Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt218",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1230",{id:"formSmash:j_idt1230",widgetVar:"widget_formSmash_j_idt1230",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

####

#### Authority records

Burghart, Fabian
#### Search in DiVA

##### By author/editor

Burghart, Fabian
##### By organisation

Department of Mathematics
On the subject

Probability Theory and StatisticsDiscrete Mathematics
#### Search outside of DiVA

GoogleGoogle Scholar$(function(){PrimeFaces.cw('Chart','widget_formSmash_j_idt1574_0_downloads',{id:'formSmash:j_idt1574:0:downloads',type:'bar',responsive:true,data:[[18,28,7,20,4,5,6,3,12,6]],title:"Downloads of File (FULLTEXT02)",axes:{xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}},yaxis: {label:"",min:0,max:40,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}}},series:[{label:'diva2:1753798'}],ticks:["Jul -23","Aug -23","Sep -23","Oct -23","Nov -23","Dec -23","Jan -24","Feb -24","Mar -24","Apr -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 183 downloads$(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_j_idt1580",{id:"formSmash:j_idt1580",widgetVar:"widget_formSmash_j_idt1580",target:"formSmash:downloadLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade"});}); findCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1583",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[90,366,42,106,5,11,15,9,5,4]],title:"Visits for this publication",axes:{xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}},yaxis: {label:"",min:0,max:370,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}}},series:[{label:'diva2:1753798'}],ticks:["Jul -23","Aug -23","Sep -23","Oct -23","Nov -23","Dec -23","Jan -24","Feb -24","Mar -24","Apr -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 1060 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1736",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt195",{id:"formSmash:upper:j_idt195",widgetVar:"widget_formSmash_upper_j_idt195",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt197_j_idt199",{id:"formSmash:upper:j_idt197:j_idt199",widgetVar:"widget_formSmash_upper_j_idt197_j_idt199",target:"formSmash:upper:j_idt197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Building and Destroying Urns, Graphs, and TreesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Uppsala: Department of Mathematics, 2023. , p. 33
##### Series

Uppsala Dissertations in Mathematics, ISSN 1401-2049 ; 131
##### National Category

Probability Theory and Statistics Discrete Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-500978ISBN: 978-91-506-3009-1 (print)OAI: oai:DiVA.org:uu-500978DiVA, id: diva2:1753798
##### Public defence

2023-08-24, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt490",{id:"formSmash:j_idt490",widgetVar:"widget_formSmash_j_idt490",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt496",{id:"formSmash:j_idt496",widgetVar:"widget_formSmash_j_idt496",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt502",{id:"formSmash:j_idt502",widgetVar:"widget_formSmash_j_idt502",multiple:true}); Available from: 2023-05-29 Created: 2023-04-28 Last updated: 2023-05-30
##### List of papers

In this thesis, consisting of an introduction and four papers, different models in the mathematical area of combinatorial probability are investigated.

In Paper I, two operations for combining generalised Pólya urns, called disjoint union and product, are defined. This is then shown to turn the set of isomorphism classes of Pólya urns into a semiring, and we find that assigning to an urn its intensity matrix is a semiring homomorphism.

In paper II, a modification and generalisation of the random cutting model is introduced. For a finite graph with given source and target vertices, we remove vertices at random and discard all resulting components without a source node. The results concern the number of cuts needed to remove all target vertices and the size of the remaining graph, and suggest that this model interpolates between the traditional cutting model and site percolation.

In paper III, we define several polynomial invariants for rooted trees based on the modified cutting model in Paper II.We find recursive identities for these invariants and, using an approach via irreducibility of polynomials, prove that two specific invariants are complete, that is, they distinguish rooted trees up to isomorphism.

In paper IV, joint with Paul Thévenin, we consider an operation of concatenating *t* random perfect matchings on *2n* vertices. Our analysis of the resulting random graph as *t *tends to infinity shows that there is a giant component if and only if *n* is odd, and that the size of this giant component as well as the number of components is asymptotically normally distributed.

1. A Semiring Structure for Generalised Pólya Urns$(function(){PrimeFaces.cw("OverlayPanel","overlay1753790",{id:"formSmash:j_idt551:0:j_idt555",widgetVar:"overlay1753790",target:"formSmash:j_idt551:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. A Modification of the Random Cutting Model$(function(){PrimeFaces.cw("OverlayPanel","overlay1753791",{id:"formSmash:j_idt551:1:j_idt555",widgetVar:"overlay1753791",target:"formSmash:j_idt551:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Obtaining Polynomial Invariants for Rooted Trees from their Random Destruction$(function(){PrimeFaces.cw("OverlayPanel","overlay1753792",{id:"formSmash:j_idt551:2:j_idt555",widgetVar:"overlay1753792",target:"formSmash:j_idt551:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Concatenating Random Matchings$(function(){PrimeFaces.cw("OverlayPanel","overlay1753793",{id:"formSmash:j_idt551:3:j_idt555",widgetVar:"overlay1753793",target:"formSmash:j_idt551:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1618",{id:"formSmash:j_idt1618",widgetVar:"widget_formSmash_j_idt1618",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1703",{id:"formSmash:lower:j_idt1703",widgetVar:"widget_formSmash_lower_j_idt1703",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1704_j_idt1707",{id:"formSmash:lower:j_idt1704:j_idt1707",widgetVar:"widget_formSmash_lower_j_idt1704_j_idt1707",target:"formSmash:lower:j_idt1704:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});