Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
ExportLink to record
Permanent link

Direct link
BETA

Project

Project type/Form of grant
Project grant
Title [sv]
Datorstödd kvantifiering för terapiuppföljning av Glioblastom och intrakraniella aneurysmer
Title [en]
Computer-aided Glioblastoma and Intracranial Aneurysms Treatment Response Quantification in Neuroradiology
Abstract [sv]
Syfte och mål:Förbättrad diagnos och behandling kan minska dödligheten i glioblastom och intrakraniella aneurysmer. Manuell kvantifiering av behandlingsuppföljning av glioblastom och intrakraniella aneurysmer är mycket tidskrävande. Det här projektet syftar till att utveckla metoder baserade på artificiell intelligens i neuroradiologi, med ett fokus på metoder för att skapa referenssegmenteringar samt möjliggöra och förbättra kvantifiering i behandlingsuppföljning av glioblastom och intrakraniella aneurysmer.Förväntade effekter och resultat:Ett bättre verktyg för att upptäcka och kvantifiera förändringar i neuroimaging kommer att * leda till mer exakt och korrekt diagnos av hjärncancer * möjliggöra diagnos i ett tidigare skede, vilket gör det möjligt att starta behandlingen tidigare* leda till förbättrad kvantifiering av behandlingssvar, vilket möjliggör tidigare justering av terapi vid behov, vilket i sin tur förbättrar resultatet.Upplägg och genomförande:Projektet baseras på följande arbetspaket, som kommer att genomföras i samarbete mellan PIs i Sverige och Indien.* Arbetspaket (WP) 1: Projektledning* WP 2: Verktyg för skapande av referenssegmenteringar* WP 3: Bearbetning av bilddata med hög variabilitet* WP 4: Utveckling och implementering av användargränssnitt* Kliniskt anpassningsprojekt 1: Djupinlärningsbaserad interaktiv segmentering och volymetrisk kvantifiering av hjärntumör* Kliniskt anpassningsprojekt 2: Förbättra och automatisera kvantifiering av intrakraniella aneurysmrester
Abstract [en]
Purpose and goal:Improved diagnosis and treatment can reduce mortality in glioblastoma and intracranial aneurysms. Manual quantification of treatment follow-up of glioblastoma and intracranial aneurysms is very time consuming. This project aims to develop methods based on artificial intelligence in neuroradiology, with a focus on methods for creating reference segmentations as well as allowing and improving quantification in treatment follow-up of glioblastoma and intracranial aneurysms.Expected results and effects:A better change detection and quantification tool in neuroimaging will* lead to more precise and accurate diagnosis of brain cancers* permit diagnosis at an earlier stage, which makes it possible to start the treatment earlier* lead to improved quantification of treatment response, which enables earlier adjustment of therapy when needed, in turn improving outcome.Approach and implementation:The project is based on the following work packages, which will be carried out in collaboration between the PIs in Sweden and India.* Work Package (WP) 1: Project Management* WP 2: Ground Truth Creation Tool* WP 3: High Variability Image Data Processing* WP 4: Implementation and User Interface (UI) Development* Clinical Adaptation Project 1: Deep learning based interactive segmentation and volumetric quantification of brain tumor* Clinical Adaptation Project 2: Improve and automate quantification of intracranial aneurysm remnants
Publications (1 of 1) Show all publications
Kundu, S., Toumpanakis, D., Wikström, J., Strand, R. & Dhara, A. K. (2024). Atten-SEVNETR for volumetric segmentation of glioblastoma and interactive refinement to limit over-segmentation. IET Image Processing, 18(14), 4928-4943
Open this publication in new window or tab >>Atten-SEVNETR for volumetric segmentation of glioblastoma and interactive refinement to limit over-segmentation
Show others...
2024 (English)In: IET Image Processing, ISSN 1751-9659, E-ISSN 1751-9667, Vol. 18, no 14, p. 4928-4943Article in journal (Refereed) Published
Abstract [en]

Precise localization and volumetric segmentation of glioblastoma before and after surgery are crucial for various clinical purposes, including post-surgery treatment planning, monitoring tumour recurrence, and creating radiotherapy maps. Manual delineation is time-consuming and prone to errors, hence the adoption of automated 3D quantification methods using deep learning algorithms from MRI scans in recent times. However, automated segmentation often leads to over-segmentation or under-segmentation of tumour regions. Introducing an interactive deep-learning tool would empower radiologists to rectify these inaccuracies by adjusting the over-segmented and under-segmented voxels as needed. This paper proposes a network named Atten-SEVNETR, that has a combined architecture of vision transformers and convolutional neural networks (CNN). This hybrid architecture helps to learn the input volume representation in sequences and focuses on the global multi-scale information. An interactive graphical user interface is also developed where the initial 3D segmentation of glioblastoma can be interactively corrected to remove falsely detected spurious tumour regions. Atten-SEVNETR is trained on BraTS training dataset and tested on BraTS validation dataset and on Uppsala University post-operative glioblastoma dataset. The methodology outperformed state-of-the-art networks like nnFormer, SwinUNet, and SwinUNETR. The mean dice score achieved is 0.7302, and the mean Hausdorff distance-95 got is 7.78 mm for the Uppsala University dataset.

Place, publisher, year, edition, pages
Institution of Engineering and Technology, 2024
National Category
Medical Imaging
Identifiers
urn:nbn:se:uu:diva-542828 (URN)10.1049/ipr2.13218 (DOI)001303364600001 ()2-s2.0-85202937649 (Scopus ID)
Funder
Vinnova, 2020-03616
Available from: 2024-11-14 Created: 2024-11-14 Last updated: 2025-04-01Bibliographically approved
Principal InvestigatorStrand, Robin
Coordinating organisation
Uppsala University
Funder
Period
2021-01-01 - 2023-12-31
National Category
Medical Image ProcessingRadiology, Nuclear Medicine and Medical Imaging
Identifiers
DiVA, id: project:6461Project, id: 2020-03616_Vinnova