Open this publication in new window or tab >>Show others...
2024 (English)In: ACS Physical Chemistry Au, E-ISSN 2694-2445, Vol. 4, no 4, p. 385-392Article in journal (Refereed) Published
Abstract [en]
Water and ice are routinely studied with X-rays to reveal their diverse structures and anomalous properties. We employ a hybrid collisional-radiative/molecular-dynamics method to explore how femtosecond X-ray pulses interact with hexagonal ice. We find that ice makes a phase transition into a crystalline plasma where its initial structure is maintained up to tens of femtoseconds. The ultrafast melting process occurs anisotropically, where different geometric configurations of the structure melt on different time scales. The transient state and anisotropic melting of crystals can be captured by X-ray diffraction, which impacts any study of crystalline structures probed by femtosecond X-ray lasers.
Place, publisher, year, edition, pages
American Chemical Society (ACS), 2024
Keywords
X-ray free-electron laser, ultrafast dynamics, nonthermal melting, molecular dynamics, plasmasimulations, coherent diffractive imaging
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:uu:diva-541953 (URN)10.1021/acsphyschemau.3c00072 (DOI)001225154400001 ()39069981 (PubMedID)
Funder
Swedish Research Council, 2018-00740Swedish Research Council, 2019-03935Swedish Research Council, 2017-05128Swedish National Infrastructure for Computing (SNIC), SNIC 2022/22-597Swedish Foundation for Strategic ResearchCarl Tryggers foundation , CTS 18:392The Swedish Foundation for International Cooperation in Research and Higher Education (STINT)Swedish National Infrastructure for Computing (SNIC), SNIC 2019/8- 370Swedish National Infrastructure for Computing (SNIC), SNIC 2021/22-289UPPMAX
2024-11-072024-11-072025-03-10Bibliographically approved