Logo: to the web site of Uppsala University

uu.sePublikasjoner fra Uppsala universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
SWEEP: Accelerating scientific research through scalable serverless workflows
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för beräkningsvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Tillämpad beräkningsvetenskap.ORCID-id: 0000-0002-6212-539x
Vise andre og tillknytning
2019 (engelsk)Inngår i: Companion Proc. 12th International Conference on Utility and Cloud Computing, New York: ACM Press, 2019, s. 43-50Konferansepaper, Publicerat paper (Fagfellevurdert)
sted, utgiver, år, opplag, sider
New York: ACM Press, 2019. s. 43-50
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-396405DOI: 10.1145/3368235.3368839ISBN: 978-1-4503-7044-8 (tryckt)OAI: oai:DiVA.org:uu-396405DiVA, id: diva2:1367709
Konferanse
UCC 2019
Prosjekter
eSSENCETilgjengelig fra: 2019-12-02 Laget: 2019-11-04 Sist oppdatert: 2022-03-28bibliografisk kontrollert
Inngår i avhandling
1. Efficient computational methods for applications in genomics
Åpne denne publikasjonen i ny fane eller vindu >>Efficient computational methods for applications in genomics
2019 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

During the last two decades, advances in molecular technology have facilitated the sequencing and analysis of ancient DNA recovered from archaeological finds, contributing to novel insights into human evolutionary history. As more ancient genetic information has become available, the need for specialized methods of analysis has also increased. In this thesis, we investigate statistical and computational models for analysis of genetic data, with a particular focus on the context of ancient DNA.

The main focus is on imputation, or the inference of missing genotypes based on observed sequence data. We present results from a systematic evaluation of a common imputation pipeline on empirical ancient samples, and show that imputed data can constitute a realistic option for population-genetic analyses. We also discuss preliminary results from a simulation study comparing two methods of phasing and imputation, which suggest that the parametric Li and Stephens framework may be more robust to extremely low levels of sparsity than the parsimonious Browning and Browning model.

An evaluation of methods to handle missing data in the application of PCA for dimensionality reduction of genotype data is also presented. We illustrate that non-overlapping sequence data can lead to artifacts in projected scores, and evaluate different methods for handling unobserved genotypes.

In genomics, as in other fields of research, increasing sizes of data sets are placing larger demands on efficient data management and compute infrastructures. The last part of this thesis addresses the use of cloud resources for facilitating such analysis. We present two different cloud-based solutions, and exemplify them on applications from genomics.

sted, utgiver, år, opplag, sider
Uppsala University, 2019
Serie
IT licentiate theses / Uppsala University, Department of Information Technology, ISSN 1404-5117 ; 2019-006
HSV kategori
Forskningsprogram
Beräkningsvetenskap
Identifikatorer
urn:nbn:se:uu:diva-396409 (URN)
Veileder
Prosjekter
eSSENCE
Tilgjengelig fra: 2019-11-04 Laget: 2019-11-04 Sist oppdatert: 2025-02-01bibliografisk kontrollert
2. Methodology and Infrastructure for Statistical Computing in Genomics: Applications for Ancient DNA
Åpne denne publikasjonen i ny fane eller vindu >>Methodology and Infrastructure for Statistical Computing in Genomics: Applications for Ancient DNA
2022 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis concerns the development and evaluation of computational methods for analysis of genetic data. A particular focus is on ancient DNA recovered from archaeological finds, the analysis of which has contributed to novel insights into human evolutionary and demographic history, while also introducing new challenges and the demand for specialized methods.

A main topic is that of imputation, or the inference of missing genotypes based on observed sequence data. We present results from a systematic evaluation of a common imputation pipeline on empirical ancient samples, and show that imputed data can constitute a realistic option for population-genetic analyses. We also develop a tool for genotype imputation that is based on the full probabilistic Li and Stephens model for haplotype frequencies and show that it can yield improved accuracy on particularly challenging data.  

Another central subject in genomics and population genetics is that of data characterization methods that allow for visualization and exploratory analysis of complex information. We discuss challenges associated with performing dimensionality reduction of genetic data, demonstrating how the use of principal component analysis is sensitive to incomplete information and performing an evaluation of methods to handle unobserved genotypes. We also discuss the use of deep learning models as an alternative to traditional methods of data characterization in genomics and propose a framework based on convolutional autoencoders that we exemplify on the applications of dimensionality reduction and genetic clustering.

In genomics, as in other fields of research, increasing sizes of data sets are placing larger demands on efficient data management and compute infrastructures. The final part of this thesis addresses the use of cloud resources for facilitating data analysis in scientific applications. We present two different cloud-based solutions, and exemplify them on applications from genomics.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2022. s. 53
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2129
Emneord
statistical computing, genotype imputation, ancient DNA, deep learning, dimensionality reduction, genetic clustering, distributed computing
HSV kategori
Forskningsprogram
Beräkningsvetenskap
Identifikatorer
urn:nbn:se:uu:diva-470703 (URN)978-91-513-1457-0 (ISBN)
Disputas
2022-06-08, 101121, Lägerhyddsvägen 1, Uppsala, 10:15 (engelsk)
Opponent
Veileder
Prosjekter
eSSENCE
Tilgjengelig fra: 2022-05-17 Laget: 2022-03-28 Sist oppdatert: 2025-02-01

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Person

Ausmees, Kristiina

Søk i DiVA

Av forfatter/redaktør
John, AjiAusmees, Kristiina
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 372 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf