Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
ExportLink to record
Permanent link

Direct link
BETA

Project

Project type/Form of grant
Grant for employment or scholarship
Title [sv]
Elektrod-elektrolyt-gränsskikt i hållbara vattenbaserade alkalijonbatterier
Title [en]
Electrode–electrolyte interphases in sustainable aqueous alkali-ion batteries
Abstract [sv]
Energikällor som vattenkraft, vindkraft och solenergi erbjuder ett nästintill outtömligt och förnyelsebart alternativ till fossila bränslen. Vattenkraften är trots allt inte geografiskt jämlikt fördelat och effekten från vind-/solenergi varierar kraftigt under dagen, veckan och månaderna, vilket tyvärr hindrar full integration i vårt samhälle. Förnybar energi kan dock lagras och återanvändas med hjälp av elektrokemiska energilagringsanordningar såsom återuppladdningsbara batterier. Den främsta representanten är idag Li-jonbatteriet, vilket är baserat på en organisk elektrolyter för ökad stabilitet och energitäthet, men med försämrad hållbarhet som pris. Vattenbaserade batterier besitter här unika fördelar i form av mindre miljöpåverkan och betydligt lägre kostnader. Vatten har dock en begränsad elektrokemisk stabilitet på 1,23 V, vilket avsevärt begränsar energitätheten och därmed realiserbarheten av dessa batterier.Det föreslagna projektet syftar till att inhämta grundläggande förståelse för hur vattenbaserade elektrolyter kan ges likvärdig stabilitet som icke-vattenhaltiga i konventionella Li-jonbatterier. För detta ändamål ska gränssnittsskikt mellan elektrod och elektrolyt bildas, studeras och modelleras. Optimala elektrolytkompositioner kommer att identifieras med hjälp av en robotassisterad screeningmetod med hög genomströmning och därefter kommer den grundläggande kemiska strukturen hos de resulterande gränssnittsskikten att analyseras, framförallt med experimentella sk. operanditekniker. Resultaten förväntas vägleda framtida utformning av hållbara vattenbaserade batterier med högre energi och lägre kostnad.
Abstract [en]
Aqueous Li-ion batteries have recently experienced intense revival because of their unique performance metrics of high environmental sustainability, low toxicity and cost. The limited water electrochemical stability window (ESW) of 1.23 V is however a major hurdle significantly compromising their energy density. Modern Li-ion batteries therefore operate with organic electrolytes with a thermodynamically much broader ESW > 3 V. Electrolytes can however also be kinetically stabilized by introducing a stabilizing barrier towards the electrodes, a so called solid-electrolyte interphase (SEI), which dramatically reduces the rate of side-reactions, but maintains the dis-/charge reactions of the battery cell. Decades of research have been dedicated to the SEI in organic electrolytes, but much less so to their aqueous counterparts. This is the gap that I intend to fill. The proposed project aims for fundamental understanding of the SEI in dilute aqueous alkali-ion batteries by comprehensively and systematically studying the impact of electrolyte salts, additives, and electrode surface coatings on the largest challenge, namely the hydrogen evolution reaction. Autonomous robotic screening will be combined with advanced operando characterizations to gain new insights into the formation and evolution of the SEI. Ultimately, the project aims to provide scientific design principles for more durable and inexpensive future-generation aqueous batteries to power a more sustainable society.
Publications (3 of 3) Show all publications
Espinoza Ramos, I., Coric, A., Su, B., Zhao, Q., Eriksson, L., Krysander, M., . . . Zhang, L. (2024). Online acoustic emission sensing of rechargeable batteries: technology, status, and prospects. Journal of Materials Chemistry A, 12(35), 23280-23296
Open this publication in new window or tab >>Online acoustic emission sensing of rechargeable batteries: technology, status, and prospects
Show others...
2024 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 12, no 35, p. 23280-23296Article in journal (Refereed) Published
Abstract [en]

Online acoustic emission (AE) sensing is a nondestructive method that has the potential to be an indicator of battery health and performance. Rechargeable batteries exhibit complex mechano-electrochemical behaviors during operation, such as electrode expansion/contraction, phase transition, gas evolution, film formation, and crack propagation. These events emit transient elastic waves, which may be detected by a piezoelectric-based sensor attached to the battery cell casing. Research in this field is active and new findings are generated continuously, highlighting its potential and importance of further research and development. This Review provides a comprehensive analysis of AE sensing in rechargeable batteries, aiming to describe the underlying mechanisms and potential applications in battery monitoring and diagnostics.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2024
National Category
Materials Chemistry
Identifiers
urn:nbn:se:uu:diva-538591 (URN)10.1039/d4ta04571h (DOI)001288435100001 ()2-s2.0-85201104403 (Scopus ID)
Funder
Swedish Research Council, 2022-03856Swedish Energy Agency, 2023-00126Swedish Energy Agency, 2023-00990
Available from: 2024-09-18 Created: 2024-09-18 Last updated: 2025-02-17Bibliographically approved
Zhang, L., Kühling, F., Mattsson, A.-M., Knijff, L., Hou, X., Ek, G., . . . Berg, E. J. (2024). Reversible Hydration Enabling High-Rate Aqueous Li-Ion Batteries. ACS Energy Letters, 9, 959-966
Open this publication in new window or tab >>Reversible Hydration Enabling High-Rate Aqueous Li-Ion Batteries
Show others...
2024 (English)In: ACS Energy Letters, E-ISSN 2380-8195, Vol. 9, p. 959-966Article in journal (Refereed) Published
Abstract [en]

Layered TiS2 has been proposed as a versatile host material for various battery chemistries. Nevertheless, its compatibility with aqueous electrolytes has not been thoroughly understood. Herein, we report on a reversible hydration process to account for the electrochemical activity and structural evolution of TiS2 in a relatively dilute electrolyte for sustainable aqueous Li-ion batteries. Solvated water molecules intercalate in TiS2 layers together with Li+ cations, forming a hydrated phase with a nominal formula unit of Li0.38(H2O)2−δTiS2 as the end-product. We unambiguously confirm the presence of two layers of intercalated water by complementary electrochemical cycling, operando structural characterization, and computational simulation. Such a process is fast and reversible, delivering 60 mAh g–1 discharge capacity at a current density of 1250 mA g–1. Our work provides further design principles for high-rate aqueous Li-ion batteries based on reversible water cointercalation.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2024
National Category
Materials Chemistry Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:uu:diva-524300 (URN)10.1021/acsenergylett.4c00224 (DOI)001167199600001 ()
Funder
Swedish Research Council Formas, 2019-02496Swedish Research Council, 2016-04069Swedish Research Council, 2022-03856Swedish Research Council, 2018-07152Swedish Energy Agency, 50119-1Vinnova, 2018-04969Knut and Alice Wallenberg Foundation, 2017.0204Swedish Foundation for Strategic Research, FFL18-0269StandUp
Available from: 2024-03-01 Created: 2024-03-01 Last updated: 2024-03-04Bibliographically approved
Hou, X., Zhang, L., Gogoi, N., Edström, K. & Berg, E. J. (2023). Interfacial Chemistry in Aqueous Lithium‐Ion Batteries: A Case Study of V2O5 in Dilute Aqueous Electrolytes. Small
Open this publication in new window or tab >>Interfacial Chemistry in Aqueous Lithium‐Ion Batteries: A Case Study of V2O5 in Dilute Aqueous Electrolytes
Show others...
2023 (English)In: Small, ISSN 1613-6810, E-ISSN 1613-6829Article in journal (Refereed) Epub ahead of print
Abstract [en]

Aqueous lithium-ion batteries (ALIBs) are promising for large-scale energy storage systems because of the cost-effective, intrinsically safe, and environmentally friendly properties of aqueous electrolytes. Practical application is however impeded by interfacial side-reactions and the narrow electrochemical stability window (ESW) of aqueous electrolytes. Even though higher electrolyte salt concentrations (e.g., water-in-salt electrolyte) enhance performance by widening the ESW, the nature and extent of side-reaction processes are debated and more fundamental understanding thereof is needed. Herein, the interfacial chemistry of one of the most popular electrode materials, V2O5, for aqueous batteries is systematically explored by a unique set of operando analytical techniques. By monitoring electrode/electrolyte interphase deposition, electrolyte pH, and gas evolution, the highly dynamic formation/dissolution of V2O5/V2O4, Li2CO3 and LiF during dis-/charge is demonstrated and shown to be coupled with electrolyte decomposition and conductive carbon oxidation, regardless of electrolyte salt concentration. The study provides deeper understanding of interfacial chemistry of active materials under variable proton activity in aqueous electrolytes, hence guiding the design of more effective electrode/electrolyte interfaces for ALIBs and beyond.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2023
National Category
Physical Chemistry
Identifiers
urn:nbn:se:uu:diva-522244 (URN)10.1002/smll.202308577 (DOI)001135236400001 ()
Funder
Swedish Foundation for Strategic Research, FFL18‐0269Knut and Alice Wallenberg Foundation, 2017.0204Swedish Energy Agency, 50119‐1Swedish Research Council, 2022‐03856StandUp
Available from: 2024-02-01 Created: 2024-02-01 Last updated: 2024-03-04Bibliographically approved
Principal InvestigatorZhang, Leiting
Coordinating organisation
Uppsala University
Funder
Period
2023-01-01 - 2026-12-31
National Category
Materials ChemistryInorganic Chemistry
Identifiers
DiVA, id: project:8097Project, id: 2022-03856_VR

Search in DiVA

Materials ChemistryInorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar