Öppna denna publikation i ny flik eller fönster >>2024 (Engelska)Ingår i: Kinetic and Related Models, ISSN 1937-5093, E-ISSN 1937-5077, Vol. 17, s. 634-658Artikel i tidskrift (Refereegranskat) Published
Abstract [en]
In this paper, we develop a Galerkin-type approximation, with quantitative error estimates, for weak solutions to the Cauchy problem for kinetic Fokker-Planck equations in the domain (0,T)×D×Rd, where D is either Td or Rd. Our approach is based on a Hermite expansion in the velocity variable only, with a hyperbolic system that appears as the truncation of the Brinkman hierarchy, as well as ideas from $\href{arXiv:1902.04037v2}{Alb+21}$ and additional energy-type estimates that we have developed. We also establish the regularity of the solution based on the regularity of the initial data and the source term.
Ort, förlag, år, upplaga, sidor
American Institute of Mathematical Sciences, 2024
Nationell ämneskategori
Matematisk analys
Identifikatorer
urn:nbn:se:uu:diva-502488 (URN)10.3934/krm.2023035 (DOI)001124461600001 ()
Forskningsfinansiär
Vetenskapsrådet, 2022-03106
2023-05-262023-05-262025-03-26Bibliografiskt granskad