Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (8 of 8) Visa alla publikationer
Kundu, S., Banerjee, S., Breznik, E., Toumpanakis, D., Wikström, J., Strand, R. & Kumar Dhara, A. (2024). ASE-Net for Segmentation of Post-operative Glioblastoma and Patient-specific Fine-tuning for Segmentation Refinement of Follow-up MRI Scans. SN computer science, 5(106)
Öppna denna publikation i ny flik eller fönster >>ASE-Net for Segmentation of Post-operative Glioblastoma and Patient-specific Fine-tuning for Segmentation Refinement of Follow-up MRI Scans
Visa övriga...
2024 (Engelska)Ingår i: SN computer science, E-ISSN 2661-8907, Vol. 5, nr 106Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Volumetric quantification of tumors is usually done manually by radiologists requiring precious medical time and suffering from inter-observer variability. An automatic tool for accurate volume quantification of post-operative glioblastoma would reduce the workload of radiologists and improve the quality of follow-up monitoring and patient care. This paper deals with the 3-D segmentation of post-operative glioblastoma using channel squeeze and excitation based attention gated network (ASE-Net). The proposed deep neural network has a 3-D encoder and decoder based architecture with channel squeeze and excitation (CSE) blocks and attention blocks. The CSE block reduces the dependency on space information and put more emphasize on the channel information. The attention block suppresses the feature maps of irrelevant background and helps highlighting the relevant feature maps. The Uppsala university data set used has post-operative follow-up MRI scans for fifteen patients. A patient specific fine-tuning approach is used to improve the segmentation results for each patient. ASE-Net is also cross-validated with BraTS-2021 data set. The mean dice score of five-fold cross validation results with BraTS-2021 data set for enhanced tumor is 0.8244. The proposed network outperforms the competing networks like U-Net, Attention U-Net and Res U-Net. On the Uppsala University glioblastoma data set, the mean Dice score obtained with the proposed network is 0.7084, Hausdorff Distance-95 is 7.14 and the mean volumetric similarity achieved is 0.8579. With fine-tuning the pre-trained network, the mean dice score improved to 0.7368, Hausdorff Distance-95 decreased to 6.10 and volumetric similarity improved to 0.8736. ASE-Net outperforms the competing networks and can be used for volumetric quantification of post-operative glioblastoma from follow-up MRI scans. The network significantly reduces the probability of over segmentation.

Ort, förlag, år, upplaga, sidor
Springer, 2024
Nationell ämneskategori
Medicinsk bildvetenskap
Forskningsämne
Datoriserad bildbehandling
Identifikatorer
urn:nbn:se:uu:diva-498177 (URN)10.1007/s42979-023-02425-5 (DOI)
Tillgänglig från: 2023-03-10 Skapad: 2023-03-10 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Banerjee, S., Nysjö, F., Toumpanakis, D., Dhara, A. K., Wikström, J. & Strand, R. (2024). Streamlining neuroradiology workflow with AI for improved cerebrovascular structure monitoring. Scientific Reports, 14(1), Article ID 9245.
Öppna denna publikation i ny flik eller fönster >>Streamlining neuroradiology workflow with AI for improved cerebrovascular structure monitoring
Visa övriga...
2024 (Engelska)Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 14, nr 1, artikel-id 9245Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Radiological imaging to examine intracranial blood vessels is critical for preoperative planning and postoperative follow-up. Automated segmentation of cerebrovascular anatomy from Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) can provide radiologists with a more detailed and precise view of these vessels. This paper introduces a domain generalized artificial intelligence (AI) solution for volumetric monitoring of cerebrovascular structures from multi-center MRAs. Our approach utilizes a multi-task deep convolutional neural network (CNN) with a topology-aware loss function to learn voxel-wise segmentation of the cerebrovascular tree. We use Decorrelation Loss to achieve domain regularization for the encoder network and auxiliary tasks to provide additional regularization and enable the encoder to learn higher-level intermediate representations for improved performance. We compare our method to six state-of-the-art 3D vessel segmentation methods using retrospective TOF-MRA datasets from multiple private and public data sources scanned at six hospitals, with and without vascular pathologies. The proposed model achieved the best scores in all the qualitative performance measures. Furthermore, we have developed an AI-assisted Graphical User Interface (GUI) based on our research to assist radiologists in their daily work and establish a more efficient work process that saves time.

Ort, förlag, år, upplaga, sidor
Nature Publishing Group, 2024
Nationell ämneskategori
Medicinsk bildvetenskap Radiologi och bildbehandling
Identifikatorer
urn:nbn:se:uu:diva-534754 (URN)10.1038/s41598-024-59529-y (DOI)001206473300060 ()38649692 (PubMedID)
Forskningsfinansiär
VinnovaEU, Horisont 2020
Tillgänglig från: 2024-07-11 Skapad: 2024-07-11 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Kundu, S., Banerjee, S., Toumpanakis, D., Wikström, J., Strand, R. & Dhara, A. K. (2023). 3-D Attention-SEV-Net for Segmentation of Post-operative Glioblastoma with Interactive Correction of Over-Segmentation. In: Maji, P Huang, T Pal, NR Chaudhury, S De, RK (Ed.), Pattern Recognition and Machine Intelligence, PREMI 2023: . Paper presented at 10th Biennial International Conference on Pattern Recognition and Machine Intelligence (PReMI), DEC 12-15, 2023, Indian Stat Inst, Kolkata, INDIA (pp. 380-387). Springer, 14301
Öppna denna publikation i ny flik eller fönster >>3-D Attention-SEV-Net for Segmentation of Post-operative Glioblastoma with Interactive Correction of Over-Segmentation
Visa övriga...
2023 (Engelska)Ingår i: Pattern Recognition and Machine Intelligence, PREMI 2023 / [ed] Maji, P Huang, T Pal, NR Chaudhury, S De, RK, Springer, 2023, Vol. 14301, s. 380-387Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Accurate localization and volumetric quantification of postoperative glioblastoma are of profound importance for clinical applications like post-surgery treatment planning, monitoring of tumor regrowth, and radiotherapy map planning. Manual delineation consumes more time and error prone thus automated 3-D quantification of brain tumors using deep learning algorithms from MRI scans has been used in recent years. The shortcoming with automated segmentation is that it often over-segments or under-segments the tumor regions. An interactive deep-learning tool will enable radiologists to correct the over-segmented and under-segmented voxels. In this paper, we proposed a network named Attention-SEV-Net which outperforms state-of-the-art network architectures. We also developed an interactive graphical user interface, where the initial 3-D segmentation of contrast-enhanced tumor can be interactively corrected to remove falsely detected isolated tumor regions. Attention-SEV-Net is trained with BraTS-2021 training data set and tested on Uppsala University post-operative glioblastoma dataset. The methodology outperformed state-of-the-art networks like U-Net, VNet, Attention U-Net and Residual U-Net. The mean dice score achieved is 0.6682 and the mean Hausdorff distance-95 got is 8.96mm for the Uppsala University dataset.

Ort, förlag, år, upplaga, sidor
Springer, 2023
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 14301
Nyckelord
Attention-SEV-Net, Post-operative Glioblastoma, Interactive Correction
Nationell ämneskategori
Radiologi och bildbehandling Medicinsk bildvetenskap
Identifikatorer
urn:nbn:se:uu:diva-525493 (URN)10.1007/978-3-031-45170-6_39 (DOI)001159598700039 ()978-3-031-45169-0 (ISBN)978-3-031-45170-6 (ISBN)
Konferens
10th Biennial International Conference on Pattern Recognition and Machine Intelligence (PReMI), DEC 12-15, 2023, Indian Stat Inst, Kolkata, INDIA
Forskningsfinansiär
Vinnova, 2020-03616
Tillgänglig från: 2024-03-22 Skapad: 2024-03-22 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Banerjee, S., Toumpanakis, D., Dhara, A., Wikström, J. & Strand, R. (2023). Deep Curriculum Learning for Follow-up MRI Registration in Glioblastoma. In: Medical Imaging 2023: Image Processing. Paper presented at SPIE Conference on Medical Imaging - Image Processing, San Diego, CA, USA, February 19-24, 2023. SPIE -Society of Photo-Optical Instrumentation Engineers, 12464, Article ID 124643I.
Öppna denna publikation i ny flik eller fönster >>Deep Curriculum Learning for Follow-up MRI Registration in Glioblastoma
Visa övriga...
2023 (Engelska)Ingår i: Medical Imaging 2023: Image Processing, SPIE -Society of Photo-Optical Instrumentation Engineers , 2023, Vol. 12464, artikel-id 124643IKonferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper presents a weakly supervised deep convolutional neural network-based approach to perform voxel-level3D registration between subsequent follow-up MRI scans of the same patient. To handle the large deformation inthe surrounding brain tissues due to the tumor’s mass effect we proposed curriculum learning-based training forthe network. Weak supervision helps the network to concentrate more focus on the tumor region and resectioncavity through a saliency detection network. Qualitative and quantitative experimental results show the proposedregistration network outperformed two popular state-of-the-art methods.

Ort, förlag, år, upplaga, sidor
SPIE -Society of Photo-Optical Instrumentation Engineers, 2023
Serie
Progress in Biomedical Optics and Imaging, ISSN 1605-7422, E-ISSN 2410-9045
Nationell ämneskategori
Radiologi och bildbehandling Medicinsk bildvetenskap
Forskningsämne
Datoriserad bildbehandling
Identifikatorer
urn:nbn:se:uu:diva-490229 (URN)10.1117/12.2654143 (DOI)001011420500113 ()9781510660335 (ISBN)9781510660342 (ISBN)
Konferens
SPIE Conference on Medical Imaging - Image Processing, San Diego, CA, USA, February 19-24, 2023
Forskningsfinansiär
Vinnova, 2020-03616
Tillgänglig från: 2022-12-08 Skapad: 2022-12-08 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Banerjee, S. & Strand, R. (2023). Lifelong Learning with Dynamic Convolutions for Glioma Segmentation from Multi-Modal MRI. In: Colliot, O Isgum, I (Ed.), Medical imaging 2023: . Paper presented at Conference on Medical Imaging - Image Processing, FEB 19-23, 2023, San Diego, CA. SPIE - International Society for Optical Engineering, 12464, Article ID 124643J.
Öppna denna publikation i ny flik eller fönster >>Lifelong Learning with Dynamic Convolutions for Glioma Segmentation from Multi-Modal MRI
2023 (Engelska)Ingår i: Medical imaging 2023 / [ed] Colliot, O Isgum, I, SPIE - International Society for Optical Engineering, 2023, Vol. 12464, artikel-id 124643JKonferensbidrag, Poster (med eller utan abstract) (Refereegranskat)
Abstract [en]

This paper presents a novel solution for catastrophic forgetting in lifelong learning (LL) using Dynamic Convolution Neural Network (Dy-CNN). The proposed dynamic convolution layer can adapt convolution filters by learning kernel coefficients or weights based on the input image. The suitability of the proposed Dy-CNN in a lifelong sequential learning-based scenario with multi-modal MR images is experimentally demonstrated for the segmentation of Glioma tumors from multi-modal MR images. Experimental results demonstrated the superiority of the Dy-CNN-based segmenting network in terms of learning through multi-modal MRI images and better convergence of lifelong learning-based training.

Ort, förlag, år, upplaga, sidor
SPIE - International Society for Optical Engineering, 2023
Serie
Progress in Biomedical Optics and Imaging, ISSN 1605-7422
Nyckelord
Catastrophic Forgetting, Lifelong Learning, Dynamic Convolution Neural Network, Segmentation
Nationell ämneskategori
Datorgrafik och datorseende Medicinsk bildvetenskap
Identifikatorer
urn:nbn:se:uu:diva-512979 (URN)10.1117/12.2654200 (DOI)001011420500114 ()978-1-5106-6033-5 (ISBN)978-1-5106-6034-2 (ISBN)
Konferens
Conference on Medical Imaging - Image Processing, FEB 19-23, 2023, San Diego, CA
Forskningsfinansiär
Vinnova, 2020-03616
Tillgänglig från: 2023-10-02 Skapad: 2023-10-02 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Banerjee, S. & Strand, R. (2023). Lifelong Learning with Dynamic Convolutions for Glioma: Segmentation from Multi-Modal MRI. In: Olivier Colliot;Ivana Išgum (Ed.), Medical Imaging 2023: Image Processing. Paper presented at SPIE Conference on Medical Imaging - Image Processing, FEB 19-23, 2023, San Diego, CA, USA. SPIE - The International Society for Optics and Photonics, 12464, Article ID 124643J.
Öppna denna publikation i ny flik eller fönster >>Lifelong Learning with Dynamic Convolutions for Glioma: Segmentation from Multi-Modal MRI
2023 (Engelska)Ingår i: Medical Imaging 2023: Image Processing / [ed] Olivier Colliot;Ivana Išgum, SPIE - The International Society for Optics and Photonics, 2023, Vol. 12464, artikel-id 124643JKonferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper presents a novel solution for catastrophic forgetting in life long learning (LL) using Dynamic ConvolutionNeural Network (Dy-CNN). The proposed dynamic convolution layer, can adapt convolution filters bylearning kernel coefficients or weights based on the input image. Suitability of the proposed Dy-CNN in a lifelongsequential learning-based scenario with multi-modal MR images is experimentally demonstrated for segmentation of Glioma tumor from multi-modal MR images. Experimental results demonstrated the superiority of the Dy-CNN-based segmenting network in terms of learning through multi-modal MRI images and better convergence of lifelong learning-based training.

Ort, förlag, år, upplaga, sidor
SPIE - The International Society for Optics and Photonics, 2023
Serie
Progress in Biomedical Optics and Imaging, ISSN 1605-7422, E-ISSN 2410-9045
Nationell ämneskategori
Medicinsk bildvetenskap Radiologi och bildbehandling
Forskningsämne
Datoriserad bildbehandling
Identifikatorer
urn:nbn:se:uu:diva-490236 (URN)9781510660335 (ISBN)9781510660342 (ISBN)
Konferens
SPIE Conference on Medical Imaging - Image Processing, FEB 19-23, 2023, San Diego, CA, USA
Forskningsfinansiär
Vinnova, 2020-03616
Tillgänglig från: 2022-12-08 Skapad: 2022-12-08 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Pal, S., Banerjee, S., Toumpanakis, D., Wikström, J., Strand, R. & Dhara, A. (2022). Segmentation of Major Cerebral Vessel from MRA images and Evaluation using U-Net Family. In: 2022 IEEE 6th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON): . Paper presented at 2022 IEEE 6th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), 17-19 December, Durgapur, India (pp. 235-238). Institute of Electrical and Electronics Engineers (IEEE)
Öppna denna publikation i ny flik eller fönster >>Segmentation of Major Cerebral Vessel from MRA images and Evaluation using U-Net Family
Visa övriga...
2022 (Engelska)Ingår i: 2022 IEEE 6th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Institute of Electrical and Electronics Engineers (IEEE), 2022, s. 235-238Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Arterial cerebral vessel assessment is critical for thediagnosis of patients with cerebrovascular disease e.g., hypertension, Intracranial aneurysms, and dementia. Magnetic resonance angiography is a primary imaging technique for diagnosing cerebrovascular diseases. There are many Convolutional neuralnetworks (CNN) based methods for cerebral vessel segmentation but lack to identify the target vessels and understand the arterial tree structure for diagnosis and endovascular surgical planning.In the present study, we generated annotations for major vesselsegmentation and analyzed fully automatic segmentation of major vessels using state-of-the-art U-Net based deep learning models. Computer-aided major cerebral vessel segmentation incorporatedinto clinical practice may help speed up the diagnosis of time-critical vessel anomalies and help find important bio-markers for neurological dysfunction. We validated and compared U-Net based models for volumetric segmentation and predictionof cerebral arteries and it could be done in real-time withoutany image pre-processing.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2022
Nationell ämneskategori
Medicinsk bildvetenskap Radiologi och bildbehandling
Identifikatorer
urn:nbn:se:uu:diva-490226 (URN)10.1109/CATCON56237.2022.10077711 (DOI)000995164000046 ()978-1-6654-7380-4 (ISBN)
Konferens
2022 IEEE 6th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), 17-19 December, Durgapur, India
Forskningsfinansiär
Vinnova, 2020-03616
Tillgänglig från: 2022-12-08 Skapad: 2022-12-08 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Banerjee, S., Toumpanakis, D., Dhara, A. K., Wikström, J. & Strand, R. (2022). Topology-Aware Learning for Volumetric Cerebrovascular Segmentation. In: 2022 IEEE International Symposium on Biomedical Imaging (IEEE ISBI 2022): . Paper presented at 19th IEEE International Symposium on Biomedical Imaging (IEEE ISBI), MAR 28-31, 2022, Kolkata, India (pp. 1-4). IEEE
Öppna denna publikation i ny flik eller fönster >>Topology-Aware Learning for Volumetric Cerebrovascular Segmentation
Visa övriga...
2022 (Engelska)Ingår i: 2022 IEEE International Symposium on Biomedical Imaging (IEEE ISBI 2022), IEEE, 2022, s. 1-4Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper presents a topology-aware learning strategy for volumetric segmentation of intracranial cerebrovascular structures. We propose a multi-task deep CNN along with a topology-aware loss function for this purpose. Along with the main task (i.e. segmentation), we train the model to learn two related auxiliary tasks viz. learning the distance transform for the voxels on the surface of the vascular tree and learning the vessel centerline. This provides additional regularization and allows the encoder to learn higher-level intermediate representations to boost the performance of the main task. We compare the proposed method with six state-of-the-art deep learning-based 3D vessel segmentation methods, by using a public Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) dataset. Experimental results demonstrate that the proposed method has the best performance in this particular context.

Ort, förlag, år, upplaga, sidor
IEEE, 2022
Serie
IEEE International Symposium on Biomedical Imaging, ISSN 1945-7928
Nyckelord
Cerebrovascular segmentation, TOF-MRA, topology-aware learning, multi-task CNN
Nationell ämneskategori
Medicinsk bildvetenskap
Forskningsämne
Datoriserad bildbehandling
Identifikatorer
urn:nbn:se:uu:diva-482669 (URN)10.1109/ISBI52829.2022.9761429 (DOI)000836243800030 ()978-1-6654-2923-8 (ISBN)
Konferens
19th IEEE International Symposium on Biomedical Imaging (IEEE ISBI), MAR 28-31, 2022, Kolkata, India
Forskningsfinansiär
Vinnova, 2020-03616
Tillgänglig från: 2022-09-20 Skapad: 2022-09-20 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0002-2358-2096

Sök vidare i DiVA

Visa alla publikationer