Open this publication in new window or tab >>Show others...
2024 (English)In: JCI Insight, ISSN 2379-3708, Vol. 9, no 7, article id e169830Article in journal (Refereed) Published
Abstract [en]
Compromised vascular integrity facilitates extravasation of cancer cells and promotes metastatic dissemination. CD93 has emerged as a target for antiangiogenic therapy, but its importance for vascular integrity in metastatic cancers has not been evaluated. Here, we demonstrate that CD93 participates in maintaining the endothelial barrier and reducing metastatic dissemination. Primary melanoma growth was hampered in CD93–/– mice, but metastatic dissemination was increased and associated with disruption of adherens and tight junctions in tumor endothelial cells and elevated expression of matrix metalloprotease 9 at the metastatic site. CD93 directly interacted with vascular endothelial growth factor receptor 2 (VEGFR2) and its absence led to VEGF-induced hyperphosphorylation of VEGFR2 in endothelial cells. Antagonistic anti-VEGFR2 antibody therapy rescued endothelial barrier function and reduced the metastatic burden in CD93–/– mice to wild-type levels. These findings reveal a key role of CD93 in maintaining vascular integrity, which has implications for pathological angiogenesis and endothelial barrier function in metastatic cancer.
Place, publisher, year, edition, pages
American Society For Clinical Investigation, 2024
National Category
Cancer and Oncology Cell and Molecular Biology
Identifiers
urn:nbn:se:uu:diva-527236 (URN)10.1172/jci.insight.169830 (DOI)001201729000001 ()38441970 (PubMedID)
Funder
Swedish Cancer Society, CAN 2017/502Swedish Cancer Society, 20 1008 PjFSwedish Cancer Society, 20 1010 UsFSwedish Cancer Society, CAN 2015/1216Swedish Cancer Society, 23 3098 PjSwedish Childhood Cancer Foundation, PR2018-0148Swedish Childhood Cancer Foundation, PR2021-0122Swedish Research Council, 2020-02563Knut and Alice Wallenberg Foundation, KAW 2019.0088
Note
De två sista författarna delar sistaförfattarskapet
2024-04-292024-04-292024-04-29Bibliographically approved