Open this publication in new window or tab >>Show others...
2019 (English)In: IET Smart Grid, ISSN 2515-2947, Vol. 2, no 4, p. 625-634Article in journal (Refereed) Published
Abstract [en]
This study presents a step toward the grid connection of a wave-energy park through an electric power conversion system (EPCS) developed and installed for the wave-energy harvesting in Lysekil, Sweden. The EPCS comprises a rectifier, a DC bus, and an inverter followed by a harmonic filter (HF). The higher- and lower-order harmonics injected by the inverter in a power quality context are investigated. The lower-order voltage harmonics partially distort the voltage-source inverter output grid current. A phase-locked loop-based (PLL) grid-phase tracking is used to attenuate the lower-order harmonics by reflecting the grid harmonics in the inverter output. An expression for the grid-current harmonics as a function of the grid-voltage harmonics has been derived and implemented. A mathematical model is derived to obtain a transfer function for the PLL, and finally, proportional–integral gains are tuned for stable system operation. An HF for mitigating the higher-order harmonics has been implemented. The total harmonic distortion is evaluated experimentally, and the results fulfil the grid-code requirements at various frequencies and harmonic orders.
Place, publisher, year, edition, pages
UK: , 2019
Keywords
WAVE ENERGY SMART GRID HARMONIC DISTORTION
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-389779 (URN)10.1049/iet-stg.2019.0009 (DOI)2-s2.0-85085531984 (Scopus ID)
Funder
Swedish Research Council, 2015-03126
2019-07-252019-07-252025-07-17Bibliographically approved