Logo: to the web site of Uppsala University

uu.sePublikasjoner fra Uppsala universitet
Endre søk
Link to record
Permanent link

Direct link
Xu, Chao, Associate ProfessorORCID iD iconorcid.org/0000-0002-5342-3686
Publikasjoner (10 av 58) Visa alla publikasjoner
Eliasson, K., Strömme, M. & Xu, C. (2025). A Low-Cost Pressure-Driven Filtration System for Nanofiltration Membrane Evaluation. Hardware, 3(4)
Åpne denne publikasjonen i ny fane eller vindu >>A Low-Cost Pressure-Driven Filtration System for Nanofiltration Membrane Evaluation
2025 (engelsk)Inngår i: Hardware, ISSN 2813-6640, Vol. 3, nr 4Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

With the growing interest in fabricating nanofiltration membranes using novel materials and techniques, there is an increasing need to evaluate the practical viability of innovative membranes at the early stages of development. In many materials research laboratories, access to professionally manufactured membrane-evaluation systems may be limited. Here we present a pressure-driven filtration system for evaluation of nanofiltration membranes, which can be constructed from 3D-printed parts and widely available off-the-shelf components at a cost of approximately 60 €. The system uses a stirred cross-flow design capable of circulating the feed solution in the filter cell and maintaining a stable solute concentration during extended filtration experiments—as in conventional cross-flow cells. It is suitable for the filtration of aqueous solutions containing dyes, inorganic salts, and dilute acids. Validation was performed by filtering a 2000 mg L−1 MgSO4 solution through a Veolia RL membrane at 7.6 bar, achieving a 96.5% rejection rate and a permeance of 7.5 L m−2 h−1 bar−1 after 24 h of continuous operation.

HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
urn:nbn:se:uu:diva-571060 (URN)10.3390/hardware3040014 (DOI)
Tilgjengelig fra: 2025-11-06 Laget: 2025-11-06 Sist oppdatert: 2025-11-06
Jiang, S., Kong, X., Chen, H., Wu, W., Xiao, H., Strømme, M. & Xu, C. (2025). Laser-etched flexible microsupercapacitors based on nanocellulose and conductive metal–organic frameworks. Chemical Engineering Journal, 509, Article ID 161059.
Åpne denne publikasjonen i ny fane eller vindu >>Laser-etched flexible microsupercapacitors based on nanocellulose and conductive metal–organic frameworks
Vise andre…
2025 (engelsk)Inngår i: Chemical Engineering Journal, ISSN 1385-8947, E-ISSN 1873-3212, Vol. 509, artikkel-id 161059Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Flexible supercapacitors hold promise for applications in wearable electronic devices. However, the challenges of achieving flexibility, miniaturization, and high volumetric capacitance persist. In this work, precise laser etching of cellulose composites, prepared via in-situ growth of conductive metal–organic frameworks (c-MOFs) on cellulose nanofibers (CNF), was employed to fabricate flexible, binder-free, and integrated microsupercapacitors (MSCs). The interfacial synthesis of Ni3(HITP)2 (a type of c-MOF) on the surface of CNF yields a continuous and uniform conductive shell, enabling efficient electron transfer along the CNF@c-MOF nanofibers. The interwoven structure of the nanofibers creates a hierarchical porous network with enhanced surface area featuring interconnected porous channels, enabling rapid ion transport. The laser etching technique facilitates one-step production of integrated MSCs with a precisely interdigitated configurations and micron-scale accuracy. The fabricated MSCs demonstrate excellent mechanical stability, with a tensile strength of up to 81.9 MPa, and remarkable flexibility, maintaining consistent electrochemical performance under bending stress. The flexible device, with a thickness of only 45 µm, achieves a high volumetric specific capacitance of 36.7 F cm−3 at a current density of 0.17 mA cm−2 and a specific energy density of 2,497.5 µWh cm−3 at a power density of 53.3 mW cm−3. This study provides a new strategy for designing flexible, binder-free, integrated MSCs with high capacitances and long cyclic stability, demonstrating significant potential for applications in wearable electronics.

sted, utgiver, år, opplag, sider
Elsevier, 2025
Emneord
Conductive metal–organic frameworks, Nanocellulose, Laser etching, Microsupercapacitor, Interdigitated electrode
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
urn:nbn:se:uu:diva-552523 (URN)10.1016/j.cej.2025.161059 (DOI)001448408100001 ()2-s2.0-86000642418 (Scopus ID)
Forskningsfinansiär
Swedish Research Council, 2023-04504ÅForsk (Ångpanneföreningen's Foundation for Research and Development), 22-54
Merknad

De två första författarna delar förstaförfattarskapet

Tilgjengelig fra: 2025-03-16 Laget: 2025-03-16 Sist oppdatert: 2025-04-15bibliografisk kontrollert
Åhlén, M., Kong, X., Zhao, W., Zamora, F. & Xu, C. (2025). Overcoming Boundaries: Towards the Ambient Aqueous Synthesis of Covalent Organic Frameworks. Angewandte Chemie International Edition, 64(15), Article ID e202425426.
Åpne denne publikasjonen i ny fane eller vindu >>Overcoming Boundaries: Towards the Ambient Aqueous Synthesis of Covalent Organic Frameworks
Vise andre…
2025 (engelsk)Inngår i: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 64, nr 15, artikkel-id e202425426Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The synthesis of covalent organic frameworks (COFs) has traditionally been carried out under strict solvothermal and anaerobic conditions. The utilization of organic solvents in such reactions not only carries significant costs but also imposes a great burden on the environment. The fabrication of COFs using alternative synthetic pathways has, therefore, seen rapid development in recent years and much attention has been placed on green and sustainable methods in particular. The synthesis of COFs in purely aqueous media, however, remains challenging due to the delicate nature of the chemical reactions and the crystallization process in water. This mini-review discusses different synthetic strategies for the construction of crystalline COFs in aqueous media and offers a perspective on the future development of facile COF synthesis in ambient conditions.

sted, utgiver, år, opplag, sider
John Wiley & Sons, 2025
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
urn:nbn:se:uu:diva-552524 (URN)10.1002/anie.202425426 (DOI)001438501800001 ()2-s2.0-105002184117 (Scopus ID)
Tilgjengelig fra: 2025-03-16 Laget: 2025-03-16 Sist oppdatert: 2025-10-14bibliografisk kontrollert
Xu, C. (2025). Porous Materials for Efficient CO2 Capture and Conversion. In: : . Paper presented at Center for Artificial Photosynthesis: Thematical meeting on CO2 reduction, Ångström Laboratory, Uppsala, April 1, 2025. Uppsala
Åpne denne publikasjonen i ny fane eller vindu >>Porous Materials for Efficient CO2 Capture and Conversion
2025 (engelsk)Konferansepaper, Oral presentation only (Annet vitenskapelig)
sted, utgiver, år, opplag, sider
Uppsala: , 2025
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
urn:nbn:se:uu:diva-553752 (URN)
Konferanse
Center for Artificial Photosynthesis: Thematical meeting on CO2 reduction, Ångström Laboratory, Uppsala, April 1, 2025
Tilgjengelig fra: 2025-04-02 Laget: 2025-04-02 Sist oppdatert: 2025-09-30
Xu, C. (2025). Porous organic frameworks: green synthesis, engineering, and applications. In: : . Paper presented at 8th International Conference on Multifunctional, Hybrid and Nanomaterials; Montpellier, France; 3-6 March 2025. Montpellier: Elsevier
Åpne denne publikasjonen i ny fane eller vindu >>Porous organic frameworks: green synthesis, engineering, and applications
2025 (engelsk)Konferansepaper, Oral presentation with published abstract (Fagfellevurdert)
sted, utgiver, år, opplag, sider
Montpellier: Elsevier, 2025
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
urn:nbn:se:uu:diva-552525 (URN)
Konferanse
8th International Conference on Multifunctional, Hybrid and Nanomaterials; Montpellier, France; 3-6 March 2025
Tilgjengelig fra: 2025-03-16 Laget: 2025-03-16 Sist oppdatert: 2025-09-30
Eliasson, K., Jiang, F., Åhlén, M., Strömme, M. & Xu, C. (2025). Scalable and Versatile Fabrication of Free-Standing Covalent Organic Framework Membranes with Tunable Microstructure for Molecular Separation. Journal of the American Chemical Society, 147(32), 29271-29281
Åpne denne publikasjonen i ny fane eller vindu >>Scalable and Versatile Fabrication of Free-Standing Covalent Organic Framework Membranes with Tunable Microstructure for Molecular Separation
Vise andre…
2025 (engelsk)Inngår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 147, nr 32, s. 29271-29281Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Covalent organic framework (COF) membranes hold significant promise for applications in separation, catalysis, and energy conversion; however, their industrial adoption has been hindered by the lack of scalable and efficient fabrication methods. Here, we present a fast, versatile, and broadly applicable strategy for fabricating free-standing and flexible COF membranes by casting precursor suspensions, followed by heat treatment under controlled humidity. This approach enables the fabrication of COF membranes with lateral dimensions up to several square decimeters and thicknesses that are tunable down to submicron levels within 1 h. It demonstrates remarkable versatility for producing a family of ketoenamine-linked COF membranes through the condensation of 1,3,5-triformylphloroglucinol with various amine monomers differing in length, side groups, and geometry. The resulting crack-free COF membranes exhibit high mechanical strength, with ultimate tensile strength up to 60 MPa and Young’s modulus up to 1.7 GPa, as well as exceptionally high porosity, with Brunauer–Emmett–Teller (BET) surface areas reaching up to 2226 m2 g–1. More importantly, the morphology, porosity, and crystallinity of the membranes can be finely tuned by modulating the heating conditions. The membranes with optimized microstructures demonstrate excellent separation performance, achieving over 99% rejection in nanofiltration of aqueous dye solutions, and a separation factor of 11 with an H2 permeance of 2857 GPU in H2/CO2 gas separation. This approach provides a scalable and effective pathway toward large-scale COF membrane manufacturing for advanced molecular separations and other membrane-based technologies.

sted, utgiver, år, opplag, sider
American Chemical Society (ACS), 2025
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
urn:nbn:se:uu:diva-565436 (URN)10.1021/jacs.5c08788 (DOI)001540510200001 ()40735926 (PubMedID)2-s2.0-105013578719 (Scopus ID)
Tilgjengelig fra: 2025-08-21 Laget: 2025-08-21 Sist oppdatert: 2025-10-22bibliografisk kontrollert
Zhou, S., Zhang, Y., Li, X., Xu, C., Halim, J., Cao, S., . . . Strömme, M. (2024). A mechanically robust spiral fiber with ionic–electronic coupling for multimodal energy harvesting. Materials Horizons, 11(15), 3643-3650
Åpne denne publikasjonen i ny fane eller vindu >>A mechanically robust spiral fiber with ionic–electronic coupling for multimodal energy harvesting
Vise andre…
2024 (engelsk)Inngår i: Materials Horizons, ISSN 2051-6347, E-ISSN 2051-6355, Vol. 11, nr 15, s. 3643-3650Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Wearable electronics are some of the most promising technologies with the potential to transform many aspects of human life such as smart healthcare and intelligent communication. The design of self-powered fabrics with the ability to efficiently harvest energy from the ambient environment would not only be beneficial for their integration with textiles, but would also reduce the environmental impact of wearable technologies by eliminating their need for disposable batteries. Herein, inspired by classical Archimedean spirals, we report a metastructured fiber fabricated by scrolling followed by cold drawing of a bilayer thin film of an MXene and a solid polymer electrolyte. The obtained composite fibers with a typical spiral metastructure (SMFs) exhibit high efficiency for dispersing external stress, resulting in simultaneously high specific mechanical strength and toughness. Furthermore, the alternating layers of the MXene and polymer electrolyte form a unique, tandem ionic–electronic coupling device, enabling SMFs to generate electricity from diverse environmental parameters, such as mechanical vibrations, moisture gradients, and temperature differences. This work presents a design rule for assembling planar architectures into robust fibrous metastructures, and introduces the concept of ionic–electronic coupling fibers for efficient multimodal energy harvesting, which have great potential in the field of self-powered wearable electronics.

sted, utgiver, år, opplag, sider
Royal Society of Chemistry, 2024
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
urn:nbn:se:uu:diva-535699 (URN)10.1039/d4mh00287c (DOI)001226966600001 ()2-s2.0-85193634189 (Scopus ID)
Forskningsfinansiär
Knut and Alice Wallenberg Foundation, KAW2020.0033Swedish Research Council, 2019-00207
Tilgjengelig fra: 2024-08-07 Laget: 2024-08-07 Sist oppdatert: 2025-09-30
Wu, Z., Li, Z., Hu, L., Afewerki, S., Strømme, M., Zhang, Q.-F. & Xu, C. (2024). A sequential flow process of CO2 capture and conversion using cost-effective porous organic polymers. Green Chemistry, 26(21), 10960-10968
Åpne denne publikasjonen i ny fane eller vindu >>A sequential flow process of CO2 capture and conversion using cost-effective porous organic polymers
Vise andre…
2024 (engelsk)Inngår i: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 26, nr 21, s. 10960-10968Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Porous organic polymers (POPs) have shown significant potential for CO2 capture and utilization due to their high surface areas, tunable porosity, high stability, and ease of modification. Developing POPs for CO2 capture and catalytic conversion offers a viable solution to rising CO2 emissions. This study presents POPs composed of pyridine units, serving as dual functional materials that act as sorbents for CO2 capture and as substrates supporting silver chalcogenolate clusters (SCCs) for catalytic CO2 conversion. The scalable and cost-effective synthesis of these POPs enabled the design of pilot-scale breakthrough apparatus with two parallel POP sorbent beds for continuous CO2 capture from simulated flue gas, achieving a high working capacity of 20 Lflue gas kgPOP−1 h−1 for flue gas separation. Given the practical feasibility of using POPs for CO2 capture and the high catalytic activity of POPs loaded with SCCs in CO2 cycloaddition, a sequential process that integrates capturing CO2 from simulated flue gas and directly converting the captured CO2 into oxazolidinone achieves a high space–time yield of up to 9.6 g LPOP−1 day−1 in continuous operation. This study provides a viable strategy for CO2 capture and utilization using cost-effective, dual-functional porous materials.

sted, utgiver, år, opplag, sider
Royal Society of Chemistry, 2024
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
urn:nbn:se:uu:diva-543782 (URN)10.1039/D4GC03494E (DOI)001326787300001 ()2-s2.0-85205825157 (Scopus ID)
Tilgjengelig fra: 2024-11-25 Laget: 2024-11-25 Sist oppdatert: 2025-10-01bibliografisk kontrollert
Xu, C. (2024). Advanced Nanopapers Based on Cellulose Nanofibers and Porous Organic Frameworks. In: : . Paper presented at 14th Conference of Aseanian Membrane Society, 23-26 July 2024, Nanjing, China. Nanjing
Åpne denne publikasjonen i ny fane eller vindu >>Advanced Nanopapers Based on Cellulose Nanofibers and Porous Organic Frameworks
2024 (engelsk)Konferansepaper, Oral presentation with published abstract (Fagfellevurdert)
sted, utgiver, år, opplag, sider
Nanjing: , 2024
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
urn:nbn:se:uu:diva-544560 (URN)
Konferanse
14th Conference of Aseanian Membrane Society, 23-26 July 2024, Nanjing, China
Tilgjengelig fra: 2024-12-05 Laget: 2024-12-05 Sist oppdatert: 2025-09-30
Kong, X., Wu, Z., Strømme, M. & Xu, C. (2024). Ambient Aqueous Synthesis of Imine-Linked Covalent Organic Frameworks (COFs) and Fabrication of Freestanding Cellulose Nanofiber@COF Nanopapers. Journal of the American Chemical Society, 146(1), 742-751, Article ID 14.
Åpne denne publikasjonen i ny fane eller vindu >>Ambient Aqueous Synthesis of Imine-Linked Covalent Organic Frameworks (COFs) and Fabrication of Freestanding Cellulose Nanofiber@COF Nanopapers
2024 (engelsk)Inngår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 146, nr 1, s. 742-751, artikkel-id 14Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Covalent organic frameworks (COFs) are usually synthesized under solvothermal conditions that require the use of toxic organic solvents, high reaction temperatures, and complicated procedures. Additionally, their insolubility and infusibility present substantial challenges in the processing of COFs. Herein, we report a facile, green approach for the synthesis of imine-linked COFs in an aqueous solution at room temperature. The key behind the synthesis is the regulation of the reaction rate. The preactivation of aldehyde monomers using acetic acid significantly enhances their reactivity in aqueous solutions. Meanwhile, the still somewhat lower imine formation rate and higher imine breaking rates in aqueous solution, in contrast to conventional solvothermal synthesis, allow for the modulation of the reaction equilibrium and the crystallization of the products. As a result, highly crystalline COFs with large surface areas can be formed in relatively high yields in a few minutes. In total, 16 COFs are successfully synthesized from monomers with different molecular sizes, geometries, pendant groups, and core structures, demonstrating the versatility of this approach. Notably, this method works well on the gram scale synthesis of COFs. Furthermore, the aqueous synthesis facilitates the interfacial growth of COF nanolayers on the surface of cellulose nanofibers (CNFs). The resulting CNF@COF hybrid nanofibers can be easily processed into freestanding nanopapers, demonstrating high efficiency in removing trace amounts of antibiotics from wastewater. This study provides a route to the green synthesis and processing of various COFs, paving the way for practical applications in diverse fields.

sted, utgiver, år, opplag, sider
American Chemical Society (ACS), 2024
HSV kategori
Forskningsprogram
Teknisk fysik med inriktning mot nanoteknologi och funktionella material; Kemi
Identifikatorer
urn:nbn:se:uu:diva-518588 (URN)10.1021/jacs.3c10691 (DOI)001140877500001 ()38112524 (PubMedID)2-s2.0-85180604057 (Scopus ID)
Forskningsfinansiär
Swedish Energy AgencyVinnovaSwedish Research Council FormasÅForsk (Ångpanneföreningen's Foundation for Research and Development)
Tilgjengelig fra: 2023-12-20 Laget: 2023-12-20 Sist oppdatert: 2025-10-01bibliografisk kontrollert
Prosjekter
Återvinning av ädelmetaller från elavfall med hållbara porösa membran [2023-03040_Vinnova]; Uppsala universitetÅtervinning av ädelmetaller från elavfall genom membran av nanocellulosa och porösa organiska polymerer [2023-01239_Formas]; Uppsala universitetCellulosabaserade nanokompositer för hydrovoltaisk energiskördning och lagring (Cellu-H2O-Ene) [2023-04504_VR]; Uppsala universitet; Publikasjoner
Jiang, S., Kong, X., Chen, H., Wu, W., Xiao, H., Strømme, M. & Xu, C. (2025). Laser-etched flexible microsupercapacitors based on nanocellulose and conductive metal–organic frameworks. Chemical Engineering Journal, 509, Article ID 161059.
Organisasjoner
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0002-5342-3686