Logo: to the web site of Uppsala University

uu.sePublikasjoner fra Uppsala universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Tillämpning av hierarkisk klusteranalys på politiska twitterinlägg
Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Samhällsvetenskapliga fakulteten, Statistiska institutionen.
2022 (svensk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

Since the launch of social media platforms politicians and parties are provided with an inexpensive tool for direct communication with voters. The large user base of the platforms produce an immense amount of unstructured data which has come to interest researchers as well as businesses. Machine learning algorithms have enabled an effective way of extracting meaningful information from such data, e.g. textdata, called text mining. Researchers have studied how, for example, Twitter can play a role in elections and election campaigns. However, it is still a rather unexplored area and a limited number of studies have been conducted in Sweden. In this thesis twitter data from the eight parties in parliament is examined using the unsupervised learning method hierarchical clustering. The aim is to explore what political questions the different parties are publishing about on twitter by looking at what parties are clustered together and the most important and frequent words for each cluster. First, seven clusters are decided on and discussed, followed by an expansion to eighteen clusters. The results show that for both seven and eighteen clusters one of the clusters is substantially larger than the others and there are no patterns of what parties are clustered together, yet it was possible to demonstrate what cluster most of a party's tweets belonged to.

sted, utgiver, år, opplag, sider
2022.
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-477150OAI: oai:DiVA.org:uu-477150DiVA, id: diva2:1669769
Fag / kurs
Statistics
Veileder
Tilgjengelig fra: 2022-06-20 Laget: 2022-06-14 Sist oppdatert: 2022-06-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 110 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf