sys-
tems. However, it does not incorporate any electron correlation effect and thus
remains inaccurate.

Both Hartree and Hartree-Fock methods are wave function based. There-
fore, they are computationally expensive for large system sizes. The wave
function is a very complicated quantity which cannot be measured experimen-
tally. It depends on 4N variables, three spatial and one spin variable for each
N electrons. Electron density, a real quantity, has reduced degrees of freedom
and thus it can reduce the computational expanses significantly, if used as vari-
ables. The use of electron density as variable to solve many body Schrödinger
equation gives birth to Density Functional Theory, the most popular and ver-
satile method in modern day condensed matter physics.
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2.1.1 Density functional theory
As stated in the last paragraph, the core concept of Density functional theory
(DFT) is that to use the electron density n(r⃗) as a means to reach a solution to
the Schrödinger equation. Thomas and Fermi [79, 80] took the first attempt to
obtain information about atomic and molecular systems using electron density.
They used a quantum statistical model of electrons which considers only the ki-
netic energy of the electrons. Contributions coming from the nuclear-electron
and electron-electron were treated in a classical way. In this model Thomas
and Fermi derived a very simple expression for the kinetic energy based on
non-interacting uniform electron gas density but excluding the exchange and
correlation of electrons.

Dirac further extended this model by including exchange interaction term
based on uniform electron gas [81] and modified the equation of kinetic energy.
However, the simple approximations by both Thomas-Fermi and Dirac lacked
accurate descriptions of electrons in a many body system, leading to its failure.

2.1.2 Hohenberg-Kohn theorems
The first strong foundation of DFT came from the formalism of Hohenberg-
Kohn in 1964 [82]. Hohenberg and Kohn through their two theorems, first
showed that the properties of interacting systems can be obtained exactly using
the ground state electron density, n0(r⃗). This formalism is the core concept of
DFT and relies on the following two theorems*,

Theorem I
For any system of interacting particles in an external potential Vext(r⃗), the
potential Vext(r⃗) can be determined uniquely, except for a constant, by the
ground state particle density n0(r⃗)
Theorem II
A universal functional for the energy E[n] in terms of density n(r⃗) can be
defined, valid for any external potential Vext(r⃗). For any particular Vext(r⃗),
the exact ground state energy of the system is the global minimum value of
this functional, and the density n(r⃗) that minimizes the functional is the exact
ground state density n0(r⃗)
Following the two theorems, the total energy of the system can be written as,

E[n(r⃗)] = F [n(r⃗)] +

∫
Vext(r⃗)n(r⃗) dr⃗ . (2.5)

The functional F [n(r⃗)] has the following form

F [n(r⃗)] = T [n(r⃗)] + J [n(r⃗)] + Encl[n(r⃗)] , (2.6)

*The statements of the two theorems are directly taken from the book titled “Electronic Structure:
Basic Theory and Practical Methods” written by Richard M. Martin. [83]
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where T [n(r⃗)] is the kinetic energy of the interacting system, J [n(r⃗)] is the
Hartree term, the classical Coulomb interaction between electrons. Encl[n(r⃗)]
is the non-classical electrostatic contributions coming from self-interaction,
exchange (i.e., antisymmetric nature of electrons), and electron correlation ef-
fects.

Since the functional F [n(r⃗)] does not depend on the external potential, it
has to be same for any system. If the exact form of F [n(r⃗)] were a known
and simple function of n(r⃗), then the ground state energy and density in an ex-
ternal potential can easily be determined by the minimization of a functional,
which is a function of the three-dimensional density. However, the complex-
ities of many electron system remain in finding the accurate form of the uni-
versal functional F [n(r⃗)]. The two Hohenberg-Kohn theorems do not provide
any solution to determine the exact form of the functional.

2.1.3 Kohn-Sham formalism
Kohn and Sham, in their article [84], gave a practical approach to obtain the
unknown universal functional that we discussed previously. The main idea
of Kohn-Sham formalism was to replace the kinetic energy of the interacting
many-body system (T ) with the exact kinetic energy of a non-interacting sys-
tem (TS) built from a set of orbitals, i. e., one electron functions while keeping
the same ground state density. The non-interacting kinetic energy term TS can
be written as,

TS = −1

2

occ∑
i=1

⟨ψi|∇2 |ψi⟩ . (2.7)

According to the Kohn-Sham formalism, the total energy functional can be
written as

E[n(r⃗)] =

∫
Vext(r⃗)n(r⃗)dr⃗ + TS [n(r⃗)]

+
1

2

∫∫
n(r⃗)n(r⃗2)

|r⃗ − r⃗2|
dr⃗ dr⃗2 + Exc[n(r⃗)] , (2.8)

where, Vext is the external potential, TS is the kinetic energy term. The third
term in the equation is Hartree term, which is the classical electrostatic energy
of the electrons. Exc is known as the excahnge-correlation energy and can be
defined using equations 2.5, 2.6 and 2.8 as,

Exc = (T [n(r⃗)]− TS [n(r⃗)]) + Encl[n(r⃗)]

= TC [n(r⃗)] + Encl[n(r⃗)] . (2.9)

Hence, Exc is the functional which contains the residual part of true kinetic
energy, TC , and the non-classical electrostatic contributions, Encl. The mini-
mization of Kohn-Sham energy functional in equation 2.8, with respect to the
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electron density n(r⃗) yields a Schrödinger-like Kohn-Sham equation,

HKS(r⃗)ψi(r⃗) =

[
−1

2
∇2 + VKS(r⃗)

]
ψi(r⃗) = εiψi(r⃗) , (2.10)

showing that the non interacting particles are moving in an effective potential,
VKS . The potential, VKS , can be written as,

VKS(r⃗) = Vext(r⃗) + VH(r⃗) + Vxc(r⃗) , (2.11)

where, Vext is the external potential, VH is the Hartree potential and Vxc is the
exchange-correlation potential. The form of these potentials are expressed as,

VH =

∫
n(r⃗2)

|r⃗ − r⃗2|
dr⃗2 and Vxc =

δExc[n(r⃗)]

δn(r⃗)
.

ψi are the eigenfunctions and εi are the corresponding eigenvalues. The ground
state electron density can be calculated as follows,

n(r⃗) =

occ∑
i=1

|ψi(r⃗)|2 . (2.12)

The newly calculated electron density can be used to calculate new effective
potential self-consistently. From the equation 2.7 and 2.10, the kinetic energy
of the non-interacting system can be written as

TS [n(r⃗)] =

occ∑
i=1

εi −
∫
VKS(r⃗)n(r⃗) dr⃗ , (2.13)

and then substituting the value of TS [n(r⃗)] in equation 2.8, the total energy can
be obtained by the following expression,

E[n(r⃗)] =

occ∑
i=1

εi −
1

2

∫∫
n(r⃗)n(r⃗2)

|r⃗ − r⃗2|
dr⃗ dr⃗2

−
∫
Vxc(r⃗)n(r⃗) dr⃗ + Exc[n(r⃗)] , (2.14)

where, the total energy functional E[n(r⃗)] does not depend on the external
potential Vext(r⃗).

2.2 Exchange-correlation approximations
The Kohn-Sham formalism we have discussed previously is exact. If the form
of Exc is exactly known, then this formalism will yield exact ground state of
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the interacting many-body system. However, the explicit form of theExc func-
tional is not known and approximations to the form of Exc have to be intro-
duced. Hence, the quality of DFT calculations solely depend on the accuracy
of chosen approximation to Exc. Depending on the level of approximation,
different forms of Exc can be constructed. Two of the most common used ap-
proximations are local density approximation (LDA) and generalized gradient
approximation (GGA).

2.2.1 Local density approximation (LDA)
Hohenberg and Kohn proposed the first ever form of exchange-correlation en-
ergy [82]. In this proposal, the exchange-correlation energy density εunixc [n(r⃗)]
of a system is considered to be the same as associated with the uniform elec-
tron gas with a density n(r⃗). Using this assumption, the form of exchange-
correlation functional can be written as below,

ELDA
xc [n(r⃗)] =

∫
n(r⃗)εunixc [n(r⃗)] dr⃗ , (2.15)

where εunixc [n(r⃗)] denotes the exchange-correlation energy density of a uniform
electron gas with density n(r⃗) calculated locally at a point r⃗. This is the most
basic form of exchange-correlation functional and works quite well for many
systems. εxc has two contributions, exchange, εx, and correlation, εc. The
analytical form of εx can be evaluated from the approximation of Hartree-Fock
exchange and originally derived by Dirac [81] as follows,

εx[n(r⃗)] = −3

4

(
3 n(r⃗)

π

) 1

3

. (2.16)

However, the explicit analytical form of εc is not known. Ceperley and Alder
obtained highly accurate numerical values of εc using quantum Monte-Carlo
simulations of the homogeneous electron gas [85]. On the basis of this nu-
merical values, using advanced interpolation techniques, various analytical ex-
pressions of εc were presented by different authors e.g., Perdew-Zunger [86]
Perdew-Wang [87].

Despite its simplicity, LDA seems to work fine particularly for the molecu-
lar properties determination such as equilibrium structures, harmonic frequen-
cies or charge moments, properties of itinerant magnetic systems [88]. LDA,
however, underestimates the lattice constant of the materials [89] and produce
relatively higher binding energies i. e., over binding.

2.2.2 Generalised-Gradient approximation (GGA)
Generalized-Gradient approximation was developed to overcome some of the
limitations of LDA. In this method, the exchange-correlation density depends
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both on the electronic density, n(r⃗), and on the gradient of the electronic den-
sity, ∇n(r⃗). GGA exchange-correlation energy is obtained by modifying the
LDA energy density:

EGGA
xc [n(r⃗)] =

∫
n(r⃗)εunixc [n(r⃗)]Fxc [n(r⃗),∇n(r⃗)] dr⃗ (2.17)

where Fxc[n(r⃗),∇n(r⃗)] is an analytic function, known as the enhancement
function. Perdew and Wang provided a parameter free form of exchange en-
hancement factor [90]. It was later on modified by Perdew, Burke and Ernz-
erhof to give a simplified form, known as PBE after their names. Using a
parametrized form of the homogeneous electron gas correlation energy and a
gradient dependent term, the GGA correlation can also be constructed [91, 92].

GGA corrected the over binding problem of LDA. It also improves the re-
sults in structural properties, bulk phase stability, atomic and molecular en-
ergies, phase transitions, cohesive energies, etc. However, GGA does not
provide much improvements over LDA in describing itinerant magnetic sys-
tems [88].

Although both LDA and GGA are successful in describing some material
properties, both of them underestimate the band gap of semiconductors and
insulators. The dependence of energy functionalE(N) on the number of elec-
trons,N , creates the problem for both LDA and GGA.E(N) and its derivative
∂E/∂N , both are continuous for an integral value ofN . However, the deriva-
tive of the exact functional might be discontinuous with respect to number of
electrons. This contributes to the band gap by a significant amount [93, 94].

2.3 Strong correlation effect: LDA+U
Both LDA and GGA failed to describe the band gap problem in materials,
where electrons are localized and strongly interacting, such as Mott insulators,
transition metal oxides and rare earth compounds. The problem lies in the fact
that both LDA and GGA fail to reproduce orbital energies†.

A correction to both the LDA and the GGA energy functional has been in-
troduced by incorporating explicit Coulomb interaction of localized electrons
(U) in a Hartree-Fock (HF) like approach. This method is commonly known as
the LDA+U correction where “LDA+U” stands for LDA- or GGA calculation
coupled with orbital dependent interaction. In LDA+U approach, the electrons
are divided in two different subsystems,

I. localized electrons for which explicit Coulomb interaction is taken into
account.

II. wide band electrons, which are described by the LDA.

†Orbital energy ⇒ εi = ∂E/∂ni, ni is the orbital occupation number.
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Instead of density, density matrix elements {ρ} were used to define the cor-
rected energy functional as follows,

ELDA+U [nσ(r⃗), {ρσ}] = ELDA [nσ(r⃗)] + EU [{ρσ}]− Edc [{ρσ}] ,
(2.18)

where, nσ(r⃗) is the charge density for electrons with spin σ. The first term is
the Kohn-Sham energy functional. The second term describes the HF correc-
tion to the functional.

The third term in equation 2.18 is known as double counting term. This
term has to be subtracted from the total energy functional because the energy
functional given by LDA already consists of a contribution from the electron-
electron interaction.

2.4 Periodic solids
The above formalism discussed so far is applicable for systems with finite num-
ber of electrons, e. g., atoms and molecules. However, in solid systems the
calculation of electronic structure faces problems because of infinitely many
electrons. This can be overcome by employing the periodicity of the solids.
In a single particle context, the electrons feel an effective potential, VKS , pro-
vided by the KS equation.

HKS(r⃗)ψi(r⃗) =

[
−1

2
∇2 + VKS(r⃗)

]
ψi(r⃗) = εiψi(r⃗) . (2.19)

where VKS follows the lattice periodicity,

VKS

(
r⃗ + R⃗

)
= VKS (r⃗) , (2.20)

R⃗ is the translational vector, which is same as the periodicity of the Bravis
lattice. According to Bloch theorem [95], in a periodic crystal, the crystal
momentum k⃗ is a good quantum number and enforces a boundary condition
for the KS wave function, ψ

k⃗
,

ψ
k⃗

(
r⃗ + R⃗

)
= eik⃗·R⃗ ψ

k⃗
(r⃗) , (2.21)

where ψ
k⃗
(r⃗) is the Bloch wave function,

ψ
k⃗
(r⃗) = eik⃗·r⃗ u

k⃗
(r⃗) . (2.22)

u
k⃗
(r⃗) is a periodic function of lattice, u

k⃗
(r⃗) = u

k⃗
(r⃗ + R⃗). The single parti-

cle wave function can be expanded in a complete basis set ϕ
i,⃗k
(r⃗), satisfying

Bloch’s criteria for periodic boundary condition.

ψ
nk⃗
(r⃗) =

∑
i

c
i,nk⃗

ϕ
i,⃗k
(r⃗) , (2.23)
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where c
i,nk⃗

is the Fourier expansion coefficient. Using equation 2.23 in equa-

tion 2.19 and multiplying from the left by
⟨
ϕ
i,⃗k

∣∣∣, the following equation can
be written,∑

j

[⟨
ϕ
i,⃗k

∣∣∣HKS

∣∣∣ϕj,⃗k⟩− ε
nk⃗

⟨
ϕ
i,⃗k
|ϕ

j,⃗k

⟩]
c
j,nk⃗

= 0 . (2.24)

The first and second term in equation 2.24 represents the effective Hamiltonian
matrix element and the overlap matrix element respectively. By solving the
following secular equation,

det
[⟨
ϕ
i,⃗k

∣∣∣H ∣∣∣ϕj,⃗k⟩− ε
nk⃗

⟨
ϕ
i,⃗k
|ϕ

j,⃗k

⟩]
= 0 . (2.25)

the eigenvalues ε
nk⃗

and the expansion coefficients c
i,nk⃗

can be obtained.

2.5 Basis sets: Plane waves
Considerable number of numerical difficulties still affect the implementation
of single particle KS equation. This is due to the fact that the behavior of the
wave function is quite different in different regions of space, i. e., in the core
region and in the valence region. Hence, a complete basis set is needed to
describe the wave function in all the regions of space.

There are several possible choices for the basis sets depending on the sys-
tem studied and required accuracy – plane waves (PW), linearized augmented
plane waves (LAPW), localized atomic like orbitals e.g., linear muffin-tin or-
bitals (LMTO), linear combination of atomic orbitals (LCAO), etc. In this sec-
tion, we will briefly discuss about plane wave basis sets as most of the results
discussed in the thesis are obtained using plane wave based methods.

The lattice periodic function, u
j,⃗k
(r⃗), can be expressed in a Fourier series

as follows

u
j,⃗k
(r⃗) =

∑
G⃗

cj,G⃗ e
iG⃗·r⃗ , (2.26)

where G⃗ is the reciprocal lattice vector, the cj,G⃗ are the plane-wave expansion
coefficients, and G⃗.r⃗ = 2πm,m being an integer and r⃗ is the real space lattice
vector. Hence the KS orbitals can be expressed in a linear combination of plane
waves as

ψ
jk⃗
(r⃗) =

∑
G⃗

c
jk⃗

(
G⃗
)
× 1√

Ω
ei(k⃗+G⃗)·r⃗ , (2.27)

where c
jk⃗

are the expansion coefficient of the wave function in plane wave

basis set ei(k⃗+G⃗).r⃗ and G⃗ are the reciprocal lattice vectors. It is convenient
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that the states are normalized and obey periodic boundary condition in a large
volumeΩ, which is allowed to go infinity. Hence, the pre-factor, 1/

√
Ω, serves

as the normalization factor. k⃗ is the Bloch wave vector. Hence, the KS equation
in the notation of Bloch state can be written as(

− ℏ2

2me
∇2 + VKS(r⃗)

)
ψ
jk⃗
(r⃗) = ε

jk⃗
ψ
jk⃗
(r⃗) (2.28)

Using equation 2.27 into equation 2.28, and multiplying from the left with
e−i(k⃗+G⃗

′
).r⃗ and integrating over r⃗ we get the matrix eigenvalue equation as:∑

G⃗′

(
ℏ2

2me

∣∣∣⃗k + G⃗
∣∣∣2 δG⃗′ G⃗ + VKS

(
G⃗− G⃗

′
))

c
jk⃗

(
G⃗
)
= ε

jk⃗
c
jk⃗

(
G⃗
)

(2.29)

In this form, the kinetic energy is diagonal, and the potential, VKS is de-
scribed in terms of their Fourier transforms. The solution of equation 2.29
is obtained by diagonalization of a Hamiltonian matrix whose matrix elements
H

k⃗+G⃗,⃗k+G⃗′ are given by the terms in brackets on the left hand side. The size
of the matrix (sum over G⃗′) is determined by the choice of the cutoff energy
Ecut =

ℏ2

2me

∣∣∣⃗k + G⃗max

∣∣∣2, and will be intractably large for systems that con-
tain both valence and core electrons. This is a severe problem, but it can be
overcome by the use of the pseudopotential approximation, discussed in the
next section.

2.6 Pseudopotential
The pseudopotential approximation deals with the valence electrons of the sys-
tem. These rely on the fact that the core electrons are tightly bound to their
host nuclei, and only the valence electrons are involved in chemical bond-
ing. The wave functions of the core electrons do not change significantly with
the environment of the parent atom. Therefore it is possible to combine the
core potential with the nuclear potential, and only deal with the valence elec-
trons separately. This method is called Frozen-Core-Approximation (FCA).
The physical justification is that almost all the interesting chemical aspects are
primarily related to the outermost (valence) electrons of an atom. The standard
pseudopotential model via FCA is schematically shown in Fig. 2.2.

The atomic wave functions are orthogonal to each other. Hence, to maintain
the orthogonality in the neighborhood of nucleus, i. e., in the core region, the
valence electron wave functions must oscillate rapidly. As a result, the kinetic
energy of the valence electrons in the core region is quite large and it cancels
out with the potential energy coming from the Coulomb potential. It makes the
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Figure 2.2. Schematic diagram of Frozen Core Approximation (FCA) for the standard
pseudopotential model. The ion cores composed of the nuclei and tightly bound core
electrons are treated as chemically inert. Dark green, light green and red circles, re-
spectively representing the nucleus, the core electrons and the valence electrons are
for illustrations only (sizes of the circles are not in scale).

valence electron more weakly bound than the core electron. Therefore, one can
introduce an effective pseudopotential, which will be weaker than the strong
Coulomb potential in the core region. The pseudo wave function will be node-
less and vary smoothly in the core region – so that it can replace the valence
electron wave function. A schematic representation of pseudopotential method
is presented in Fig. 2.3.

To explain the construction of pseudopotential, following the operator ap-
proach [96], let us assume an atom with Hamiltonian Ĥ , core states |ψc⟩ with
core energy eigenvaluesEc and valence states |ψv⟩ with valence energy eigen-
values Ev. Therefore, the Schrödinger equation can be written as

Ĥ |ψi⟩ = Ei |ψi⟩ , (2.30)

where ‘i’ stands for both core and valence states. The goal is to obtain smoother
valence states in the core region. A smoother pseudo-state |ψps⟩ can be defined
as

|ψv⟩ = |ψps⟩+
∑
c

|ψc⟩αcv , (2.31)

where the summation is over core states and αcv is the expansion coefficient.
Now, the valence state has to be orthogonal to all of the core states. Hence

⟨ψc|ψv⟩ = 0 = ⟨ψc|ψps⟩+ αcv . (2.32)
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Figure 2.3. Schematic representation of a pseudopotential V ps (red dashed line) and
corresponding pseudo wave function ψps (red dashed line). The pseudo wave function
is node-less and it matches exactly with all electron wave function ψae (green solid
line) outside of a cut-off radius rc . This introduces a much softer pseudopotential
compared to all electron potential V ae ∼ −Z

r .

Inserting the value of αcv from equation 2.32 into equation 2.31,

|ψv⟩ = |ψps⟩ −
∑
c

|ψc⟩ ⟨ψc|ψps⟩ . (2.33)

Substituting |ψv⟩ both side in equation 2.30 and rearranging we get the follow-
ing equation.

Ĥ |ψps⟩+
∑
c

(Ev − Ec) |ψc⟩ ⟨ψc|ψps⟩ = Ev |ψps⟩

⇒ Ĥps |ψps⟩ = Ev |ψps⟩ . (2.34)

The above equation 2.34 is analogous to the Schrödinger equation with pseudo-
Hamiltonian,

Ĥps = Ĥ +
∑
c

(Ev − Ec) |ψc⟩ ⟨ψc| , (2.35)

and pseudopotential

V̂ ps = V̂eff +
∑
c

(Ev − Ec) |ψc⟩ ⟨ψc|

= V̂eff + V̂nl , (2.36)
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where

V̂eff = attractive Coulomb potential

and V̂nl =
∑
c

(Ev − Ec) |ψc⟩ ⟨ψc| . (2.37)

The energies described by the pseudo wave functions in equation 2.34, are
the same as that of the original valence states. The effect of the additional
potential V̂nl is localized to the core region and it is repulsive in nature. Hence,
it will cancel part of the strong attractive nuclear Coulomb potential V̂eff , so
that the resulting sum will be a weaker pseudopotential and resulting pseudo
wave function will be node-less.

2.6.1 Projector augmented wave
Projector augmented wave (PAW) method is an all electron method. It com-
bines the elegance of plane-wave pseudopotential method with the augmented
wave method. This method was first introduced by Blöchl [97]. As adapted
in pseudopotential method, PAW approach consists of a simpler energy and
potential independent basis but it retains the flexibility of augmented wave
method. PAW method consists of a linear transformation (Im) linking an os-
cillatory true all electron single particle KS wave function |ψn⟩ with a compu-
tationally convenient auxiliary wave function, ˜|ψn⟩,

|ψn⟩ = Im ˜|ψn⟩ , (2.38)

where, the index n is a cumulative index representing band, k⃗-point and spin.
Using the variational principle with respect to the auxiliary wave function, the
KS equation can be transformed as follows,

Im†H Im ˜|ψn⟩ = Im† Im ˜|ψn⟩εn , (2.39)

where Im†H Im = H̃ is the pseudo Hamiltonian and Im† Im = Õ is the over-
lap operator. The purpose of this transformation is to avoid the nodal structure
of a true wave function close to the nucleus within a certain radius from the
core, rc (See Fig. 2.3). The wave function inside the core region is modified
by Im and hence defined as follows,

Im = 1 +
∑
R

SR . (2.40)

SR is the difference between auxiliary and true single particle KS wave func-
tion whileR is the atom site index. SR acts within an augmented space, which
is defined by a cutoff radius, rc ∈ R.

The core wave function is treated separately as it does not expand beyond
augmented region. The energy and the electron density of the core electrons
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in a material is approximated with an isolated atom calculations‡. Hence, the
operator Im acts on valence wave function and it can be expressed within the
augmented region as follows,

ψ(r⃗) =
∑
i∈R

ϕi(r⃗)ci . (2.41)

Here ϕi(r⃗) represent the partial wave solutions for Schrödinger equation for an
isolated atom and ci are the expansion coefficients associated with it. In this
way, using the transformation Im, the partial wave |ϕi⟩ is one-to-one mapped
locally to an auxiliary partial wave ˜|ϕi⟩.

|ϕi⟩ = (1 + SR)
∣∣∣ϕ̃i⟩ for i ∈ R (2.42)

SR

∣∣∣ϕ̃i⟩ = |ϕi⟩ −
∣∣∣ϕ̃i⟩ (2.43)

This local transformation implicitly enforces a condition that the partial waves
|ϕi⟩ and

∣∣∣ϕ̃i⟩ have to be pairwise identical beyond rc ∈ R:

ϕi(r⃗) = ϕ̃i(r⃗) for i ∈ R and |r⃗ − R⃗R| > rc,R (2.44)

Using auxiliary partial wave basis, any arbitrary auxiliary wave function can
be formed within the augmented region,

ψ̃(r⃗) =
∑
i∈R

ϕ̃i(r⃗)ci =
∑
i∈R

ϕ̃i(r⃗)
⟨
p̃i | ψ̃

⟩
(2.45)

where, the projector operator |p̃i⟩ satisfies the following two constraints,∑
i∈R

∣∣∣ϕ̃i⟩ ⟨p̃i| = 1 . . . the completeness relation (2.46)⟨
ϕ̃i | p̃j

⟩
= δi,j ; for i, j ∈ R . . . the orthogonality relation (2.47)

In terms of auxiliary and the true partial waves, the transformation operator
can be written as,

Im = 1 + SR
∑
i

∣∣∣ϕ̃i⟩ ⟨p̃i|

= 1 +
∑
i

(
|ϕi⟩ −

∣∣∣ϕ̃i⟩) ⟨p̃i| (2.48)

‡The frozen-core approximation
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where the sum runs over the partial waves corresponding to all atoms. Hence,
the true wave function can be re-obtained as follows,

|ψ⟩ =
∣∣∣ψ̃⟩+

∑
i

(
|ϕi⟩ −

∣∣∣ϕ̃i⟩)⟨
p̃i|ψ̃

⟩
=

∣∣∣ψ̃⟩+
∑
R

(∣∣ψ1
R

⟩
−
∣∣∣ψ̃1

R

⟩)
(2.49)

where, ∣∣ψ1
R

⟩
=

∑
i∈R

|ϕi⟩
⟨
p̃i|ψ̃

⟩
(2.50)∣∣∣ψ̃1

R

⟩
=

∑
i∈R

∣∣∣ϕ̃i⟩⟨
p̃i|ψ̃

⟩
(2.51)

As a consequence of this transformation, the wave function is spatially sep-
arated out into different parts. Inside the core region, the wave function is
expressed with the partial waves consisting of nodal structure, i. e.,

∣∣∣ψ̃R

⟩
=∣∣∣ψ̃1

R

⟩
. This gives the true wave function |ψR⟩ merging to

∣∣∣ψ̃1
R

⟩
. Beyond the

core region, both the auxiliary wave functions and the true wave functions are
identical, i. e., |ψR⟩ =

∣∣∣ψ̃R

⟩
.

Although the PAW method consists of few approximations, e. g., the frozen-
core approximation, expansion of auxiliary wave function with finite number
of plane waves, etc., this method computes to the full wave function, charge
and spin densities with a much simpler basis set.
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Part II:
Summary of the Results





3. The Effect of Impurities

Curiouser and curiouser!
— Lewis Carroll, Alice in Wonderland

In this chapter, the effect of impurities on the properties of graphene and
related hybrid structures, which have been presented in Papers I–IV, will be
discussed in general. As mentioned in the introduction, the studies are mo-
tivated by the necessity of altering the semi-metallic nature of pure graphene
to open a band gap. Keeping this aspiration in mind, in the following sec-
tions we will discuss: 1) the effects of metallic impurities on two dimensional
hybrid structures of graphene and graphane, 2) exploiting the edge proper-
ties of graphene nanostructures using quantum confinement, 3) formation and
diffusion of metallic nanostructures on planar hybrid interfaces of graphene
and hexagonal boron nitride (h-BN) and 4) 3D quasiperiodic heterostructure
of graphene and h-BN to break sublattice symmetry.

We have studied the above mentioned systems by performing electronic
structure calculations using plane wave basis sets employing PAW method as
implemented in the VASP [98, 99] code.

3.1 Graphene/Graphane interfaces with magnetic
impurities

The interaction of magnetic impurities (Fe adatom in this case) with the hybrid
structures of graphene and graphane has been discussed in Paper I.Graphane,
one of the important compounds of “beyond grpahene” family of 2D mate-
rials, is a hydrogenated graphene structure. In this structure, one hydrogen
atom is attached to each carbon atom giving rise to an insulating system with
sp3 bonds. This material was first predicted by ab-initio theory [17] and latter
experimentally synthesized [21]. In graphene, a semimetal to metal to insu-
lator transition has been observed by varying the concentration of hydrogen
atoms [100].

Patterning graphene with partial hydrogenation (hybrid graphene/graphane
interface) can alter the properties of graphene e.g., in introducing conducting
channels, band gap opening, and magnetically coupled interfaces [100–105].
These graphene/graphane interfaces can mimic the edge properties of zigzag
or armchair graphene nanoribbons [73–77] and can be used as a potential ma-
terial in the field of spintronics research. It has been shown that magnetic
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properties of transition metal doped zigzag graphene nanoribbons (ZGNR) are
much more robust as compared to the magnetic moments arising from the edge
geometry [106]. Antiferromagnetic coupling between two edges of ZGNR can
be observed with Fe termination at the edges [107]. Hence, it will be interest-
ing to study the effect of Fe adatom, as a representative of magnetic impurities,
in these hybrid graphene/graphane interface structures.

3.1.1 Channel structures of graphene/graphane interface

Figure 3.1. Decoration of hydrogen (left) along the diagonal of the unit cell lead-
ing to an “armchair” channel and (right) along the edge of the unit cell leading to a
“zigzag” channel. In the figure, yellow (light shaded in print) balls are bare carbon
atoms, turquoise (dark shades in print) balls are hydrogenated carbon atoms and red
(small dark in print) balls are H atoms. For both armchair and zigzag channels, the
nanoribbons are 3-rows wide. Reproduced with permission from Paper I. Copyright
© 2012 American Physical Society.

We have considered two different graphene/graphane hybrid structures - i)
where the hydrogen atoms are removed along the diagonal of the graphane
part to create armchair graphene/graphane superlattices, and ii) where the hy-
drogen atoms are removed along the edge of graphane part to create zigzag
graphene/graphane superlattices. In left and right panel of Fig. 3.1, we have
shown a schematic picture of these two structures respectively, for a specific
width of three rows. The “armchair channel” is nonmagnetic and has a width-
dependent band gap. However, the “zigzag channel” interfaces are magnetic.
In our simulations, we have used three different widths of channels.

3.1.2 Single Fe adatom impurity
We have placed the Fe adatom at different places on the channels described
above and optimized the geometries to find out the stable adsorption site. The
calculated formation energy indicates that the preferred site for Fe adsorption
in the armchair channel is the hollow site inside the graphene region, equidis-
tant from the interface. However, Fe adatom prefers to bind at a hollow site
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Table 3.1. Width dependent energies and magnetic moments of the channel systems
with a single Fe impurity. Eb, µtotal and µFe denote the binding energy of Fe, total mag-
netic moment of the system and magnetic moment on Fe site respectively. Reproduced
with permission from Paper I. Copyright © 2012 American Physical Society.

Single Fe atom

Channel Type Channel Width Eb µtotal µFe
(eV) (µB) (µB)

Armchair
3-rows 1.6 2.0 1.99
5-rows 1.10 2.06 2.10
7-rows 0.80 2.00 1.98

Zigzag
3-rows 1.38 2.1 2.5
5-rows 1.42 2.01 2.55
7-rows 1.45 2.01 2.56

closer to the interface in the zigzag channel. This different behavior is due
to the antiferromagnetic nature of the edge coupling and the position of Fe
adatom is slightly asymmetric with respect to the surrounding hexagon due to
the stretching of underlying carbon bonds.

Figure 3.2. (Left Panel) Spin-polarized DOS for single Fe atom placed in the three-
row “armchair” channel. Total DOS with (blue solid line) and without (red dashed
line) Fe. (Right Panel) Spin-polarized DOS for single Fe atom placed in the three-
row “zigzag” channel. Total DOS with (blue solid line) and without (red dashed line)
Fe. Reproduced with permission from Paper I. Copyright © 2012 American Physical
Society.

In Table 3.1, we have shown the energies and magnetic moments of the Fe
atom placed on these channels. Analysis of the binding energies as a function
of channel widths reveals that with increasing width, the binding energy re-
mains almost constant in the zigzag channel, while it decreases in the armchair
channel. Total magnetic moment for all the systems are ∼ 2.0 µB , similar to
the value of total magnetic moment of an Fe adatom substitutionaly placed in
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graphene [108]. However, the onsite local moments differ in both channels.
The value of onsite local moment is ∼ 0.5 µB higher in the zigzag channel as
compared to the armchair channel. Our calculation indicates that, in the zigzag
channel, the binding energy of Fe adatom is higher by ∼ 0.2 eV as compared
to the pristine graphene [108]. This suggest that the mixed sp2–sp3 character
increases the binding energy of Fe in the zigzag channel.

Figure 3.3. Spin-density plot of single Fe atom on the three-row “armchair” (left panel)
and “zigzag” (right panel) channel respectively. Red (dark shade in print) is positive
spin density and yellow (light shade in print) is negative spin density. Reproduced
with permission from Paper I. Copyright © 2012 American Physical Society.

Total density of states for a single Fe adatom placed on a three-row armchair
(zigzag) channel have been shown in the left (right) panel of Fig. 3.2. The
analysis of site projected DOS (see Paper I for more details) shows that spin-
down dz2−r2 orbitals of Fe atom induce states just below the Fermi energy and
reduce the gap quite significantly. In higher width channel structures, similar
features can be observed. However, in contrast to the armchair channel, a
finite density of states can be observed near the Fermi energy for the zigzag
channel. These states are mainly originating from spin-down dz2−r2 orbitals
of Fe atom along with the pz orbitals of the bare carbon atoms at the interface.
Contribution in the spin-up peak just below the Fermi energy is predominantly
coming from the delocalized pz orbitals of bare edge carbon atoms and from
the carbon atoms surrounding the Fe atom.

The spin density plots of Fe adatom adsorbed in three-row armchair and
zigzag channel have been shown in Fig. 3.3 left and right panels, respectively.
From the analysis, we find that for the armchair channel, most of the spin-up
densities are localized on Fe. The d orbitals of Fe atom interact with the pz
orbitals of the surrounding carbon atoms and cause an induced negative mag-
netic moment on the carbon atoms. On the other hand, in the zigzag channel,
delocalized spin density can be observed and till fourth nearest neighbor, the
effect of Fe adatom can be seen. These interactions reduce the onsite magnetic
moments on carbon atoms with a maximum value of 15% on the nearest site.
In this channel, due to the interactions of delocalized electron density, only
three carbon atoms surrounding the Fe atom get induced negative moment.
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Effect of spin-orbit coupling
We have also included the spin orbit coupling term in the Hamiltonian in order
to calculate the orbital moments and magnetic anisotropy energies (MAEs).
Here, MAE refers to magnetocrystalline energy originating from spin-orbit
coupling. We have neglected the contribution of shape anisotropy. MAE is
defined as ∆E = Ehard − Eeasy. In the armchair channel, the orbital mo-
ment of Fe atom is 0.09 µB which is ∼ 0.04 µB higher than the bulk Fe in bcc
phase. The magnetic anisotropy energy is 19 meV and it has an in-plane easy
axis of magnetization. In case of zigzag channel, with spin orbit coupling, the
total magnetic moment increases as some of the carbon atoms contribute (∼
0.1 µB) additively. Here, the magnetic anisotropy energy with in-plane easy
axis is about 4 meV per Fe atom, which is smaller compared to the value in the
armchair channel. The in-plane orbital moment is 0.1 µB in this case. It is to
be noted that our calculated MAEs for Fe adatom on both channels are quite
high as compared to the MAE of bulk bcc Fe, which is of the order of 1 µeV.

3.1.3 Magnetic interactions between two Fe atoms
In this subsection, we have discussed the results of two magnetic impurities in
the two channels. In Table 3.2, we have tabulated the binding energies of Fe
atoms, the total magnetic moments, the onsite magnetic moments on Fe atoms,
and exchange energies. We have considered various possible Fe-Fe distances
for both the channels. In the armchair channel, the two Fe atoms are weakly
interacting which is clear from the small fluctuations of binding energies of
the Fe atoms with the variation of distances. Hence, the exchange energies
are also small. The analysis of total DOS shows a gap in the spin-up channel
just below the Fermi energy and a gap in the spin-down channel just above the
Fermi energy. It shows a possibility of creating a “spin gapless semiconductor”
in narrower armchair channel occurs.

On the other hand, in the zigzag channel, the binding energies and the mag-
netic moments are distance dependent. The two Fe atoms form a dimer for
the smallest Fe-Fe distance. For a Fe-Fe distance of 5.08 Å in all the widths,
total magnetic moment decreases with increasing width of channels. It is due
to the fact that, the position of the second Fe atom with respect to the first Fe
atom introduces negative spin moments on the surrounding carbon atoms. See
Paper I for more details.

3.2 Edge reconstructed graphene nanoribbons with H
and Fe functionalization

Another approach towards the opening of band gap in the graphene is to use
structural confinement. Graphene nanoribbons are the one dimensional coun-
terpart of 2D graphene. These nanoribbons have various fascinating properties
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Table 3.2. Width-dependent energies and magnetic moments of the channel systems
with a pair of Fe atoms with possible Fe-Fe distances. The distances between two
Fe atoms (d) are in Ångstroms, and the binding energies (Eb) of Fe in are in electron
volts. Total magnetic moment of the systems (µtotal) and the magnetic moments on the
two Fe atoms (µFe) are in the units of Bohr magneton (the local magnetic moments
on two Fe atoms are separately shown by a slash in between them) and the exchange
energies (Eex = EFM − EAFM ) are in electron volts. Reproduced with permission
from Paper I. Copyright © 2012 American Physical Society.

Two Fe atoms in the channel

Type Width dFe Eb µtotal µFe Eex

(Å) (eV) (µB) (µB) (eV)

armchair

3-rows 4.38 3.13 4.02 1.98/2.01 0.009
8.77 3.18 4.01 1.99/1.99 0.001

5-rows 4.38 2.25 4.11 2.10/2.10 0.018
8.77 2.19 4.08 2.11/2.12 0.008

7-rows 4.38 1.75 4.06 2.04/2.03 0.014
8.77 1.64 4.01 2.01/2.01 0.016

zigzag

3-rows
2.17 4.12 5.96 2.98/2.98 0.457
5.08 2.67 7.0 2.59/2.6 0.058
7.60 2.67 4.26 2.42/2.43 0.038

5-rows
2.17 4.09 5.89 3.01/3.01 0.834
5.08 2.73 4.14 2.53/2.53 NA
7.60 2.80 4.06 2.51/2.51 NA

7-rows
2.17 4.10 5.82 3.01/3.01 0.795
5.08 2.80 4.07 2.53/2.54 NA
7.60 2.87 4.02 2.52/2.52 NA
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e.g., band gap opening, quantum confinement effect, magnetism at the edges,
etc [109–111]. Depending on the edge geometry, different types of properties
can be observed such as metallic behavior in zigzag graphene nanoribbons and
semiconducting behavior in armchair graphene nanoribbons [22, 23]. How-
ever, confining the geometry in one dimension to produce graphene nanorib-
bons creates unsaturated edges. These edges are quite active and are prone
to structural edge reconstruction [74]. Forming pentagon-heptagon pair at the
edges is one of the proposed structural rearrangement of graphene nanoribbon.
These deformations are quite similar to the Stone-Wales defect observed in 2D
graphene. These reconstructed zigzag graphene nanoribbon (henceforth called
“reczag”) geometry has also been experimentally verified using transmission
electron microscopy [77]. Ab-initio calculations indicate that reczag structure
has lower total energy as compared to the normal zigzag graphene nanoribbon
by 0.35 eV/Å.

In this section and in Paper II, we have discussed the edge reconstruction of
graphene nanoribbons and functionalization using H and Fe atoms.

3.2.1 Stability of reconstructed structure

(a) (b)

Figure 3.4. (a) Reconstructed edge GNR with 2H termination. Brown balls are C
atoms and white balls indicate H atoms. The close-up of the edge structure is also
shown; (b) Gibbs free energy calculated for 12 rows-reczag. Both 1H and 2H termi-
nations with respect to bare reczag are presented. In the inset, transition pressures as a
function of temperatures are shown. P 0 is the reference pressure taken to be 0.1 bar.
Reprinted from Paper II, Copyright © 2012, with permission from Elsevier.

Even after reconstruction at the edges, reczag graphene nanoribbons have
dangling bonds and these bonds need to be saturated. We have considered edge
termination of each carbon atom by one (1H) and two (2H) hydrogen atoms.
The optimized structure of a reczag graphene nanoribbon with 2H termination

41



has been shown in Fig. 3.4(a). The bond length analysis of optimized struc-
tures reveal substantial changes at the edges. In reczag graphene nanoribbons,
without edge termination, the bond length between two carbon atoms at the
edges is ∼ 1.25 Å and two edge carbon atoms form triple bond in between
them. In 1H termination, the C-C bond length increases to 1.43 Å and for
2H termination, due to twisted edge geometry, the C-C bond length increases
further to 1.58 Å (see Fig. 3.4(a)). However, in all the structures, C-C bond
lengths in the middle of the ribbon are ∼ 1.42 Å, which is similar to the C-C
bond length in bulk graphene. Although 1H termination is a planar structure
with sp2 hybridization, 2H termination gives rise to a buckled and twisted edge
structure with sp3 bonds. Phonon calculations on normal 2H terminated reczag
graphene nanoribbons structure show unstable phonon modes with hydrogen
atom displacement towards the twisted direction. For more details on phonon
calculations, see Paper II.

We have calculated the formation energies of 1H and 2H terminated reczag
graphene nanoribbons with respect to the bare reczag graphene nanoribbons.
The formation energies have been defined as follows

Ef = E(G2H)− [E(G1H) + n ∗ E(H2)] ,

where E(G2H) and E(G1H) are the total energies per edge for 2H and 1H
terminated reczag graphene nanoribbons respectively. E(H2) is the calculated
energy for a gaseous H2 molecule. The number of H2 molecules used to com-
pensate the uneven number of H atoms is denoted by n. From our calcula-
tions, it can be seen that at T = 0K, 1H terminations form spontaneously for
reczag graphene nanoribbons geometry which are in contrast to normal zigzag
nanoribbon [112]. The formation energies also reveal that the 2H terminated
reczag graphene nanoribbons structures are more stable than 1H terminated
reczag graphene nanoribbons structures.

We have also calculated Gibbs formation energy as a function of µH2 to
investigate the effect of finite temperature and high gas pressure following the
formulations of Wassmann et al. [113],

GH2
=

1

2L
[EH2

− (
NH

2
)µH2

] ,

GH1
=

1

2L
[EH − (

NH

2
)µH2

] ,

EH2
= E(G2H)− [E(G0H) + 4E(H2)] ,

EH = E(G1H)− [E(G0H) + 2E(H2)] ,

µH2
= H0(T )−H0(0)− TS0(T ) + kBT ln(

P

P 0
) ,

where µH2
, H , S, P and kB are the chemical potential, enthalpy, entropy,

pressure and Boltzmann constant respectively. NH is the number of H atoms
attached at the edge. For entropies and enthalpies, the values are taken from
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the tabular data presented in Ref. [114]. We have taken 0.1 bar as the reference
pressure, P 0, according to the tabular data. Total energies for 2H, 1H and bare
reconstructed nanoribbons and hydrogen molecule are indicated as E(G2H),
E(G1H), E(G0H) and E(H2) respectively. The calculated values of nor-
malized Gibbs energy at 300K have been shown in Fig. 3.4(b). Normalization
was done by a factor of 2L, where L is the length of unit cell.

From Gibbs energy calculations, it is observed that at room temperature
under low hydrogen pressure (less than 10−6 bar), 1H terminated edge can
be stabilized over 2H terminated edge. However, after 10−6 bar hydrogen
pressure at room temperature, 2H terminated edges are favored. The required
transition pressure* as a function of temperature has been shown in the inset of
Fig. 3.4(b). The negative values of log10P over a long range of temperature in-
dicates the formation of 2H terminated reczag graphene nanoribbons under low
pressure. Hence, following the previous work by Bhandary et al. (Ref. [112])
one can conclude that compared to zigzag edges, reczag graphene nanoribbons
are structurally more stable and thus can accommodate higher concentration of
H.

The total density of states calculation for 1H and 2H terminations show finite
density of states at the Fermi energy. These states mainly originate from the
pz orbitals of the C atoms next to the edge C atoms. However, the saturation
of C-C bonds at the edges results into the loss of magnetic moment for both
1H and 2H terminated reczag graphene nanoribbons.

3.2.2 Fe termination at the edges

Figure 3.5. Spin density isosurfaces of 8-rows Fe doped reczag edge for a FM cou-
pling across the edges. Red and blue colors represent spin-up and spin-down densities
respectively. Reprinted from Paper II, Copyright © 2012, with permission from El-
sevier.

*The amount of hydrogen pressure which favored formation of the 2H terminated edges over
the 1H terminated edges.
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We have decorated the reconstructed edges of the nanoribbons with mag-
netic Fe atoms in order to introduce magnetism and study possible magnetic
interactions via graphene lattice. The formation energy Ef of Fe atom at the
edge is calculated using the following formula,

Ef = E(metN + reczag)− [N ∗ E(met) + E(reczag)] ,

where E(metN + reczag) is the total energy of metal+reconstructed edge
graphene nanoribbon,E(reczag) is the total energy of reczag graphene nanorib-
bon and E(met) is the energy of the Fe calculated in its bulk bcc phase. N
is the number of Fe atoms in the cell. Analysis of geometry and formation
energy reveals that the most stable Fe adsorption site is in between the two
heptagons with a calculated formation energy of 2.6 eV. The Fe adsorption
causes structural modification at the edges only.

However, the effect of Fe atom at the edge is quite long range which can
be easily observed in spin density isosurface plots as shown in Fig. 3.5. The
onsite local magnetic moment of Fe atom is 3.5 µB , which is quite high and
the Fe atom induces opposite moment to the C atoms to which it is bonded.
We have also calculated exchange couplings by calculating the total energy
difference between FM and AFM coupling across the edges. The exchange
coupling starts with a strong ferromagnetic coupling for four rows and gradu-
ally decreases as the width increases and finally changes to antiferromagnetic
coupling after eight rows. This similar oscillatory exchange coupling behav-
iors have been in Fe and Co decorated armchair graphene nanoribbons [115].

Figure 3.6. The structures of two dimerized chains indicated as Dimer 1 (left) and
Dimer 2 (right) in Table 3.3. In the figure, red and yellow balls indicate Fe and C
atoms respectively. Reprinted from Paper II, Copyright © 2012, with permission from
Elsevier.

We have also investigated the possibility of forming a dimerized chain along
the nanoribbon edges. Here the Fe atoms bind to the edge carbon atoms of
the heptagons. Two different dimer configurations are possible as shown in
Fig. 3.6. The calculation of formation energies tabulated in Table 3.3 indicates
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Table 3.3. Formation energies (∆E) of two types of Fe dimers in the chain with re-
spective to non-dimerized structure. The corresponding bond lengths (short and long)
of the Fe dimers are shown for the two structures shown in figure 3.6 along with the
local magnetic moments at Fe sites. Reprinted from Paper II, Copyright © 2012, with
permission from Elsevier.

Dimer ∆E (eV) Fe-Fe Fe-Fe moment
distance 1 (Å) distance 2 (Å) (µB)

1 -0.23 2.61 2.30 2.94
2 -0.29 2.77 2.14 2.94

that with increased Fe concentration dimerized chain formation along the edges
of reczag graphene nanoribbons is promoted.

3.3 Diffusion and formation of Fe nanostructures on
Graphene/h-BN interfaces

The role of 2D planar Graphene/h-BN interfaces on the designing of Fe nanos-
tructures has been presented in Paper III. As discussed in the introduction,
the planar graphene/h-BN hybrid sheets can be used to tune the band gap of
graphene. For most electronic applications, the use of these 2D materials will
involve contacts with metals. Hence a fundamental understanding of the in-
teraction between metals (in the form of adatoms, clusters and thin films, etc.)
and hybrid graphene/h-BN interfaces is quite important. Some limited atten-
tion has been given in the adsorption of 3d transition metal atoms on hybrid
graphene/h-BN structure (1:1 composition of graphene and h-BN) sheets [116].
However, a lot of details about the systems still remain unanswered. Given
this background, in this work, detailed adsorption and diffusion of a single and
multiple Fe adatoms and their magnetic properties on a hybrid graphene/h-BN
sheet have been studied. Diffusion barriers were calculated using the climbing
image method within the nudged elastic band (NEB) formalism [117, 118].

3.3.1 Individual Fe adatoms
The structures with completely phase separated graphene and h-BN regions
are energetically the most favorable arrangement for hybrid graphene/h-BN
sheets [62–64]. So, a 64 atom hybrid graphene/h-BN supercell, where the
graphene and h-BN regions forming separate domains and being joined by
zigzag C–N and C–B interfaces, have been considered for the calculations.
We have calculated the adsorption energies for a single Fe adatom placed at
different inequivalent hexagonal sites on the 64-atom supercell (see Fig. 3.7).
Adsorption energies at these sites and the heights of the Fe adatom from the
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Figure 3.7. Hybrid sheet of graphene/hexagonal boron-nitride showing different sym-
metry sites considered for calculation of diffusion barriers. Black solid line represents
the unit cell considered for the calculation. Brown, green and white balls represent
carbon, boron and nitrogen atoms respectively. See text for more explanation. Repro-
duced with permission from Paper III. Copyright © 2013 American Chemical Society.

surface are mentioned in Table 3.4. We have used these relaxed positions as
initial and final positions to carry out diffusion barrier calculations involving
the NEB method. Among the hexagonal sites, H4′ turns out to be an unstable
one. Our calculation shows that the H3 site at the C–B interface is much lower
in energy than H4′ and hence prevents the formation of an energy barrier from
going to H4′ to H3. So an adatom placed at this site moves to the neighboring
H3 site at the C–B interface after relaxation. The analysis of adsorption energy
(see Table 3.4) clearly shows that the H3 site at the C–B interface is the most
favorable one followed closely by the H1 site.

Diffusion barriers between all the nearest neighbor hexagonal site (Fig. 3.7)
were calculated in both directions using the NEB method. The calculated bar-

Table 3.4. Adsorption energy and the heights of the Fe adatom (Ea) at different sites.
Themost stable site is marked in bold. See text for details. Reproducedwith permission
from Paper III. Copyright © 2013 American Chemical Society.

Site Ea (eV) Height (Å)

H1 1.65 1.57
H1′ 1.36 1.58
H1′′ 1.37 1.55
H2 0.89 1.65
H3 1.74 1.72
H4 0.39 1.62
H4′′ 0.57 1.90
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Table 3.5. Calculated diffusion barriers (in eV) along different paths on the hybrid
graphene/h-BN sheet. Reproduced with permission from Paper III. Copyright © 2013
American Chemical Society.

Path Barrier Path Barrier Path Barrier

H3 – H1 0.34 H1 – H3 0.26 H4′′ – H4′′ 0.21
H2 – H1′ 0.1 H1′ – H2 0.53 H3 – H3 0.6
H1 – H1′′ 0.75 H1′′ – H1 0.53 H2 – H2 0.13
H1 – H1 0.32 H1′ – H1′ 1.08 H1′ – H1′′ 1.3
H1′′ – H1′′ 0.46 H4 – H4 0.17

rier values are given in Table 3.5. The diffusion barriers are generally smaller
in the h-BN region compared to the graphene region. This suggests that the Fe
adatoms will be more mobile in the h-BN region.

The exact mechanism of diffusion at finite temperature can be complex [119].
The diffusion barrier may increase or decrease, or even show non-monotonic
behavior with increasing temperature depending on the details of the diffu-
sion mechanism and the vibrational modes at the saddle points in a given sys-
tem. Rather than estimating diffusion barrier of the adatoms, we have stud-
ied their real-time dynamics on the sheet at finite temperatures through Born-
Oppenheimer molecular dynamics (MD) simulations. We performed a number
of simulations by placing a single Fe adatom at all the inequivalent hexagonal
sites. The temperature was set at T = 300 K because most practical applica-
tions would be at ambient conditions. Our result shows that the Fe adatom can
diffuse rather easily over the h-BN region compared to the graphene one. In
our simulations, the Fe adatom remains stuck at a H1′ or a H1′′ site and it could
not cross the barrier at least for 15 ps and then moves out of these sites. If the Fe
adatom is placed at a H2 site, it diffuses to H1′ and gets trapped. Starting from
the H1 site, the Fe adatom moves back and forth between H1 and H3 before
finally settling at a H3 site. For all other hexagonal sites, Fe adatom diffuses
and eventually gets trapped at the H3 site at the C–B interface, consistent with
the fact that H3 site has the highest adsorption energy.

Following the above discussions, there are two relevant questions that need
to be answered. First, the nature of magnetic coupling between two Fe adatoms
adsorbed at two different H3 sites along the C–B interface. Secondly, whether
two such Fe adatoms remain stuck at two different H3 sites at a finite tempera-
ture or they diffuse along the H3-H3 path parallel to the C–B interface and form
dimer. These will provide an overview into possible magnetic self-assemblies
on this sheet. Our simulations show that a ferro-magnetic (FM) alignment of
spins when the two Fe adatom occupy nearest neighbor H3 sites has the lowest
energy. Both Fe adatoms have onsite magnetic moment ∼ 3 µB . The MD sim-
ulations up-to 30 ps show that the adatoms remain stuck at their respective H3
sites and only execute thermal oscillations around mean positions. This is also
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evident from the fact that the diffusion barrier between two H3 sites is quite
high (0.6 eV) as reported in Table 3.5. Hence, the H3 sites truly act as trapping
sites for individual Fe adatoms diffusing on the hybrid graphene/h-BN sheets
at the room temperature.
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Figure 3.8. DOS for (top panel) pure hybrid grphene/h-BN sheet and (bottom panel)
a Fe adatom adsorbed at C–B interface of hybrid graphene/h-BN sheet. Reproduced
with permission from Paper III. Copyright © 2013 American Chemical Society.

The analysis of charge density of pure graphene/h-BN sheet shows that at
the C–B interface, the charge density is not homogeneously distributed over the
C–B bond whereas the C–N interface has a homogeneous charge distribution
(π character originating from C and N pz orbitals) over the C–N bond. This
asymmetry in the distribution of charge density allows C–B interface to be
more reactive.

The calculated DOS and atom projected DOS (pDOS) for a single Fe adatom
trapped at a H3 site on a 64-atom hybrid graphene/h-BN sheet, shown in Fig. 3.8.
For comparison, DOS and atom and site projected DOS of the pure sheet are
also shown. For the sheet without Fe, the valence band states just below the
gap come mainly from the C atoms bonded to B atoms at the C–B interface.
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Conduction band states just above the gap come mainly from the C atoms at the
C–N interface. States from both C–B and C–N interfaces appear in the gap of
pure h-BN. In the presence of Fe, those states still persist, but appear only in the
down-spin channel. The analysis ofmℓ projected DOS reveals that for the C–B
interface, Fe dxy orbital hybridizes with B pz orbital quite prominently. Also,
Fe dz2 orbital hybridizes with C pz and N pz orbitals. So, a relatively strong
binding scenario has established. The up-spin channel with filled d-states does
not contribute at the Fermi energy, yielding a half metallic solution. Fe has a
magnetic moment of 2.6 µB , whereas a few C atoms close to Fe possess small
negative moments yielding a total magnetic moment of 2.0 µB in the unit cell.
However, for the C–N interface, no significant hybridization (except a small
one between Fe dx2−y2 and B and C pz orbitals) between Fe d orbitals and p
orbitals of B/C/N is observed.

3.3.2 Multiple Fe adatoms
Now that we have gained some understanding of the finite temperature dy-
namics of isolated Fe adatoms and magnetic exchange coupling between two
isolated Fe adatoms on the sheet, we now try to shed some light on the ques-
tion of clustering and subsequent dynamics when more than one Fe adatom
are deposited. Particularly striking was our finding that the H1′ site, in spite of
having large barriers, do not trap Fe adatoms, which ultimately get stuck at the
H3 sites and thus making finite temperature MD calculations for multiple Fe
adatoms even more relevant. The analysis of MD simulations, where multiple
Fe adatoms were placed either in the h-BN or graphene regions, shows that
the Fe adatoms quickly form a cluster and then the cluster as a whole diffuses
easily and finally gets stuck at the C–B interface. In experiments, one may
not have such microscopic control during the deposition of Fe adatoms on the
hybrid graphene/h-BN sheet. Also in view of the fact that CVD experiments
produce domains of h-BN inside a graphene sheet, the adatoms are equally
likely to land on either of the regions. To simulate that, we consider a large
supercell with 128 atoms: 64 C, 32 B and 32 N atoms. These are divided into
two graphene and two h-BN regions as shown in Fig. 3.9. Eight Fe adatoms
are placed at eight hexagonal sites on this sheet at t = 0 in the following way.
Two Fe adatoms are placed in each of the C–1 and C–2 regions, and two Fe
adatoms each in the BN–1 and BN–2 regions.

Note that there is a C–B interface between C–1 and BN–1 regions (C–B–
int1), a C–N interface between BN–1 and C–2 regions (C–N–int1), another
C–B interface between C–2 and BN–2 (C–B–int2) and finally another C–N
interface between BN–2 and C–1 (C–N–int2) due to the periodic boundary
conditions. As shown in the second panel of Fig. 3.9, within 3 ps, all the four
Fe adatoms in the BN–1 and C–1 regions form a Fe4 cluster. The two Fe
adatoms placed in the BN–1 region easily move towards the C–B–int1. At the
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(0 ps)
C-1 C-2BN-1 BN-2

(3 ps)
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(15 ps)

Figure 3.9. Time evolution of eight Fe adatoms on the BNC sheet. We placed two Fe
atoms separated from each other on four patches of BN and Graphene. See text for
discussions. Reproduced with permission from Paper III. Copyright © 2013 American
Chemical Society.
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Table 3.6. Adsorption energies and the heights of Fe adatom (Ea) at different sites
from PBE+U calculations. The most favorable site H3 is marked in bold. See text
for details. Reproduced with permission from Paper III. Copyright © 2013 American
Chemical Society.

Site Ea (eV) Height (Å)

H1 0.74 1.92
H1′ 0.57 1.91
H1” 0.62 1.84
H2 0.58 1.91
H3 1.11 1.96
H4 0.14 2.21

same time the two Fe adatoms placed in the C–1 region also move towards
the C–B–int1. Then these four Fe atoms forms a Fe4 cluster and as a unit gets
trapped at the C–B–int1 interface. Up to 15 ps simulation time, the cluster can
be seen to be stuck there as shown in Fig. 3.9. Similarly, the other four Fe
adatoms placed in the BN–2 and C–2 regions form a second Fe4 cluster near
the C–B–int2 interface (two Fe adatoms coming from BN–2 region and other
two Fe adatoms coming from C–2 region) which gets trapped at the C–B–int2
interface.

3.3.3 Electron correlation effects
For Fe nanostructures, electron correlation effects are expected to be impor-
tant because of narrow band widths of d-states of Fe. In order to check its
effect in the dynamic and electronic properties of the Fe clusters on the hybrid
graphene/h-BN sheet, we have used the PBE+U method. The adsorption ener-
gies of a single Fe adatom at different hexagonal sites are given in Table. 3.6.
It is observed that the adsorption energies decrease at all the sites in presence
of a finite U. The heights of the Fe adatom above the sheet expectedly increase
with a decrease in hybridization, but the most stable adsorption site does not
change. The effect of electron correlations is seen in the calculated diffusion
barriers. With the PBE functional, the diffusion barrier between the H1′ and
H1′′ sites was 1.3 eV. Using PBE+U, the barrier drops to only ∼ 0.12 eV.
This is due to the weak hybridization between the adatom and the 2D sheet
in presence of strong Coulomb interaction. This raises the question whether
the Fe cluster would get trapped at the C-B interface even when electron cor-
relations are included. To verify this we have performed MD calculations at
T = 300 K with four Fe adatoms on a 64-atom hybrid graphene/h-BN sheet
using the PBE+U method. Interestingly, the four Fe adatoms do form a cluster
as before, and the cluster gets trapped at the C–B interface. Therefore, one
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can safely conclude that the findings from PBE calculations are qualitatively
similar in the case of PBE+U.

3.4 Quasiperiodic heterostructures with graphene and
h-BN
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Figure 3.10. Schematic representation of quasiperiodic Fibonacci stacking of
graphene and hexagonal boron nitride heterostructure. In inset we have shown the
schematics of Bernal stacking that we have used for the stacking the individual layers.

In the previous section (see section 3.3), we have discussed about the pla-
nar heterostructure of graphene and h-BN. This idea of heterostructure can be
easily extended to three dimension. Graphene and h-BN have a very good lat-
tice matching, which is beneficial for experimental synthesis of high quality
stacked 3D heterostructures [120, 121]. Devices with crystalline graphene on
h-BN substrate are found to be work better compared to SiO2 [120]. Giovan-
netti et al. have shown in their ab-initio studies that these kind of structures
can induce a bandgap [122]. Experimentally, heterostructures of graphene and
h-BN have been synthesized by various groups [123–125]. In these structures,
possible metal to insulator transitions [123], band gap tuning [126–128] have
been observed.
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In this section and in Paper IV, we have investigated structural as well as
electronic properties of a unique quasiperiodic stacking of h-BN and graphene.

3.4.1 Structural arrangement
Our proposed 3D quasiperiodic structure of graphene and h-BN follows a Fi-
bonacci sequence, Sj . It follows a recurring relation as shown below,

Sj+1 = {Sj , Sj−1};where S0 = {B} and S1 = {A}
{A} = graphene single layer
{B} = h-BN single layer

So the first few sequence will be as follows,

S2 = {S1, S0} = {AB},
S3 = {S2, S1} = {ABA},
S4 = {S3, S2} = {ABAAB}, ....

We have schematically shown the Fibonacci sequence in Fig. 3.10. For the ar-
rangement of inter layer stacking, we have used Bernal stacking which has been
shown in the inset of Fig. 3.10. We have considered four different heterostruc-
tures with 13, 21, 34, 55 layers and henceforth referred as Fib13, Fib21, Fib34,
Fib55 respectively. Following the above mentioned Fibonacci sequences, these
four heterostructures have the following number of BN (NBN ) and graphene
(NC) layers,

13 layers = (NBN , NC) = (5, 8) =⇒ Fib13
21 layers = (NBN , NC) = (8, 13) =⇒ Fib21
34 layers = (NBN , NC) = (13, 21) =⇒ Fib34
55 layers = (NBN , NC) = (21, 34) =⇒ Fib55

We have also considered reverse structures by switching the layer composi-
tions. These reverse structures have (8, 5), (13, 8), (21, 13) and (34, 21) layers
of (NBN , NC). This reversing of structures has two relevance, i) change in
the concentration of graphene and h-BN layers and ii) change of the interface
ordering keeping the number of interfaces unchanged.

3.4.2 Stability and energetics
The 3D heterostructure of h-BN and graphene in forward Fibonacci sequence
has two basic building blocks: i) a bilayer graphene sandwiched between h-
BN layers from top and bottom, and ii) single layer of graphene in between
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Figure 3.11. Schematic representation of different building blocks (a-c) of Fibonacci
stacking and their relative formation energy. (d) shows the Fibonacci stacking of
graphene and h-BN with most stable building block in it.

two h-BN layers. In first building blocks, following the AB stacking, three
different layer configurations are possible e.g., B-Cα-Cβ-B, B-Cα-Cβ-N, N-
Cα-Cβ-N. Here α and β represent two different sublattice of C atom. Our
calculation indicates that B-Cα-Cβ-B structure is more stable compared to the
other structures. In Fig. 3.11, we have shown the schematic representation of
these building blocks along with their relative energies. The second building
block has a B-Cα-B structure where α sublattice C atom of graphene has B
atoms on both sides and β sublattice C atom has hexagon center of h-BN on
both sides.

We have calculated the formation energies using the following formula

Ef = E(Gm + h-BNn)−[m ∗ E(G) + n ∗ E(h-BN)] ,

where E(Gm + h-BNn) is the total energy of the hybrid graphene BN system,
E(G) is the total energy of a single layer graphene, andE(h-BN) is the total en-
ergy of a single layer h-BN. The number of graphene and h-BN layers are rep-
resented by m and n respectively. The formation energies are normalized by
the number of interfaces. In order to compare the stability of these quasiperi-
odic structures with regular ghaphene and h-BN stacking, we have calculated
the formation energies for all these structures. Our calculation shows that the
formation energies for all the heterostructures (Fib13, Fib21, Fib34, Fib55) are
quite similar in values (-63 to -66 meV with LDA exchange correlation and -
157 to -161 meV with PBE+vdW). The formation energy for regular graphene
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and h-BN structure is much higher (-51 meV with LDA and -130 meV with
PBE+vdW) as compared to the Fibonacci structures, which indicates better
stability of these quasiperiodic structure over the regular stacking of graphene
and h-BN. In the reverse structures with B-Cα-B as building blocks, similar
formation energies are obtained.

VBM

CBM

Btop

Bbottom

Ef

C C
2 C-B

Figure 3.12. Schematic diagram of band level splitting in Fib21 reverse structure along
with the partial charge density plots for valence band maximum (VBM) and conduction
band minimum (CBM) at Dirac point.

Our calculations reveal that the forward Fibonacci structures are metallic
while the reverse structure opens up a gap. The B-Cα-Cβ-B structure is metal-
lic as the sublattice symmetry is not broken here. However, in B-Cα-B struc-
ture, the sublattice symmetry is broken because Cα and Cβ atoms have two
different environments. Fig. 3.12 shows a schematic picture of level splitting
in B-Cα-B structure. The π orbitals of C and B have different energy levels. It
causes the C atom from α sublattice to reduce its energy to make a bonding or-
bital with B. However, the energy level of C from β sublattice does not change.
These cause breaks in sublattice degeneracy and opens up a gap. Normal Fi-
bonacci heterostructures contain both blocks and hence remain metallic. On
the other hand, the reverse Fibonacci structures contain only B-Cα-B blocks
and hence open up band gaps in the order of 13 to 42 meV.
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4. The Influence of Defects

“Who in the world am I? Ah, that’s the great
puzzle.”

— Lewis Carroll, Alice in Wonderland

In this chapter, we will discuss how defects can affect the properties of two
dimensional (2D) materials which may some time be beneficial or may some
time be detrimental from the application point of view. The results have been
presented in Papers V–IX. In the following sections, we will discuss: 1) how
vacancy defects affect the adsorption and magnetism of Fe cluster, 2) how
various defects change the properties of pristine 2D transition metal dichalco-
genides, 3) effect of defects in local transport properties in graphene and sil-
icene, and 4) how defected graphene can help in gas sensing activities and
fluorination of graphene.

We have used VASP [98, 99] code for our electronic structure calculations.
For transport calculation we have used the SIESTA [129] code. Finite tempera-
ture diffusion of Fe atoms on the 2D sheet was studied using Born-Oppenheimer
molecular dynamics (MD). The temperature was controlled using Nosé ther-
mostat [130–132].

4.1 Adsorption and magnetism of Fe cluster on
graphene with vacancy defects

The chemical and magnetic interactions of Fen (n=1–6) clusters with vacancy
defects (monovacancy to correlated vacancies with six missing C atoms) in
graphene have been presented in paper V. As discussed in the introduction,
graphene in particular is prone to the formation of vacancy defects. These va-
cancy defects are quite probable to form strong reactive centers [133, 134] and
such defects can affect the electronic structure and hence transport properties
of graphene [31, 32]. It is possible to trap magnetic adatoms or clusters at
various defect sites [133] and a flux of adatoms may generate various sizes of
magnetic nanoclusters at defect sites.

Another reason for investigating trapping of clusters with ferromagnetic
species, is that for all applications of graphene in spintronics must include a fer-
romagnetic spin injector. Regarding spintronic applications, the out-of-plane
magnetization has a technological application as it can be used to increase stor-
age density. Finite size clusters may act as potential candidate. Another aspect
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is the spin-dipole contribution, which arises from the anisotropic spin densities.
For low dimensional systems, it has a significant role on the effective moment,
which is the sum of spin and spin-dipole moments, which can be measured by
X-ray magnetic circular dichroism (XMCD) experiments.

Given this background, in this work, we tried to analyze how robust is the
formation of clusters on defected sites. The effects of magnetic anisotropy and
the spin-dipole moments under strong Coulomb interaction on these systems
are also discussed.

The ab-initio calculations were performed using PAW method and PBE ex-
change correlation functional. The effect of strong electron-electron interac-
tions were taken into account using PBE+U method [135], where the Coulomb
parameter U is added in the Hubbard formalism. For these calculations, we
have used U = 4 eV and the intra-atomic exchange parameter J = 1 eV, which
are typical values for 3d transition metals. [135, 136].

4.1.1 MD results
In order to investigate how a number of Fe adatoms placed on a defected
graphene diffuse, especially whether the Fe adatoms remain isolated or form
a cluster, we have performed limited real time Born-Oppenheimer molecular
dynamics (MD) up to 30 ps at constant temperature T = 300 K, a tempera-
ture expected in most practical applications. We have placed six Fe adatoms
at six different sites on the sheet and also removed two adjacent C atoms to
create a vacancy. Figure 4.1 shows the potential energy landscapes and cor-
responding geometries (marked by arrows in figure) at different simulation
times. The analysis of trajectories and movies of the motion of Fe atoms re-
veal interesting observations. At the beginning of the simulation, the C atoms
near the divacancy center come closer and heal the divacancy to form a 585
defect (Fig. 4.1(a)). Then the Fe adatoms from the adjacent hexagonal sites
come together and form dimers (Fig. 4.1(b)-Fig. 4.1(d)) in about < 0.7 ps.
These dimers come closer to form a cluster (Fig. 4.1(e)-Fig. 4.1(g)). Finally,
in the presence of the Fe cluster near the defect, one Fe atom from the cluster
forms bond with the C atoms at the defect site and hence breaks the C–C bonds
of the pentagonal rings of the 585 defect (Fig. 4.1(h)). Once the cluster gets
trapped at the defected site, it remains trapped and only shows thermal oscil-
lations till the end of the simulation time. Frequent breaking and forming of
bonds within the Fe cluster and between Fe and C atoms can be seen during
this time. Fig. 4.1(i), the lowest energy structure obtained from the geometry
optimization after the MD simulation, shows the formation of bonds within Fe
cluster and between Fe and C atoms. Thus our simulations indicate that the
formation of cluster at defected site is fairly robust.
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Figure 4.1. Potential energy (P.E.) landscape as a function of simulation time.
Schematics (a)-(h) show the snapshots at different simulation times. These snapshots
are also marked by arrow in the P.E. graph. Fig. (i) shows the optimized geometry af-
ter the completion of MD simulation for 30 ps. See text in Sec. 4.1.1 for more details.
Reproduced with permission from Paper V. Copyright © 2014 American Physical So-
ciety.
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Figure 4.3. Geometries and spin density of Fen clusters on Vn vacancies (n=1-6) are
shown together. Cyan and red balls indicate C and Fe atoms respectively. Yellow
and blue isosurface denotes positive and negative spin densities. Reproduced with
permission from Paper V. Copyright © 2014 American Physical Society.

undergo any significant structural rearrangement in presence of Fe clusters.
Thus even a single Fe adatom can be used to maintain the structure of underly-
ing lattice despite the presence of the vacancy. The geometries of Fe clusters
on graphene are remarkably different from those studied in free space [138].
As seen from Fig. 4.3(a), the optimized geometry for Fe1 on V1 shows that the
minimum energy position for Fe is at the center of the vacancy. The average
Fe–C bond length is ∼ 1.77 Å for this case and the height of the Fe adatom
from the graphene plane is ∼ 1.19 Å. The dimer bond length is about 10 % en-
hanced in presence of a divacancy in graphene (see Fig. 4.3(b)) from the bond
length found in a free cluster. The trimer in free space is reported to be an
isosceles triangle [138, 139], while the trimer on a vacancy (see Fig. 4.3(c)) is
a distorted isosceles triangle with the bond lengths differing substantially from
that in free space. Fe4 also forms a prism in free space with the bond lengths
ranging from 2.22 – 2.41 Å. However in our case the bond length varies sub-
stantially from 2.2 Å to 2.63 Å (see Fig. 4.3(d)). The change in the trigonal bi
pyramid of isolated Fe5 is seen in the vertical four-atom plane where the bond
lengths are increased with respect to those in free space (see Fig. 4.3(e)). Fe6
undergoes a substantial change from octahedron to a more complex structure
seen in Fig. 4.3(f).

In Table 4.1, the adsorption energies for the Fen clusters in a n-vacancy
graphene sheet and their magnetic moments are reported, together with the
magnetic moments of free Fen clusters. As seen from the Table 4.1, the mag-
netic moments of Fe clusters are slightly reduced by their adsorption on the
n-vacancies except for Fe6 on V6 and Fe1 on V1 where the reduction is huge.
However, the magnetic character of the C atoms near to the vacancy is signif-
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Table 4.1. Adsorption energies Ead
Vn
(in eV) for Fen cluster adsorbed in n-vacancy

graphene sheet, together with their magnetic moments (in µB). The calculations are
done within PBE+U formalism. The middle column shows the total moment of a Fe
cluster on graphene with defects, while the right hand column shows that calculated
moment for free Fe clusters.Reproduced with permission from Paper V. Copyright ©
2014 American Physical Society.

µFen
B /n

n Ead
Vn

/n µB/n (Free)

1 5.36 0.32 4.0
2 2.80 3.00 4.0
3 2.60 3.32 4.0
4 2.97 3.00 3.5
5 2.71 3.20 3.6
6 2.34 3.33 3.33

icantly affected as seen in Fig. 4.3. The magnetization of the whole system is
still basically due to the Fe adatoms. Except for the case with one Fe adatom
on a single vacancy, the average Fe magnetic moments for the adsorbed clus-
ters are not so different from the moments in free state. The drastic reduction
of magnetic moment for the Fe atom adsorbed at the monovacancy site is due
to a strong hybridization between the Fe–d and C–p orbitals at the defect site.

It can be noted that magnetic moments of the C atoms for the defected
graphene has reduced significantly after the adsorption of Fe clusters. The
analysis reveals that Fe atoms induce a substantial number of states on the
Fermi level and it is seen that those are mainly d-like. This feature is general
and is present in all the clusters. Partially filled in-plane p orbitals of the edge
C atoms around the vacancy sites hybridized with the d-orbitals of adsorbed
Fe atoms to pacify the dangling bonds and hence, destroy the local moments
at those edge C atoms.

Orbital moments, magnetic anisotropy and spin-dipole moments
We have included SOC in the Hamiltonian to calculate the orbital moments
and magnetic anisotropy energies (MAEs) for Fen cluster adsorbed systems.
Here, MAE corresponds to only magneto-crystalline energy originating from
spin-orbit coupling while the contribution of shape anisotropy is neglected.
Table 4.2 shows easy axis, magnetic anisotropy and orbital magnetic moments
along the easy axes. The calculated average orbital moment of the Fe atoms
in these systems are similar to the calculated value for bulk Fe (∼ 0.05 µB
without orbital polarization) in the bcc phase. It is interesting to note that Fe1
and Fe4 clusters exhibit out-of-plane easy axes whereas the other ones have
easy in-plane magnetization. Therefore, for a flux of adatoms of Fe deposited
on graphene defect sites with varieties of cluster formation, one may expect
that the cluster macrospins to lie in the plane or perpendicular to the plane of
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Table 4.2. MAE-Data with PBE+U , magnetic anisotropy energy (∆E = Ehard −
Eeasy), average orbital moment for Fen clusters on n-vacancy graphenes. Repro-
duced with permission from Paper V. Copyright © 2014 American Physical Society.

∆E Easy Hard
Cluster ⟨µorb⟩ (meV) axis axis

Fe1 0.010 0.012 (001) (100)
Fe2 0.047 0.396 (010) (100)
Fe3 0.042 0.843 (010) (100)
Fe4 0.032 0.504 (001) (100)
Fe5 0.042 0.694 (100) (010)
Fe6 0.042 0.708 (100) (001)

graphene. However, one should note that the cluster magnetization directions
will be quite robust as the magnetic anisotropy energies are not so small in
magnitude.

In systems having low symmetry, the contribution of the spin-dipole term
is expected to be quite significant. Hence, we have performed DFT calcula-
tions to calculate the spin dipole moments, following the method prescribed
by Freeman et. al. [140]. In Table 4.3, the values of spin moments ms, spin-
dipole moments (7⟨Tz⟩) and effective moments (meff ) are shown. One can
clearly see that (i) the spin-dipole contributions are not negligible and (ii) the
signs of 7⟨Tz⟩ are opposite toms in many cases, thereby reducing the effective
moments of certain Fe atoms in each cluster. The average effective moment
varies non monotonically e.g., the ⟨meff ⟩ are 2.63 µB , 2.65 µB and 3.18 µB
for n = 4 − 6 respectively. In fact, the value of 7⟨Tz⟩ can reach up to 33 %
of the spin moment. However, the average effective magnetic moment of the
total system does not vary much from the average spin moment due to mutual
cancellation of atomic 7⟨Tz⟩.

4.2 Atomic-scale defects in 2D transition metal
dichalcogenides

The effect of various point defects on the structural, electronic and optical
properties of transition metal dichalcogenides (TMDs) have been presented
in Paper VI. As discussed in the introduction, 2D TMDs are one of the alter-
native “beyond graphene” family members. Unlike graphene, these TMDs are
semiconductors. Defects in general create impurity states into the band gap
region either closer to the valence band (p-type) or closer to the conduction
band (n-type). The interaction of localized states from the defects can couple
strongly with the continuum of ionic crystals which have applications in solid
state lasers, white LEDs etc [141].
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Table 4.3. ms, 7⟨Tz⟩ and meff = ms + 7⟨Tz⟩ values for Fen clusters adsorbed in n-
vacancy graphene system. Calculation were done within PBE+U formalism. Repro-
duced with permission from Paper V. Copyright © 2014 American Physical Society.

Cluster Atom ms 7 < Tz > meff

Cluster size = 6

4

5

6

1 3.13 -0.51 2.62
2 3.18 0.62 3.80
3 3.24 -0.48 2.76
4 2.99 0.11 3.10
5 3.21 0.14 3.35
6 2.95 0.50 3.45

Cluster size = 5

4

5

1 2.55 -0.52 2.03
2 3.23 -0.61 2.62
3 3.06 0.65 3.71
4 3.30 -0.72 2.58
5 2.73 -0.41 2.32

Cluster size = 4

4

1 2.59 0.31 2.90
2 3.05 -0.99 2.06
3 3.14 -0.44 2.70
4 2.81 0.04 2.85

Cluster size = 3
1 2.81 -0.03 2.78
2 3.20 -0.68 2.52
3 2.85 0.31 3.16

Cluster size = 2
1 2.84 0.32 3.16
2 2.93 0.14 3.07

Cluster size = 1
1 0.91 -1.15 -0.24
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It is not uncommon to find vacancies during the fabrication process. For
example MoS2 has been found to acquire S vacancies during fabrication which
create deep trap states for electrons [142, 143]. These trap states damage the
n-type conductivity of MoS2. The mode of fabrication also dictates the amount
of defect concentration [144, 145]. There are few theoretical studies available
in the literature where specific defects have been studied [142, 143, 146–153].
However systematic studies on the role of various point and double defects on
the electronic and optical properties of TMDs are not available in the literature.
Therefore, in this work (Paper VI) we tried to address systematically the role
of defects in electronic and optical properties of MX2 TMDs where M = Mo,
W and X = S, Se, Te.

4.2.1 Structure and formation energies

Figure 4.4. Formation energies for different types of defects in various MX2 systems
under both X–rich and M–rich conditions. Reproduced with permission from Paper
VI. Copyright © 2015 American Physical Society.

For our study, we have considered six different type of defects namely X va-
cancy, X interstitial, M vacancy, M interstitial, XX vacancy and MX vacancy.
We have used various possible configurations of geometry to determine the
minimum energy structure for all the systems. We have calculated the forma-
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tion energies (Ef ) using the following formula:

Ef = Edefect −
[
Epristine +

∑
i

niµi
]
, where

Edefect = total energy of MX2 supercell with defect
Epristine = total energy of MX2 supercell without defect

ni = number of i element added or removed (with a negative sign)
µi = chemical potential of the element i

We have shown the calculated formation energies under X rich and M rich

ΔL

ΔH X1

X2

X3

X4

X5

a b

c d

e f

Figure 4.5. Representative figure of optimized geometries for various defects in MX2

system as designed on 5×5×1 supercell. (a)–(f) represent the following defects: (a)
X interstitial, (b) X vacancy, (c) M vacancy, (d) MX vacancy, (e) XX vacancy and
(f) M interstitial. The cyan (large) balls denote the X atoms from the top layer, pink
(medium) balls denote M atoms and dark blue (small) balls denote X atoms from the
bottom layer. In (a), the purple ball refers the X interstitial atom. In (f), the red ball
indicates to the M interstitial atom. Red arrows in (b) indicates the movement of M
atoms during the relaxation. ∆L and ∆H in (c) represents the change of in-plane and
out-of-plane displacements of the X atoms around the M vacancy due to structural
relaxation. Reproduced with permission from Paper VI. Copyright © 2015 American
Physical Society.
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conditions for all the geometries that we have considered in our simulations
in Fig. 4.4. The most stable geometries for X interstitial, X vacancy, M va-
cancy, MX vacancy, XX vacancy, and M interstitial defect have been shown
in Fig. 4.5 (a)–(f), respectively. The formation energy calculations show that
the stable X interstitial structure is obtained when the X atom is attached on
top of a host X atom (Fig. 4.5 (a)). X vacancy is created by removing one
X atom from the top X layer. Here, three M atoms surrounding the vacancy
relax towards the vacancy site (Fig. 4.5 (b)). For M vacancy, six X atoms
with dangling bonds dictate the relaxation of their geometries near the vacancy
site. Outward relaxation from the vacancy center can be observed for S and
Se atoms. However, for Te atom, the relaxation occurred towards the vacancy
center (Fig. 4.5 (c)). The energetically favored position for M interstitial de-
fects are when the M atom is at the split interstitial position along the c direc-
tion except WTe2 (Fig. 4.5 (f)). For WTe2, after relaxation the interstitial W
atom settled at hexagonal position in the W layer forming a distorted hexagon.
During optimization of MX vacancy, five neighboring X atoms (X1–X5 in
Fig. 4.5 (d)) nearer to the vacancy site mainly relax. Lowest energy XX diva-
cancy structure is obtained when correlated X atoms are removed from the top
and bottom layers of X atom (with same x and y coordinates). The M atoms
are in general relax towards the vacancy site and form an equilateral triangle
(Fig. 4.5 (e)). See Paper VI for details.

4.2.2 Defect concentration at equilibrium
In order to find out the concentration of defects in finite temperature crystal
growth condition, we have also calculated the equilibrium defect concentration
using the following formula,

Ceq = Ne−Ef/kBT

where N is the concentration of possible defect sites, Ef is the zero tempera-
ture formation energy of the defect and T is the temperature. We have chosen
T= 1000 K – 1200 K during the crystal growth. This range of temperature
is chosen as most of the MX2 single layer structures are synthesized experi-
mentally in this range [154–159]. From our calculation, it is quite evident that
under X rich condition, X interstitial defects and underM rich condition, X va-
cancy defects will occur more frequently. However, the probability of forming
M interstitial or M vacancies are quite low.

4.2.3 Electronic structure and optical properties
Energy level diagrams for all six defects in all MX2 system have been con-
structed and shown in Fig. 4.6. The columns (a)–(f) in each subplot indicates
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Figure 4.6. Energy level diagram for different defects in all the MX2 systems. In each
subplot, columns (a)-(f) refer to X interstitial, X vacancy,M vacancy,MX vacancy, XX
vacancy and M interstitial respectively. The orange (long dashed in print) line shows
the position of VBM and CBM for pristine MX2. Green solid and dashed lines denote
the occupied and unoccupied defect states respectively. Reproduced with permission
from Paper VI. Copyright © 2015 American Physical Society.

X interstitial, X vacancy, M vacancy, MX vacancy, XX vacancy, and M in-
terstitial defect, respectively. The position of conduction band minima (CBM)
and valence band maxima (VBM) were marked using an orange dashed line.
The green solid and dashed line represents the position of defect states in occu-
pied and unoccupied states, respectively. Density of states (DOSs) calculation
indicates that the qualitative nature of DOSs are quite similar between MoS2,
WS2; MoSe2 , WSe2; and MoTe2, WTe2. Our analysis of energy level diagram
(see Fig. 4.6) and DOSs indicate that in general defect states appear in the band
gap region of the pure system except for X interstitial defects. In case of X in-
terstitial defects, the impurity states appear near the band edges and merge with
both valence and conduction bands.

Defects in the MX2 can also cause changes in the optical properties. How-
ever, our calculations indicate that the most notable change can be visible for
the following three defects: - i)M vacancy, ii) X vacancy and iii)MX vacancy.
Therefore we have shown optical spectra for the three defects in MoX2 sys-
tem in Fig. 4.7. For Mo vacancy in MoS2, defect peaks occur below and above
the Fermi energy giving rise to a transition around 1 eV. The peak in MoSe2 is
broader due to the fact that there are two possible transitions within a very close
energy range. In MoTe2, the defect state due to Mo vacancy occurs very close
to the Fermi energy and therefore generates a sharp optical transition at a very
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Figure 4.7. Comparison of imaginary parts of the dielectric functions (ε2) between
MoS2, MoSe2, and MoTe2 for M vacancy, X vacancy, and MX vacancy. Blue and
orange lines denote in-plane contribution of ε2 for defected and pure systems, respec-
tively. Purple and green lines denote out-of-plane contribution of ε2 for defected and
pure systems, respectively. The shaded region represents the prominent contributions
of defect related peaks compared to the pristine system. Reproduced with permission
from Paper VI. Copyright © 2015 American Physical Society.

low energy. For X vacancies, defect states are closer to conduction band min-
imum and hence the optical spectra show slight changes from pristine. There
are number of defect peaks appearing near the Fermi energy for MX vacancy
and hence transition occurs at around 0.5 eV, which shows a broader peak
compared to the M vacancy. For MX2 systems, the absorption spectra occur
in the visible region which can be suitable for photocatalysis using sunlight.
Optical properties for the above three defects show similar characteristics for
WX2 systems.

4.3 Electronic transport properties of graphene and
silicene with defects

As we have discussed before, silicene (a 2D sheet of Silicon) can be a viable
alternative to graphene. Silicene has hexagonal structure and its electronic
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properties are similar to graphene. The electron mobility in silicene is also
in the same order of magnitude as in graphene [160]. Defect free monolayer
graphene or silicene is very difficult to obtain in large scale fabrication process
such as CVD and it results in creation of few defects [54, 55]. Although defects
can effect adversely to device properties [54], in nanoscale defects can intro-
duce exciting features which can be used for various applications [59, 60, 161–
163]. Defects in graphene and silicene have been studied from the perspective
of electronic structure, creation, mobility, self healing, etc [27, 57, 164–168].
However, there are not adequate studies about the electronic transport prop-
erties of defects e.g., local defects, in two dimensional silicene as well as in
graphene. In Paper VII, we have used ab-initio density functional theory with
non-equilibrium Green’s function (NEGF) [169, 170] methods to compare dif-
ferent defects in these two monolayers and analyze electronic transport calcu-
lations.

For these calculations, we have used SIESTA [129] code using a double-ζ
polarized basis set (DZP) for valence electrons, and norm-conserving pseu-
dopotentials [171].

4.3.1 Structures and energetics
We have considered four different defects in graphene and hexagonal silicene.
These are: i) Stone-Wales defect, ii) Monovacancy, iii) 585 divacancy (di-
vacancy with two pentagon and one octagon, and iv) 555777 divacancy. In
Fig. 4.8(a)-(d), we have shown the schematic representations of these defects
along with the setup used for calculation of electronic transport (see Fig. 4.8(g)).
Side view of graphene and silicene are also shown in the Fig. 4.8(e)-(f).

Table 4.4. Defect formation energies in graphene and silicene. Reproduced from
Paper VII by permission of The Royal Society of Chemistry.

Defect Formation Energy (eV)
graphene silicene

SW 4.87 1.84
1V 7.62 2.87
2V-555777 6.63 2.74
2V-585 7.48 3.24

In order to find out the relative stability of these defects we have calculated
the formation energy using the following formula:

Ef = ED
total − Etotal +Nµi ,

where, ED
total is the total energy of the system with defect, Etotal is the total

energy of the pristine system. The number of atom removed is denoted by N
and µi is the chemical potential (i = C or Si).
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Figure 4.8. Top view of the schematic representation of the defective structures used in
this work for both graphene and silicene: a) Stone-Wales (SW), b) monovacancy (1V),
c) divacancy (2V-585) and d) divacancy (2V-555777). Side view of e) graphene, f) sil-
icene. While pristine graphene is perfectly flat, silicene exhibits a rugged structure. g)
Setup used in the electronic transport calculations for both graphene and silicene: two
electrodes and a central scattering region. Reproduced from Paper VII by permission
of The Royal Society of Chemistry.

The defect formation energies are tabulated in Table 4.4. Our results show
that defects in silicene have a smaller Ef than graphene by at least a factor of
two. This is mainly due to the cohesive energy. Cohesive energy in silicene is
4.27 eV/atom whereas it is 8.21 eV/atom in graphene. Hence defect formation
in silicene has higher probability as compared to graphene. A clear hierarchy
of formation energies can be observed for both graphene and silicene. The
order of stability in graphene is SW < 2V − 555777 < 2V − 585 < 1V .
However for silicene, the order is slightly different SW < 2V − 555777 <
1V < 2V − 585.

In graphene, the stability of 2V-585 defect is lower compared to 2V-55577
defect because of two broken bonds. In silicene, monovacancy has smaller
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formation energy than 2V-585 defect. However, in graphene, the trend is op-
posite. The reason behind this is that the buckling in silicene helps for bet-
ter rearrangement of dangling bonds in monovacancy compared to graphene.
This is also evident in the value of magnetic moment. While monovacancy in
graphene shows a 1.4 µB magnetic moment, monovacancy in silicene shows
zero magnetic moment.

4.3.2 Transport properties

Figure 4.9. Transmission coefficients as a function of energy for the different defects in
a) graphene, and b) silicene. The insets show a zoom-in of the region around the Dirac
cone. Reproduced from Paper VII by permission of The Royal Society of Chemistry.

We have calculated the transverse electronic transport properties of silicene
and graphene and compared them with the pristine system. By applying a com-
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bination of source or drain and gate voltage, it is possible to see the signature
of different defects in the form of a Fano resonance.

The transmission coefficients for different defects in graphene and silicene
have been shown in Fig. 4.9. In pristine system, the Dirac cone feature can
clearly be seen. However, the transmittance is larger for silicene due to fact that
the valence and conduction bands dispersion are much lower than graphene [10,
172].

Figure 4.10. Top view of local current (LC) and wave functions (WF) for both
graphene and silicene: a) Pristine structure (LC); b) pristine WF; c) Stone-Wales de-
fect and d) Stone-Wales (WF). For WF plots, blue represents the real part and the red
represents the imaginary part. The images presented correspond to a zoomed-in region
of the actual simulation cell presented in Fig. 4.8(g). Reproduced from Paper VII by
permission of The Royal Society of Chemistry.

From the analysis of transport properties, in case of graphene, we can see
that there are no significant changes for Stone-Wales and 585 divacancy defects
for energy level below the Fermi energy. This is also true for monovacancy
till energy −0.4 eV. A broad resonance can be seen at −0.8 eV. Significant
change in transmission coefficients can be observed for 555777 divacancy de-
fects where suppression of transmission occurs due to scatterings at states near
to the vacancy site. For positive energy level above the Fermi energy, a sharp
resonance occurs at 0.65 eV for Stone-Wales defect. However for other cases
the changes are minimal, which can be seen in the change of slope of the trans-
mission curve. For silicene, the behavior of the transmission curves are quite
similar. However the main difference is that the resonances appear closer to
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the Fermi energy which can be accessed by applying relatively small bias and
gate voltage.

We have also looked into local transport properties [173] to investigate how
it is affected by these resonances. The local transport properties were calcu-
lated for pristine system and for Stone-Wales defect as it shows the resonance.
Results of local current densities and corresponding wave functions for these
systems have been shown in Fig. 4.10. We have chosen E − EF = +0.65 eV
for graphene andE−EF = +0.29 eV for silicene as they correspond to the res-
onance position. Our calculations show that for both pristine systems, the cur-
rent flows from left to right. The wave functions are spread all over the system
and are not localized. For Stone-Wales defect in both graphene and silicene,
the local currents are concentrated near the defect site which is consistent with
the Fano resonance (coupling between bound state with the continuum of the
band). Due to such a high current density near the defect site, one can expect
a local heating which can affect the functionality of the devices.

4.4 Gas sensing activity using defected graphene
Gas sensing is one of many application areas where graphene can be used due
to its unique properties such as i) being a two dimensional material with only
surface and no volume enhancing the effect of surface dopants, and ii) high
conductivity and low electrical noise enables graphene to detect very small
signal changes because of gas molecule absorption. Among p-doped and n-
doped gases, NO2 has a very good sensitivity to the pristine graphene due to
large amount of charge transfer. Gaseous molecules act as electron acceptor
or donor when they are adsorbed on graphene. These cause change in career
density and hence electrical resistance in graphene, which is the primary gas
sensing mechanism in graphene [174]. NO2 molecules are in general attached
to graphene by physisorption. However, it is expected that the NO2 will in-
teract more with defected graphene as compared to the pristine graphene thus
affecting the conduction electrons much more [175]. Hence, creation of de-
fects in pristine graphene can enhance the gas sensing activity.

Therefore, it will be important to understand how gas molecules react with
defected graphene. In Paper VIII, together with our experimental colleagues,
we have discussed creation of defects in graphene using ion beam irradiation
and studied the gas-sensing properties using various experimental techniques.
The experimental findings are supported by our ab-initio density functional
theory.

4.4.1 Experimental sample preparation and measurements
The sample of graphene flakes were created using the mechanical exfoliation
methods and deposited on heavily doped Si substrates containing 300 nm SiO2.
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Table 4.5. Binding energies for NO2 molecules on pristine and defected graphene.
Reproduced with permission from Paper VIII. Copyright © 2012 IOP Publishing. All
rights reserved.

Structure EB (eV)

Pristine 0.30
Monovacancy 0.32
Divacancy (585) 0.28
686 Defect 0.35
Stone-Wales 0.72

In Table 4.5, we have tabulated the binding energies of NO2 molecule with
pristine graphene and other defects. Our calculations indicate that the NO2
molecule binds strongly with the Stone-Wales defect with binding energy value
of 0.72 eV. In other defects, the binding energies are ∼ 0.3 eV.

The total density of states along with the site projected density of states
for NO2 are shown in Fig. 4.13. The spin polarized molecular levels of NO2
molecules appear near the Fermi energy causing 1 µB / cell magnetic moment.
We have also calculated inverse participation ratio (IPR) [177] for the elec-
tronic states of NO2 adsorbed Stone-Wales defect (see Fig. 4.13(b)). IPR is
inversely proportional to the number of atoms that are contributing to a spe-
cific molecular orbital. Hence a quantitative description of molecular orbital
localization can be given from IPR. In our calculation, the IPR has very small
values near the Fermi energy indicating a conducting character of the states.

The binding energy and sticking probability for NO2 molecules on a pristine
and defected graphene surface are further analyzed using Langmuir isotherm
model. Our results show that higher binding energies are required in order
to explain experimental rise time. Our DFT calculation correctly predicts in-
crease of binding energy for Stone-Wales defect which results into a increased
adsorption and conductivity.

4.5 Site-selective local fluorination of graphene with
defects

Functionalization of graphene is one of many routes to make graphene ad-
vantageous for application purpose. Local approach in functionalization is
an up-and-coming method to retain the beneficial properties of graphene after
its modification of structure and functionalization. Among various possibili-
ties, functionalization by using plasmas containing radicals is quite promising.
Plasma enhanced graphene functionalizations have been shown in various ex-
periments [178–181]. However, these methods are not selective to the local
sites and extra photo/electron resist has to be used which can cause unwanted
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impurities on the surface of graphene. In Paper IX, we have reported a unique
approach which allows a precise site-selective fluorination of graphene. The
experimental results are supported by the ab-initio density functional theory
based simulations.

4.5.1 Sample preparations and experimental results

Figure 4.14. Characterization of pristine graphene, defected graphene (DG) and fluo-
rinated graphene (FG). (a) Scanning electron microscope (SEM) image of local func-
tionalization of graphene (100 µm × 100 µm) with ion doses of 1013 ions/cm2 and
simultaneous 167s gas exposure. (b) Scanning tunneling microscopy image of DG
under the same ion dosage. (c) X-ray photoelectron spectroscopy spectra of F 1s peak
of pristine graphene, DG and FG. FG reveals a distinguished F 1s peak, and the F
1s spectrum of pristine graphene as well as DG is given as a reference. (d) Raman
comparison of pristine graphene, DG and FG. Lower ID/IG in FG in contrast to DG
indicates lower degree of defects density and larger crystalline size. Reprinted from
Paper IX.

In order to fluorinate graphene (FG), we have used focused ion beam (30kV
Ga+) irradiation dosage of 1013 ions/cm2 with exposure to XeF2 for 167s. For
comparison purpose, defected graphene (DG) has been prepared using only
ion irradiation. The basic principle of this type of fluorination process is to
create reaction between fluorine contained molecules and defected graphene
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containing carbon atoms with dangling bonds. We have used 100 µm × 100
µm area for the irradiation purpose (see Fig. 4.14(a)). Fig. 4.14(b) shows the
scanning tunneling image of DG structure prepared using same ion irradiation
dosage. Under this amount of dose, most of the lattice structures of graphene
remains intact. However, defects in terms of vacancies form in the damaged
part of the graphene. Distinct XPS peak for F 1s can be seen in FG which
indicates its formation. The intensity of F 1s peak increases for grazing angle
signifying the surface localization of fluorine atoms.

Structural information can also be obtained from the Raman spectroscopy
(see Fig. 4.14(d)). The analysis of Raman spectra shows that after irradia-
tion the intensity of D-peak (at 1350 cm−1), which is negligible in pristine
graphene, increases. However, there is a drastic decrease in the intensity of
2D-peak (at 2700 cm−1) indicating the breaking of translational symmetry of
the sp2 carbon bonds in graphene. The ratio of D-peak and G-peak (ID/IG) is
lower in FG as compared to the DG which indicates lesser number of structural
disorder in FG. To analyze and understand the structures in more details, STM
calculation were performed on FG sample which indicates that the fluorine
atoms are localized near to the defects created by irradiation.

4.5.2 Fluorination of graphene from materials modeling

Table 4.6. Adsorption energies of fluorine on pristine graphene as well as the edge
carbon atoms surrounding defects. Reprinted from Paper IX.

Structure Eabs (eV) Hybridization

Pristine -1.91 sp3

Divacancy site A -2.86 sp3

Divacancy site B -2.25 sp3

Hole defect site C (dangling bond) -5.64 sp2

Hole defect site D -2.18 sp3

In order to investigate the adsorption behavior of fluorine atoms on defected
graphene, we have performed ab-initio density functional theory calculations.
Following the STM experiments, we have considered two different type of de-
fects to model our simulations. These two models are – i) divacancy model
and ii) hole-defect model which are shown in Fig. 4.15. There are four differ-
ent possible places (marked as site A–D) where a single fluorine atom can be
adsorbed. In Table 4.6 we have tabulated the adsorption energies for fluorine
atom in these four sites. From the Table 4.6, it can be clearly seen that the
adsorption energies for fluorine atom are quite lower around the defected sites
as compared to the pristine graphene. It suggest that fluorine atoms are more
prone to react with the carbon atoms surrounding the defect sites. At site C,
due to the presence of dangling bond at the carbon atom, the adsorption energy
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Figure 4.15. Ab-initio density functional calculation models of fluorinated graphene.
Di-vacancy model (a) and hole-defect model (b), 0.95 nm in length, are based on the
STM observations. Adsorption energies are shown in table 4.6. Reprinted from Pa-
per IX.

of fluorine at this site is much lower compare to others. Here the carbon flu-
orine bond length is 1.36 Å, which is typical for a sp2 hybridization and this
bond has in-plane orientation. In other adsorption sites a sp3 hybridization can
be observed.

80



Part III:
Final Conclusions





5. Summary and Outlook

“Would you tell me, please, which way I ought
to go from here?”
“That depends a good deal on where you want
to get to,” said the Cat.

— Lewis Carroll, Alice in Wonderland

The material research to find out suitable materials for beyond silicon elec-
tronics has become a predominant part in various aspects of science and tech-
nology in the 21st century. Graphene and other “beyond graphene” family
of materials are among the many promising candidates in this regard. How-
ever, it is experimentally challenging to produce these materials in large scale
quantity without incorporating any defects or impurities. From the device fab-
rication point of view, these defects or impurities can be either beneficial e.g.,
modification of material properties to get a desired outcome, or detrimental
e.g., creating scattering states in electronic current transport. Hence, a proper
understanding of the repercussions caused by these impurities and defects on
these materials is extremely important. Therefore, the research work carried
out in this thesis was focused on the effects of impurities and defects in modify-
ing the properties of graphene and its derivatives, silicene and transition metal
dichalcogenides for applications ranging from solar cells, nanoelectronics, op-
toelectronics, gas sensors, spintronics, etc.

We have mainly focused on the results of metallic impurities in graphene
and its derivative structures in Chapter 3. We have also looked into the proper-
ties of quasiperiodic graphene and hexagonal boron nitride hybrid heterostruc-
ture systems to solve the classic band gap problem of graphene. In Chapter 4,
we have discussed how defects affect the properties of graphene, silicene and
transition metal dichalcogenides. Paying attention to spintronics and magnetic
device applications, we have used single or small nanostructures of Fe as our
choice of transition metal impurities.

In our study of single and a pair of Fe atoms in graphene/graphane interface
structures shows that the responses of the magnetic impurities are different in
“armchair” and “zigzag” channels. While the magnetic response is localized
in the armchair channel, it is delocalized in the zigzag channel. An in-plane
easy axis with relatively large magnetic anisotropy energy can be observed in
the armchair channel. The Fe atoms strongly interact with the zigzag chan-
nel and hence a stronger ferromagnetic coupling between the the Fe atoms can
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be observed. A possibility of realizing a spin gapless semiconductor mate-
rial by doping appropriate magnetic impurities have been observed in the arm-
chair channel. In the conducting zigzag channel, magnetic interaction between
two impurities shows oscillating coupling across the edge for a specific width.
Hence, a possibility of creating ultrathin device with fascinating properties has
been discussed.

In our study of reconstructed zigzag graphene nanoribbons, we have shown
that the reconstructed zigzag edges behave as metal and it does not show any
magnetism. Using single and double hydrogen atoms, chemical functional-
ization of the edges are possible. However, the functionalization using two
hydrogen atoms are preferable than the one. To introduce magnetism, we have
also functionalize the edges with Fe chains which shows a variation of inter
edge magnetic coupling between ferromagnetic and antiferromagnetic.

From the study of diffusion of Fe nanostructures on 2D hybrid structures of
graphene and h–BN, we have shown that the diffusion barriers have smaller
values on the h–BN part as compare to those in graphene part. Using in-depth
ab-initio molecular dynamics simulations at room temperature (300 K), we
conclude that mobile Fe adatoms form Fe clusters and they are eventually set-
tled at the C–B interface. We predict that the artificially designed 2D hybrids of
graphene and h–BN may act as potential substrates for spontaneous formation
of magnetic structures at C–B interfaces.

We have also studied the properties of 3D quasiperiodic arrangements of
grpahene and hexagonal boron nitride and demonstrated that these arrange-
ments are more stable than their counterpart 1:1 periodic arrangement. We
have shown that an opening of band gap is possible using certain sequences of
Fibonacci stacking.

We have also shown that in pure graphene, the formation of correlated va-
cancy is facilitated. Molecular dynamics study revealed that the adsorbed Fe
adatoms form clusters in a very short time scale and get trapped at the vacancy
sites. It is also observed that the Fe clusters promote vacancy formation, i. e., it
becomes easier to remove C atoms from the graphene lattice in presence of Fe.
The strong adsorption of Fe clusters at the vacancy sites produces anisotropy
in geometries and spin densities. Hence, a strong variation of local spin-dipole
moments (parallel or antiparallel to the spin moments) yields a significant vari-
ation in the effective moments, which are measurable in XMCD experiments.
The analyses of magnetic anisotropy energies reveal that for some of the cluster
sizes, out-of-plane easy axes of magnetization are stabilized with a moderately
large MAE, which could be important for magnetic data storage.

In our extensive study of native defects in transitional metal dichalcogenides
(MX2; M=Mo, W; X=S, Se, Te) we have found out that X interstitial defect is
the most probable defects that will form under X rich conditions. However,
under M rich environment, X vacancy is the energetically most favored de-
fect except MTe2 systems. M atom related defects have in general quite high
formation energy leading to the formation of these defects inMX2 systems un-
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likely. These defect states appear in the gap region in general and suitably
designed defected systems can be a good source for making light emitting de-
vices.

Analysis of defect formation energies in graphene and silicene indicate that
the formation of defects will be much easier in the latter material. STM simu-
lations indicate that it will be difficult to distinguish defects in buckled silicene
structure using STM and measuring I−V characteristics can be a way around.
Presence of these defects causes scattering leading to increment of local current
densities which can cause heating and possible deterioration in device perfor-
mance.

Our experiments and theoretical simulations confirm that the gaseous NO2
molecule bind strongly with defected graphene which in turn increases the sen-
sitivity of graphene to NO2 gas molecule with a factor of three. Hence we
speculate that defected graphene will be a very good candidate for gas sens-
ing purpose. Deliberate creation of defects using ion bombardment can also
facilitate the local site selective functionalization of graphene with Fluorine
atoms.

5.1 Future prospects
The computational techniques that I have learned during my Ph. D can be
used to investigate various other interesting properties of graphene and other
2D materials. Graphene has been called “wonder material” after its experi-
mental realization in 2004. Since then, a tremendous effort has been put in
graphene research to use these 2D materials in commercial products. Despite
that, it remains challenging to use graphene in large commercial quantities.
Recently, Briggs Automotive Company launched a new model of car called
“Mono” with panels made out of graphene. But, still in 2016 and in coming
years the research and prototype phase of graphene will continue. It may take
decades to make graphene a commercial success. Hence, the research on 2D
materials has become a rapidly increasing field. There are almost 40 possi-
ble transition metal dichalcogenides (TMDs) possible as depicted in Fig. 5.1.
However, There are other 2D materials like silicene, phosphorene, etc., which
have various interesting properties. Hybrid 2D planar or 3D heterostructures
using various TMDs and other 2D materials are also becoming quite promising
in this regard.

One of the major issues that the 2D materials researches are facing is to
produce large defect free materials in a cost effective way. Hence understand-
ing of these vast number 2D pristine systems as well as systems with various
defects and impurities such as line defects, grain boundaries, etc. are quite
important. As a future project, I want to continue my research in the field of
2D materials keeping in mind various applications oriented goal. The realiza-
tion of practical devices relies on understanding of electron transport in these
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Figure 5.1. Various possible combination of transition metal dichalcogenides con-
taining one transition-metal atom (green) for every two chalcogen atoms (orange).
Reprinted by permission from Macmillan Publishers Ltd: Nature News ([33]), copy-
right © (2015).

systems, both pristine and with defects and impurities. Thus, it will be im-
portant to focus on transport calculations in these systems. Besides transport
through 2D materials, another important aspect is to use them as ultrathin elec-
trodes to send electrons through quantum dots or even a single molecule. In
this case, the challenging aspects are the treatment of electron correlation in
describing the electronic structure of the scattering region, effects of vibration
via electron-phonon coupling to describe inelastic processes etc. The develop-
ment of non-equilibrium transport under a finite bias taking into consideration
the above-mentioned aspects within the framework of ab-initio theory will also
be my interest.

Exciton, particularly prominently observed in disordered and low dimen-
sional materials such as TMDs and some other group-IV sulfide materials, is a
quasiparticle excitation consisting of a bound electron-hole pair that mediates
the absorption and emission of light. Fig. 5.2 shows a schematic representa-
tion of exciton. The presence of a localized defect state in the band gap will
significantly affect the excitonic properties as depicted in the figure. Hence,
an advancement in studying the optical properties of these system can be car-
ried out by including the effects of exciton with the help of Bethe-Salpeter
equation. These advanced computational studies will be computationally de-
manding due to the nature of the research problems and the choice of materials.
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Figure 5.2. Schematic diagram to illustrate excitonic effects. The MoS2 figure is
adapted with permission from Paper VI. Copyright ©2015 American Physical Society.

Hence, availability of next generation computing resources as well as numeri-
cal codes with advanced techniques are quite necessary. Also, the experiments
are needed to carry out in order to confirm various theoretical findings which
can become extremely challenging as in many cases, the manipulation of prop-
erties is need to be done in an atomic scale.
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6. Populärvetenskaplig sammanfattning

Elektronik, ett område inom vetenskap och teknik, behandlar elektroniska ap-
parater tillverkade av olika elektriska komponenter, t.ex. vakuumrör, dioder,
transistorer, integrerade kretsar (IC), etc. Elektronikuppfinningarnas histo-
ria sträcker sig tillbaks till 1745, då Kleist och Musschenbroek först uppfann
“Leydenflaskan”, vilken var den ursprungliga kondensatorn. Sedan dess har
olika uppfinningar och upptäckter byggt en solid grund för utvecklingen av
elektronik. Flemings upptäckt av dioden 1905 utlöste början av den moderna
tidens starka präglan av elektroniken. Dioder och vakuumrör blev integrerade
delar inom elektroniken under den tidiga delen av 20-talet och uppfinningen
av dessa vakuumrör har gjort teknik så som radio, TV, telefonnät, datorer, etc.
mycket populära och utbredda. Men användningen av vakuumrör gjorde dessa
tekniker kostsamma och anordningarna skrymmande.

Miniatyrisering av moderna elektroniska apparater har alltid fascinerat män-
niskor i allmänhet. De halvledarkomponenter som uppfanns under 1940-talet
gjorde det möjligt att tillverka mindre, mer hållbara, billigare och effektivare
fasta-tillsånds enheter än vakuumrör. Därför började dessa fasta-tillsånds en-
heter, så som transistorer, gradvis att ersätta vakumrören på 1950-talet. I jak-
ten på mindre storlek upfanns integrerade kretsar (IC). Möjligheten att min-
ska storleken för dagens moderna elektroniska apparater är starkt beroend av
möjligheten att minska storleken hos dessa integrerade kretsarna (IC), vilka är
deras hjärtan och hjärnor.

Kiselbaserade integrerade kretsar har begränsningar för hur små de kan gör-
as. Strävan efter nya material och tekniker som har möjlighet att ersätta kisel
pågår därför redan. Bland flera andra alternativ har grafen, vilket består av
ett tvådimensionellt (2D) monolager av kolatomer ordnade i ett hexagonalt
gitter, blivit det mest lovande. Men även om grafen har några extraordinära
egenskaper så gjorde avsaknaden av ett bandgap grafen olämpliga för transis-
torapplikationer. Detta har lett forskare till att leta efter andra 2D-material med
lämpliga egenskaper där ström genom materialet kan slås “PÅ” och “AV”. Bild-
andet av defekter och föroreningar i dessa 2D-material är en del av tillverkn-
ingsprocessen och kan inte undvikas. Dessa defekter och föroreningar påverkar
egenskaperna hos dessa material. Å ena sidan kan dessa defekter och förorenin-
gar förstöra elektriska egenskaper, å andra sidan kan de på nanoskala intro-
ducera nya egenskaper som kan vara till nytta för att skapa enheter för olika
tillämpningar. Följaktligen måste det undersökas grundligt hur dessa defekter
och föroreningar påverkar egenskaperna hos dessa material.
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I denna avhandling har vi diskuterat effekten av föroreningar och defekter
på grafen och andra 2D-material. Vi har använt ab-initio täthetsfunktionalte-
oribaserade datorsimuleringar för att analysera de strukturella och elektron-
iska egenskaperna hos dessa system. Bortsett från 2D material så som grafen,
silicene och övergångsmetalldichalcogenides (TMDC) har vi använt både 2D
och 3D hybridstrukturer som härstammar från 2D material. Olika 2D mate-
rial så som grafen, hydrerad grafen(grafan) och hexagonal bornitrid (h-BN)
är antingen staplade i 3D eller 2D för att bilda dessa hybridstrukturer. Som
orenhet har vi i vår studie studerat en enstaka järnatom eller en grupp av jär-
natomer. Hybridstrukturer av grafen-grafan kan likna grafennanoband och visar
intressanta magnetiska egenskaper i närvaro av järnföroreningar. Med hjälp av
kantrekonstruktion kan sicksacks-grafennanoband visa kantmetallicitet. 2D-
(plana) och 3D-hybridstrukturer av grafen och h-BN visar också intressanta
egenskaper. Öppnande av bandgap är möjligt med hjälp av vissa specifika ar-
rangemang av 3D kvasiperiodisk stapling av grafen och h-BN, och dessa struk-
turer är mer stabila än normalt återkommande stapling. Plana hybridstrukturer
kan fånga järnkluster på kol-bor-gränssnitt och därmed kan dessa strukturer
fungera som potentiella substratmaterial för att bilda magnetiska nanostruk-
turer.

Vakanserna i grafen föredrar att bildas på ett korrelerat sätt vilket underlät-
tar adsorption av föroreningsatomer så som järnatomer, vilka tenderar att bilda
kluster som fastna på de vakanta platserna. Detta är i motsats till den mycket
diffusiva situationen på rent grafen och därmed kan dessa magnetiska enheter
tillhandahålla stabila magnetiska moment som är användbara för att lagra in-
formation.

Tillsammans med experimentalister har vi etablerat att defekter i grafen
även hjälper med platsselektiv lokal fluorering och adsorption av gasformigt
NO2. Skapandet av defekter i grafen ökar NO2 känsligheten hos grafen och
sålunda kommer det att vara användbart som en gaskänslig anordning. Även
om defekter kan hjälpa i vissa tillämpningar så visar våra elektroniska trans-
portberäkningar att defekter även kommer leda till spridning. Denna spridning
kommer att leda till en ökning i lokal ström och värme, vilket kan leda till
försämrad prestanda för enheter. I vår systematiska studie av olika defekter i
olika TMDCs har vi visat att defektsignaturer lätt kan ses i strukturella, elek-
troniska och optiska egenskaper.

I ett nötskal diskuterar denna avhandling olika aspekter av orenheter och de-
fekter i grafen och relaterade 2D-material. Vi har diskuterat hur dessa antingen
kan vara skadliga eller till nytta i olika enhetsapplikationer. I framtiden vill vi
ytterligare utöka våra studier för att studera effekterna av linjedefekter, korn-
gränser i TMDCs. Ett annat intressant ämne skulle vara att studera excitoner,
som är bundna tillstånd av elektroner och hål, och deras signaturer i det optiska
spektrumet i närvaron av lokala defekter.
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