Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Simulating distributed PV electricity generation on a municipal level: Validating a model for simulating PV electricity generation and implementing it for estimating the aggregated PV generation in Knivsta Municipality
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för samhällsbyggnad och industriell teknik, Byggteknik och byggd miljö.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för samhällsbyggnad och industriell teknik, Byggteknik och byggd miljö.
2023 (Engelska)Självständigt arbete på avancerad nivå (yrkesexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

 

The deployment of distributed photovoltaic (PV) is accelerating worldwide. Understanding when and where PV systems will generate electricity is valuable as it affects the power balance in the grids. One way of obtaining this information is simulating the PV power production of systems detected in Remotely Sensed Data (RSD). The use of aerial imagery and machine learning models has proven effective for identifying solar energy facilities. In a Swedish research project, a Convolutional Neural Network (CNN) could identify 95% of all PV systems within a municipality. Furthermore, using Light Detection and Ranging (LiDAR) data, the orientation and area of detected PV systems can be estimated. Combining this information, with local weather and irradiance data, the historic PV power generation can be simulated.

The purpose of this study is to adapt and validate a model for simulating historic decentralized PV electricity generation, based on an optimization tool developed by Becquerel Sweden, and further develop the model to simulate aggregated electricity generation on a municipality level where the individual orientation of each PV system is taken into account. The model has a temporal resolution of 1 hour and a spatial resolution of 2.5×2.5 km. 

A regression analysis demonstrated that the simulated generation corresponds well to the measured generation of 7 reference systems, with coefficients of determination ranging from 0.69–0.84. However, the model tends to overestimate the production compared to the measured values, with a higher total simulated production and positive mean bias errors. The correlation of the measured and generated PV power was similar, when simulating using orientations provided by the reference facility owners and LiDAR approximated orientations.

Generic module parameters and an average DC/AC ratio were derived in this study, enabling simulation on a municipal level. Due to available RSD, Knivsta Municipality was the object for this study. The aggregated PV electricity generation was simulated for 2022, using both an estimation of optimal conditions and an estimation of real conditions. This was compared to the assumption that all installed AC capacity in the municipality is fed to the grid. The results show that during the highest production hour, the electricity generation resulting from estimated optimal conditions, exceeds the total installed AC capacity, while the simulation using approximated real conditions never reach the total installed AC capacity. However, the average hourly production for both scenarios, never exceeds 45% of the total installed AC capacity.

Ort, förlag, år, upplaga, sidor
2023. , s. 83
Serie
UPTEC STS, ISSN 1650-8319 ; 23037
Nyckelord [en]
photovoltaic generation model, model validation, artificial intelligence, machine learning, convolutional neural network, LIDAR
Nationell ämneskategori
Energisystem
Identifikatorer
URN: urn:nbn:se:uu:diva-507263OAI: oai:DiVA.org:uu-507263DiVA, id: diva2:1779466
Externt samarbete
Becquerel Sweden AB
Utbildningsprogram
Civilingenjörsprogrammet System i teknik och samhälle
Handledare
Examinatorer
Tillgänglig från: 2023-07-05 Skapad: 2023-07-04 Senast uppdaterad: 2023-07-05Bibliografiskt granskad

Open Access i DiVA

fulltext(7644 kB)91 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 7644 kBChecksumma SHA-512
34f02c3be2aabc0c4ed589e01b627b7a0aa6dd572f12e7b7928b473764d2b3c25e0b1636b7589d0d04b8a6a296640e5da9d68c00b4025adde31fe7ca53349c75
Typ fulltextMimetyp application/pdf

Av organisationen
Byggteknik och byggd miljö
Energisystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 91 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 277 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf