Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 165) Visa alla publikationer
Ene, P., Svensson, M. K., Strand, R., Kullberg, J., Ahlström, H., Larsson, A. & Lind, L. (2025). Causal effects of obesity on estimated glomerular filtration rate: a Mendelian randomization and image data analysis study. Clinical Kidney Journal, 18(5), Article ID sfaf116.
Öppna denna publikation i ny flik eller fönster >>Causal effects of obesity on estimated glomerular filtration rate: a Mendelian randomization and image data analysis study
Visa övriga...
2025 (Engelska)Ingår i: Clinical Kidney Journal, ISSN 2048-8505, E-ISSN 2048-8513, Vol. 18, nr 5, artikel-id sfaf116Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

BACKGROUND: Obesity has been associated with onset and progression of chronic kidney disease (CKD) but causal relationship remains uncertain. This study investigated how obesity causally affects estimated glomerular filtration rate.

METHODS: Cross-sectional and magnetic resonance imaging (MRI) data analyses were performed within the Prospective Investigation of Obesity, Energy, and Metabolism (POEM) study (502 participants, all aged 50 years). Additionally Mendelian randomization was performed using published summary data. Outcomes were creatinine- and cystatin C-based eGFR. Body mass index (BMI) and waist circumference (WC) were used as exposure variables in the cross-sectional and Mendelian randomization analyses. In the imaging data analyses, eGFR was regressed non-parametrically on tissue volume for each 3D voxel and visualized as a correlation "Imiomics" map.

RESULTS: Negative correlations were shown between cystatin C-based eGFR and BMI [beta = -0.190 (95% CI: -0.280 to -0.100)] and WC [beta = -0.160 (95% CI: -0.250 to -0.060)] in an adjusted model. In contrast, a positive association was found for creatinine-based eGFR [BMI beta = 1.20 (95% CI: 0.030 to 0.210) and WC beta = 0.160 (95% CI: 0.070 to 0.260)]. Similar patterns were found using MRI analysis (Imiomics map). Mendelian randomization implied a negative causal effect of obesity-related measures on cystatin C-based eGFR [BMI beta = -0.031 (95% CI: -0.037 to -0.026) and WC beta = -0.038 (95% CI: -0.045 to -0.031)], but no statistically significant effect was found for creatinine-based eGFR.

CONCLUSION: This study suggests a causal negative effect of obesity on cystatin C-based, but not creatinine-based eGFR. These findings warrant further research regarding estimations of kidney function when assessing obesity and CKD.

Ort, förlag, år, upplaga, sidor
Oxford University Press, 2025
Nyckelord
Mendelian randomization, body composition, estimated glomerular filtration rate, magnetic resonance imaging, obesity
Nationell ämneskategori
Njurmedicin
Identifikatorer
urn:nbn:se:uu:diva-556644 (URN)10.1093/ckj/sfaf116 (DOI)001485073500001 ()40357501 (PubMedID)2-s2.0-105005067204 (Scopus ID)
Forskningsfinansiär
Region UppsalaInsamlingsstiftelsen NjurfondenEXODIAB - Excellence of Diabetes Research in SwedenStiftelsen familjen Ernfors fondHjärt-Lungfonden, 20220129
Tillgänglig från: 2025-05-15 Skapad: 2025-05-15 Senast uppdaterad: 2025-05-23Bibliografiskt granskad
Chandra Pal, S., Kamal Ahuja, C., Toumpanakis, D., Wikström, J., Strand, R. & Kumar Dhara, A. (2025). Computationally efficient dilated residual networks for segmentation of major cerebral vessels in MRA. Network Modeling Analysis in Health Informatics and Bioinformatics, 14(1), Article ID 95.
Öppna denna publikation i ny flik eller fönster >>Computationally efficient dilated residual networks for segmentation of major cerebral vessels in MRA
Visa övriga...
2025 (Engelska)Ingår i: Network Modeling Analysis in Health Informatics and Bioinformatics, ISSN 2192-6670, Vol. 14, nr 1, artikel-id 95Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Subarachnoid hemorrhages, often caused by ruptured cerebral aneurysms, require precise vessel segmentation for early intervention and surgical planning. Volumetric segmentation of cerebral vasculature is essential for stroke screening and treatment response assessment. However, the small size and complex topology of cerebral vessels pose significant challenges for clinically reliable segmentation. In this paper, we propose a novel dilated residual-based network for segmenting the major cerebral vessels. The major cerebral vessels provide high contextual information of location of aneurysms. Anatomical information of the location of cerebral aneurysm remnants is used for better segmentation and lightweight network development. An extensive quantitative and visual assessment has been done with state-of-the-art networks for cerebral vessel segmentation. Our proposed method demonstrated promising result with dice score of 0.94 on in-house Aneurysm Database. Furthermore, with the help of neuro-interventional radiologists, we have analyzed the relevance of major cerebral vessels segmentation for aneurysm quantification in streamlining endovascular surgical planning as the method attains higher level of accuracy and maintains consistency in preserving vascular pathology. A novel, robust, cerebral vessel segmentation method was proposed. The method provides the relevance of vessel segmentation, paving the way for improved diagnostic accuracy and clinical decision-making in intracranial aneurysms.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2025
Nyckelord
Anatomy-guided segmentation, Magnetic resonance angiography (MRA), Major cerebral vasculature, Quantification of aneurysm, Surgical planning
Nationell ämneskategori
Medicinsk bildvetenskap Radiologi och bildbehandling Neurologi
Identifikatorer
urn:nbn:se:uu:diva-567694 (URN)10.1007/s13721-025-00551-z (DOI)001562542900001 ()2-s2.0-105015055130 (Scopus ID)
Forskningsfinansiär
VinnovaEU, Horisont 2020
Tillgänglig från: 2025-09-26 Skapad: 2025-09-26 Senast uppdaterad: 2025-09-26Bibliografiskt granskad
Ahmad, S., Carrasquilla, G. D., Langner, T., Menzel, U., Ahmad, N., Sayols-Baixeras, S., . . . Fall, T. (2025). Impact of genetic variants linked to liver fat and liver volume on MRI-mapped body composition. JHEP Reports, 7(9), Article ID 101468.
Öppna denna publikation i ny flik eller fönster >>Impact of genetic variants linked to liver fat and liver volume on MRI-mapped body composition
Visa övriga...
2025 (Engelska)Ingår i: JHEP Reports, E-ISSN 2589-5559, Vol. 7, nr 9, artikel-id 101468Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background & Aims: A quarter of the world population is estimated to have metabolic dysfunction-associated steatotic liver disease. Here, we aim to understand the impact of liver trait-associated genetic variants on fat content and tissue volume across organs and body compartments and on a large set of biomarkers.

Methods: Genome-wide association analyses were performed on liver fat and liver volume estimated with magnetic resonance imaging in up to 27,243 unrelated European participants from the UK Biobank. Identified variants were assessed for associations with fat fraction and tissue volume in >2 million 'Imiomics' image elements in 22,261 individuals and with circulating biomarkers in 310,224 individuals.

Results: We confirmed four liver fat and nine liver volume previously reported genetic variants (p values <5 x 10(-8)). We further found evidence suggestive of a novel liver volume locus, ADH4, where each additional T allele increased liver volume by 0.05 SD (SE = 0.01, p value = 3.3 x 10(-8)). The Imiomics analyses showed that liver fat-increasing variants were specifically associated with fat fraction of the liver tissue (p values <2.8 x 10(-3)) and with higher inflammation, liver and renal injury biomarkers, and lower lipid levels. Associations of liver volume variants with fat content, tissue volume, and biomarkers were more heterogeneous, for example the liver volume-increasing alleles at CENPW and PPP1R3B were associated with higher skeletal muscle volumes and were more pronounced in men, whereas the GCKR variant was negatively associated with lower skeletal muscle volumes in women (p values <2.8 x 10(-3)).

Conclusions: Liver fat-increasing variants were mostly linked to fat fraction of the liver and were positively associated with some adverse metabolic biomarkers and negatively with lipids. In contrast, liver volume-associated variants showed a less consistent pattern across organs and biomarkers. (c) 2025 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Ort, förlag, år, upplaga, sidor
Elsevier, 2025
Nyckelord
Genetic variation, Metabolic dysfunction-associated steatotic liver disease, Chronic liver disease, Metabolic disease
Nationell ämneskategori
Gastroenterologi och hepatologi Medicinsk genetik och genomik
Identifikatorer
urn:nbn:se:uu:diva-566526 (URN)10.1016/j.jhepr.2025.101468 (DOI)001550849600005 ()40823175 (PubMedID)2-s2.0-105012556580 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, sens2017131Vetenskapsrådet, sens2019016Vetenskapsrådet, 2022-06725EU, Europeiska forskningsrådet, ERC-StG-801965Vetenskapsrådet, 2019-01471Hjärt-Lungfonden, 2023-0687Forskningsrådet Formas, 2020-00989Vetenskapsrådet, 2022-01460Hjärt-LungfondenVetenskapsrådet, 2019-04756Vetenskapsrådet, 2016-01040Hjärt-Lungfonden, 20200500Hjärt-Lungfonden, 2022012923
Tillgänglig från: 2025-09-08 Skapad: 2025-09-08 Senast uppdaterad: 2025-09-08Bibliografiskt granskad
Tarai, S., Lundström, E., Ahmad, N., Strand, R., Ahlström, H. & Kullberg, J. (2025). Whole-body tumor segmentation from FDG-PET/CT: Leveraging a segmentation prior from tissue-wise projections.. Heliyon, 11(1), Article ID e41038.
Öppna denna publikation i ny flik eller fönster >>Whole-body tumor segmentation from FDG-PET/CT: Leveraging a segmentation prior from tissue-wise projections.
Visa övriga...
2025 (Engelska)Ingår i: Heliyon, E-ISSN 2405-8440, Vol. 11, nr 1, artikel-id e41038Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: Accurate tumor detection and quantification are important for optimized therapy planning and evaluation. Total tumor burden is also an appealing biomarker for clinical trials. Manual examination and annotation of oncologic PET/CT is labor-intensive and demands a high level of expertise. One significant challenge is the risk for human error, leading to potential omission of especially small tumors and tumors with low FDG uptake.

Purpose: In this study, we introduced an automated framework with segmentation prior, from a tissue-wise multi-channel multi-angled based approach, to enhance tumor segmentation in whole-body FDG-PET/CT.

Method: The proposed framework utilized a segmentation prior generated from tumor segmentations in tissue-wise multi-channel projections of the standardized uptake value (SUV) from PET. Projections were created from various angles and the tissues were identified based on their CT Hounsfield values. The resulting segmentation masks were subsequently backprojected into a unified 3D volume for creation of the segmentation prior. Finally, the segmentation prior was provided as an additional input channel along with the CT and SUV images to three variants of 3D segmentation networks (3D UNet, dynUNet, nnUNet) to enhance the overall tumor segmentation performance. All the methods were independently evaluated using 5-fold cross-validation on the autoPET dataset and subsequently tested on the U-CAN dataset.

Results: Combining the segmentation prior with the original SUV and CT images improved overall tumor segmentation performance significantly compared to a baseline network. The increase in Dice coefficient for lymphoma, lung cancer, and melanoma across different segmentation networks were: 3D UNet (⁎, ⁎, ⁎), dynUNet (⁎, ⁎, ⁎), and nnUNet (⁎, , ⁎), respectively; *, p-value < 0.05; ns, non-significance.

Conclusion: The increased segmentation accuracy could be attributed to the segmentation prior generated from tissue-wise SUV projections, revealing information from various tissues that was useful for segmentation of tumors. The results from this study highlight the potential of the proposed method as a valuable future tool for time-efficient quantification of tumor burden in oncologic FDG-PET/CT.

Ort, förlag, år, upplaga, sidor
Elsevier, 2025
Nyckelord
Backprojection, Multi-channel multi-angled PET/CT projections, Segmentation prior, Whole-body tumor segmentation
Nationell ämneskategori
Radiologi och bildbehandling
Identifikatorer
urn:nbn:se:uu:diva-548170 (URN)10.1016/j.heliyon.2024.e41038 (DOI)39801978 (PubMedID)2-s2.0-85212087834 (Scopus ID)
Tillgänglig från: 2025-01-22 Skapad: 2025-01-22 Senast uppdaterad: 2025-11-04Bibliografiskt granskad
Karlsson, P., Strand, R., Kullberg, J., Michaëlsson, K., Ahlström, H., Lind, L. & Malinovschi, A. (2024). A detailed analysis of body composition in relation to cardiopulmonary exercise test indices.. Scientific Reports, 14(1), 21633, Article ID 21633.
Öppna denna publikation i ny flik eller fönster >>A detailed analysis of body composition in relation to cardiopulmonary exercise test indices.
Visa övriga...
2024 (Engelska)Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 14, nr 1, s. 21633-, artikel-id 21633Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A cardiopulmonary exercise test (CPET) is a test assessing an individual's physiological response during exercise. Results may be affected by body composition, which is best evaluated through imaging techniques like magnetic resonance imaging (MRI). The aim of this study was to assess relationships between body composition and indices obtained from CPET. A total of 234 participants (112 female), all aged 50 years, underwent CPETs and whole-body MRI scans (> 1 million voxels). Voxel-wise statistical analysis of tissue volume and fat content was carried out with a method called Imiomics and related to the CPET indices peak oxygen consumption (V̇O2peak), V̇O2peak scaled by body weight (V̇O2kg) and by total lean mass (V̇O2lean), ventilatory efficiency (V̇E/V̇CO2-slope), work efficiency (ΔV̇O2/ΔWR) and peak exercise respiratory exchange ratio (RERpeak). V̇O2peak showed the highest positive correlation with volume of skeletal muscle. V̇O2kg negatively correlated with tissue volume in subcutaneous fat, particularly gluteal fat. RERpeak negatively correlated with tissue volume in skeletal muscle, subcutaneous fat, visceral fat and liver. Some associations differed between sexes: in females ΔV̇O2/ΔWR correlated positively with tissue volume of subcutaneous fat and V̇E/V̇CO2-slope with tissue volume of visceral fat, and, in males, V̇O2peak correlated positively to lung volume. In conclusion, voxel-based Imiomics provided detailed insights into how CPET indices were related to the tissue volume and fat content of different body structures.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2024
Nyckelord
Body composition, Cardiopulmonary exercise test, MRI
Nationell ämneskategori
Klinisk medicin
Identifikatorer
urn:nbn:se:uu:diva-540866 (URN)10.1038/s41598-024-72973-0 (DOI)001337075200089 ()39285239 (PubMedID)
Tillgänglig från: 2024-10-22 Skapad: 2024-10-22 Senast uppdaterad: 2024-11-06Bibliografiskt granskad
Kundu, S., Banerjee, S., Breznik, E., Toumpanakis, D., Wikström, J., Strand, R. & Kumar Dhara, A. (2024). ASE-Net for Segmentation of Post-operative Glioblastoma and Patient-specific Fine-tuning for Segmentation Refinement of Follow-up MRI Scans. SN computer science, 5(106)
Öppna denna publikation i ny flik eller fönster >>ASE-Net for Segmentation of Post-operative Glioblastoma and Patient-specific Fine-tuning for Segmentation Refinement of Follow-up MRI Scans
Visa övriga...
2024 (Engelska)Ingår i: SN computer science, E-ISSN 2661-8907, Vol. 5, nr 106Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Volumetric quantification of tumors is usually done manually by radiologists requiring precious medical time and suffering from inter-observer variability. An automatic tool for accurate volume quantification of post-operative glioblastoma would reduce the workload of radiologists and improve the quality of follow-up monitoring and patient care. This paper deals with the 3-D segmentation of post-operative glioblastoma using channel squeeze and excitation based attention gated network (ASE-Net). The proposed deep neural network has a 3-D encoder and decoder based architecture with channel squeeze and excitation (CSE) blocks and attention blocks. The CSE block reduces the dependency on space information and put more emphasize on the channel information. The attention block suppresses the feature maps of irrelevant background and helps highlighting the relevant feature maps. The Uppsala university data set used has post-operative follow-up MRI scans for fifteen patients. A patient specific fine-tuning approach is used to improve the segmentation results for each patient. ASE-Net is also cross-validated with BraTS-2021 data set. The mean dice score of five-fold cross validation results with BraTS-2021 data set for enhanced tumor is 0.8244. The proposed network outperforms the competing networks like U-Net, Attention U-Net and Res U-Net. On the Uppsala University glioblastoma data set, the mean Dice score obtained with the proposed network is 0.7084, Hausdorff Distance-95 is 7.14 and the mean volumetric similarity achieved is 0.8579. With fine-tuning the pre-trained network, the mean dice score improved to 0.7368, Hausdorff Distance-95 decreased to 6.10 and volumetric similarity improved to 0.8736. ASE-Net outperforms the competing networks and can be used for volumetric quantification of post-operative glioblastoma from follow-up MRI scans. The network significantly reduces the probability of over segmentation.

Ort, förlag, år, upplaga, sidor
Springer, 2024
Nationell ämneskategori
Medicinsk bildvetenskap
Forskningsämne
Datoriserad bildbehandling
Identifikatorer
urn:nbn:se:uu:diva-498177 (URN)10.1007/s42979-023-02425-5 (DOI)
Tillgänglig från: 2023-03-10 Skapad: 2023-03-10 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Kundu, S., Toumpanakis, D., Wikström, J., Strand, R. & Dhara, A. K. (2024). Atten-SEVNETR for volumetric segmentation of glioblastoma and interactive refinement to limit over-segmentation. IET Image Processing, 18(14), 4928-4943
Öppna denna publikation i ny flik eller fönster >>Atten-SEVNETR for volumetric segmentation of glioblastoma and interactive refinement to limit over-segmentation
Visa övriga...
2024 (Engelska)Ingår i: IET Image Processing, ISSN 1751-9659, E-ISSN 1751-9667, Vol. 18, nr 14, s. 4928-4943Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Precise localization and volumetric segmentation of glioblastoma before and after surgery are crucial for various clinical purposes, including post-surgery treatment planning, monitoring tumour recurrence, and creating radiotherapy maps. Manual delineation is time-consuming and prone to errors, hence the adoption of automated 3D quantification methods using deep learning algorithms from MRI scans in recent times. However, automated segmentation often leads to over-segmentation or under-segmentation of tumour regions. Introducing an interactive deep-learning tool would empower radiologists to rectify these inaccuracies by adjusting the over-segmented and under-segmented voxels as needed. This paper proposes a network named Atten-SEVNETR, that has a combined architecture of vision transformers and convolutional neural networks (CNN). This hybrid architecture helps to learn the input volume representation in sequences and focuses on the global multi-scale information. An interactive graphical user interface is also developed where the initial 3D segmentation of glioblastoma can be interactively corrected to remove falsely detected spurious tumour regions. Atten-SEVNETR is trained on BraTS training dataset and tested on BraTS validation dataset and on Uppsala University post-operative glioblastoma dataset. The methodology outperformed state-of-the-art networks like nnFormer, SwinUNet, and SwinUNETR. The mean dice score achieved is 0.7302, and the mean Hausdorff distance-95 got is 7.78 mm for the Uppsala University dataset.

Ort, förlag, år, upplaga, sidor
Institution of Engineering and Technology, 2024
Nationell ämneskategori
Medicinsk bildvetenskap
Identifikatorer
urn:nbn:se:uu:diva-542828 (URN)10.1049/ipr2.13218 (DOI)001303364600001 ()2-s2.0-85202937649 (Scopus ID)
Forskningsfinansiär
Vinnova, 2020-03616
Tillgänglig från: 2024-11-14 Skapad: 2024-11-14 Senast uppdaterad: 2025-04-01Bibliografiskt granskad
Kundu, S., Toumpanakis, D., Wikström, J., Strand, R. & Dhara, A. K. (2024). CAAT-Class Attention Augmented Transformers for Quantification of Post-Operative Glioblastoma with Follow-Up. In: 2024 IEEE International Symposium on Biomedical Imaging (ISBI): . Paper presented at 2024 IEEE International Symposium on Biomedical Imaging (ISBI), Athens, Greece, 27-30 May, 2024 (pp. 1-5). Institute of Electrical and Electronics Engineers (IEEE)
Öppna denna publikation i ny flik eller fönster >>CAAT-Class Attention Augmented Transformers for Quantification of Post-Operative Glioblastoma with Follow-Up
Visa övriga...
2024 (Engelska)Ingår i: 2024 IEEE International Symposium on Biomedical Imaging (ISBI), Institute of Electrical and Electronics Engineers (IEEE), 2024, s. 1-5Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Accurate delineation of residual tumor tissue from post-surgical MR images is crucial for assessing the prognosis of patients with glioblastoma, with the extent of surgical removal being a key prognostic factor. Though nearly accurate post-surgical residual tumor segmentation can be achieved with deep neural architectures, interactive refinement can improve the segmentation further. In this study, we implemented the novel network named Class Attention Augmented Transformers (CAAT) for quantifying the post-operative residual enhanced brain tumors. The 3D segmentation output from the post-operative baseline scan was further corrected with level-set method to reduce the over-segmentation and under-segmentation. The dataset comprises the post-operative glioblastoma data from Uppsala University Hospital, encompassing the baseline and follow-up MRI for each patient. The corrected baseline scan was used to fine-tune the network further, which finally resulted in the improvement of dice score sof the follow-up. The mean dice score with CAAT is 0.6536a nd it increased to 0.6601 after level-set correction.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2024
Nyckelord
Post-Operative Glioblastoma, Class At- tention, Residual Tumors, Interactive Correction, Level-Set
Nationell ämneskategori
Medicinsk bildvetenskap
Identifikatorer
urn:nbn:se:uu:diva-542835 (URN)10.1109/ISBI56570.2024.10635394 (DOI)001305705101119 ()2-s2.0-85203375530 (Scopus ID)979-8-3503-1333-8 (ISBN)979-8-3503-1334-5 (ISBN)
Konferens
2024 IEEE International Symposium on Biomedical Imaging (ISBI), Athens, Greece, 27-30 May, 2024
Forskningsfinansiär
Vinnova, 2020-03616
Tillgänglig från: 2024-11-14 Skapad: 2024-11-14 Senast uppdaterad: 2025-06-23Bibliografiskt granskad
Bengtsson Bernander, K., Sintorn, I.-M., Strand, R. & Nyström, I. (2024). Classification of rotation-invariant biomedical images using equivariant neural networks. Scientific Reports, 14(1), Article ID 14995.
Öppna denna publikation i ny flik eller fönster >>Classification of rotation-invariant biomedical images using equivariant neural networks
2024 (Engelska)Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 14, nr 1, artikel-id 14995Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Transmission electron microscopy (TEM) is an imaging technique used to visualize and analyze nano-sized structures and objects such as virus particles. Light microscopy can be used to diagnose diseases or characterize e.g. blood cells. Since samples under microscopes exhibit certain symmetries, such as global rotation invariance, equivariant neural networks are presumed to be useful. In this study, a baseline convolutional neural network is constructed in the form of the commonly used VGG16 classifier. Thereafter, it is modified to be equivariant to the p4 symmetry group of rotations of multiples of 90 degrees using group convolutions. This yields a number of benefits on a TEM virus dataset, including higher top validation set accuracy by on average 7.6% and faster convergence during training by on average 23.1% of that of the baseline. Similarly, when training and testing on images of blood cells, the convergence time for the equivariant neural network is 7.9% of that of the baseline. From this it is concluded that augmentation strategies for rotation can be skipped. Furthermore, when modelling the accuracy versus amount of TEM virus training data with a power law, the equivariant network has a slope of - 0.43 compared to - 0.26 of the baseline. Thus the equivariant network learns faster than the baseline when more training data is added. This study extends previous research on equivariant neural networks applied to images which exhibit symmetries to isometric transformations.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2024
Nationell ämneskategori
Bioinformatik (beräkningsbiologi) Datorteknik
Identifikatorer
urn:nbn:se:uu:diva-535397 (URN)10.1038/s41598-024-65597-x (DOI)001260844500060 ()38951630 (PubMedID)
Forskningsfinansiär
Vetenskapsrådet, 2022-06725Uppsala universitet
Tillgänglig från: 2024-07-31 Skapad: 2024-07-31 Senast uppdaterad: 2024-07-31Bibliografiskt granskad
Fransson, S., Tilly, D. & Strand, R. (2024). Deep learning segmentation of low-resolution images for prostate magnetic resonance-guided radiotherpy.
Öppna denna publikation i ny flik eller fönster >>Deep learning segmentation of low-resolution images for prostate magnetic resonance-guided radiotherpy
2024 (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Radiologi och bildbehandling
Forskningsämne
Medicinsk radiofysik
Identifikatorer
urn:nbn:se:uu:diva-525686 (URN)
Tillgänglig från: 2024-04-08 Skapad: 2024-04-08 Senast uppdaterad: 2024-04-09
Projekt
Detektion och kvantifiering av små förändringar i magnetresonans-neuroimaging [2014-06199_VR]; Uppsala universitet; Publikationer
Dhara, A. K., Arvids, E., Fahlström, M., Wikström, J., Larsson, E.-M. & Strand, R. (2018). Interactive segmentation of glioblastoma for post-surgical treatment follow-up. In: 2018 24th International Conference on Pattern Recognition (ICPR): . Paper presented at ICPR 2018, August 20–24, Beijing, China (pp. 1199-1204). Institute of Electrical and Electronics Engineers (IEEE)
Datorstödd kvantifiering för terapiuppföljning av Glioblastom och intrakraniella aneurysmer [2020-03616_Vinnova]; Uppsala universitet; Publikationer
Kundu, S., Toumpanakis, D., Wikström, J., Strand, R. & Dhara, A. K. (2024). Atten-SEVNETR for volumetric segmentation of glioblastoma and interactive refinement to limit over-segmentation. IET Image Processing, 18(14), 4928-4943
Imiomics and Deep Learning MRI and PET-MRI Studies on Causes and Consequences of Body Composition in Cardiovascular Disease [20200500_HLF]; Uppsala universitetStorskalig medicinsk bildanalys för detaljerade studier av orsaker och konsekvenser av kroppssammansättning i relation till hjärt-kärlsjukdom [2023-03607_VR]; Uppsala universitetLexikografisk optimering för dataanalys på grafer [2023-03943_VR]; Uppsala universitetDatorstödd diagnostisk analys av intrakraniella aneurysmer för neurointerventionella procedurer [2023-04220_Vinnova]; Uppsala universitet
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-7764-1787

Sök vidare i DiVA

Visa alla publikationer