Logo: to the web site of Uppsala University

uu.sePublikasjoner fra Uppsala universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Integration of Vulnerable Road Users Behavior into a Virtual Test Environment for Highly Automated Mobility Systems
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för elektroteknik, Elektricitetslära. Cologne University of Applied Sciences.ORCID-id: 0000-0002-1488-3778
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för elektroteknik, Elektricitetslära. Cologne University of Applied Sciences, Germany.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för elektroteknik, Elektricitetslära. Cologne University of Applied Sciences, Germany.
Vise andre og tillknytning
2022 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
sted, utgiver, år, opplag, sider
Esslingen, 2022.
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-487152OAI: oai:DiVA.org:uu-487152DiVA, id: diva2:1706033
Konferanse
Future Mobility 2022
Tilgjengelig fra: 2022-10-25 Laget: 2022-10-25 Sist oppdatert: 2025-03-14bibliografisk kontrollert
Inngår i avhandling
1. Virtual Test Field for Highly Automated Vehicle Systems in Urban Environments
Åpne denne publikasjonen i ny fane eller vindu >>Virtual Test Field for Highly Automated Vehicle Systems in Urban Environments
2023 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Autonomous driving was and is one of the most important research and innovation drivers in the automotive and supplier industry. In addition to the predicted energy savings, a reduction in the number of accidents and their level of damage is also expected. In particular, the functional testing and legislation of highly automated driving functions play a decisive key role here. This results in a justified need for innovation and research and means major challenges for the entire technology sector. Traditional methods such as real-world tests and X-in-the-loop tests for proving functional safety still have their justification, but cannot answer all the questions posed by the diverse requirements in daily use. In particular, urban environments with highly complex traffic scenarios and diverse groups of actors can only be mapped to a limited extent using existing methods.

In this work, a novel approach for testing automated vehicle systems in urban environments is presented. The goal is to create a safe and valid environment in which the vehicle under test can interact with real road users under realistic conditions. The basis is a highly realistic virtual model of a German city center. The physical behavior of the vehicle and the pedestrian is measured and transferred to the virtual city model in real time. Sensor models enable the interaction of the vehicle with the virtual environment and the pedestrian. With the help of different studies with different focuses, both individual functionalities as well as the overall functionality are finally evaluated.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2023. s. 67
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2238
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-495656 (URN)978-91-513-1710-6 (ISBN)
Disputas
2023-03-27, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2023-03-03 Laget: 2023-02-06 Sist oppdatert: 2023-03-03
2. Model-Based Design and Virtual Testing of Steer-by-Wire Systems
Åpne denne publikasjonen i ny fane eller vindu >>Model-Based Design and Virtual Testing of Steer-by-Wire Systems
2023 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Driven by the need for automation and autonomy as well as the need to reduce resources and emissions, the automotive industry is currently undergoing a major transformation. Technologically, this transformation is addressing a wide range of challenges and opportunities. The optimal control of all components is significant for the sustainable development and eco-friendly operation of vehicles. Additionally, robust control of the actuators forms the basis for the development of driver assistance systems and functions for autonomous driving. The actuators of the steering system are particularly important, as they enable safe and comfortable lateral vehicle control. Therefore, the model-based development and virtual simulation of an innovative highly robust control approach for modern Steer-by-Wire systems were conducted in this thesis. The approaches and algorithms described in this thesis allow the design of robust Steer-by-Wire systems and offer the opportunity to conduct many investigations in a computer-aided virtual environment at an early stage in the development process. This reduces time- and cost-intensive testing on prototypes, avoids unnecessary iterations in the design and significantly increases the efficiency and quality of the development. The desired high degree of robustness of the steering control also ensures that the parameterization of the steering feel generator can be freely selected for the individual application. This enables safe and comfortable vehicle lateral control.In summary, the research results described in this thesis accelerate the development of new, modern Steer-by-Wire systems whose robust design forms the basis for the realization of functions for highly automated and autonomous driving.

sted, utgiver, år, opplag, sider
Uppsala: Uppsala University, 2023. s. 60
Emneord
mechatronic systems, vehicle dynamic systems, steer-by-wire systems, modeling, model reduction, optimal control theory, robust controller synthesis, robustness analysis
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-510743 (URN)
Presentation
2023-10-23, Room 4001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 14:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2023-09-22 Laget: 2023-09-02 Sist oppdatert: 2023-09-21bibliografisk kontrollert
3. Intelligent Data and Potential Analysis in the Mechatronic Product Development
Åpne denne publikasjonen i ny fane eller vindu >>Intelligent Data and Potential Analysis in the Mechatronic Product Development
2024 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis explores the imperative of intelligent data and potential analysis in the realm of mechatronic product development. The persistent challenges of synchronization and efficiency underscore the need for advanced methodologies. Leveraging the substantial advancements in Artificial Intelligence (AI), particularly in generative AI, presents unprecedented opportunities. However, significant challenges, especially regarding robustness and trustworthiness, remain unaddressed.

In response to this critical need, a comprehensive methodology is introduced, examining the entire development process through the illustrative V-Model and striving to establish a robust AI landscape. The methodology explores acquiring suitable and efficient knowledge, along with methodical implementation, addressing diverse requirements for accuracy at various stages of development. 

As the landscape of mechatronic product development evolves, integrating intelligent data and harnessing the power of AI not only addresses current challenges but also positions organizations for greater innovation and competitiveness in the dynamic market landscape.

sted, utgiver, år, opplag, sider
Uppsala: Uppsala University, 2024. s. 73
Emneord
Intelligent Data, Potential Analysis, Mechatronic Product Development, Artificial Intelligence, Decision Support Framework, Knowledge Management, Human Experts, Trustworthy AI
HSV kategori
Forskningsprogram
Artificiell intelligens
Identifikatorer
urn:nbn:se:uu:diva-523611 (URN)
Presentation
2024-04-12, Polhemsalen, 10134, Ångström, Lägerhyddsvägen 1, Uppsala, 09:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2024-03-15 Laget: 2024-02-21 Sist oppdatert: 2024-03-15bibliografisk kontrollert
4. AI Potential in the Mechatronic Product Development: Identification, Utilization and Evaluation
Åpne denne publikasjonen i ny fane eller vindu >>AI Potential in the Mechatronic Product Development: Identification, Utilization and Evaluation
2025 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This thesis explores the potential of Artificial Intelligence (AI) in mechatronic product development, focusing on the identification, utilization, and evaluation of AI-driven approaches. The increasing complexity of cross-domain collaboration, coupled with the demand for efficiency and reliability, necessitates structured methodologies to systematically integrate AI into engineering processes. While AI offers significant opportunities, challenges related to trustworthiness, robustness, and effective implementation remain critical considerations.

To address these challenges, this work introduces a generalized five-step methodology, providing a structured framework for assessing AI’s role in mechatronic development. The methodology enables the targeted identification of AI potential, structured integration into engineering workflows, and systematic evaluation of its impact. By applying this framework to real-world industrial case studies, the thesis demonstrates its practical applicability across different AI use cases, including translation, interpretation, and prediction.

As mechatronic product development continues to evolve, leveraging AI in a structured and validated manner ensures that organizations not only overcome current challenges but also enhance innovation, decision-making, and cross-domain collaboration. The findings of this thesis provide a scalable foundation for AI-driven advancements while maintaining a balance between AI potential and investment considerations.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2025. s. 98
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2515
Emneord
Generalization Framework, Mechatronic Product Development, AI in Engineering, Decision Support Systems, Knowledge Integration, Human-AI Collaboration, Trustworthy AI, AI Potential Assessment, Industrial AI Applications
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-552264 (URN)978-91-513-2423-4 (ISBN)
Disputas
2025-05-12, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2025-04-14 Laget: 2025-03-12 Sist oppdatert: 2025-04-14
5. Model-Based Design and Validation of Advanced Mechatronic Systems illustrated by Modern Steer-by-Wire Systems
Åpne denne publikasjonen i ny fane eller vindu >>Model-Based Design and Validation of Advanced Mechatronic Systems illustrated by Modern Steer-by-Wire Systems
2025 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The automotive industry is experiencing a significant transformation driven by the demand for automation, autonomy and resource reduction. A key factor in this transformation is the model-based design and validation of advanced vehicle systems, particularly Steer-by-Wire systems, which are essential for highly automated and autonomous vehicles. However, Steer-by-Wire systems, characterized by the absence of a mechanical connection between the steering wheel and the front wheels, present unique challenges for achieving robust control as well as ensuring driving comfort and safety. This dissertation addresses these challenges by exploring innovative approaches for the optimal control of Steer-by-Wire systems, highlighting the model-based design and the integration of simulation environments. For this, a detailed model is developed, considering all relevant degrees of freedom and nonlinear characteristics of a real Steer-by-Wire system. Based on this detailed model, the dissertation presents a novel multivariable control approach that enhances the robustness and performance of Steer-by-Wire systems compared to traditional designs. The derived control approach demonstrates improved system stability and performance, effectively addressing parameter uncertainties and varying driving conditions. These satisfactory characteristics are validated both in an augmented simulation environment and on a real prototype. By combining virtual testing within the augmented simulation environment with real-world prototyping, the need for labor-intensive physical testing is minimized, thus optimizing development resources and time. The presented methods are not only employed for the development of Steer-by-Wire systems, but also for further applications in automotive engineering, including driver assistance systems, sensor evaluations and perception systems. In conclusion, the research contributes to mechatronics and automotive engineering by advancing autonomous driving through robust control approaches, virtual testing and agile development strategies. The insights and methodologies proposed not only advance the development of novel Steer-by-Wire systems, but can also serve as a basis for future innovations in mechatronic systems that require precise control and reliability.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2025. s. 98
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2516
Emneord
Mechatronic Systems, Vehicle Dynamics Systems, Steer-by-Wire Systems, Modeling, Optimal Control Theory, Robustness Analysis
HSV kategori
Forskningsprogram
Elektroteknik med inriktning mot reglerteknik
Identifikatorer
urn:nbn:se:uu:diva-552408 (URN)978-91-513-2426-5 (ISBN)
Disputas
2025-05-12, Lecure hall Eva von Bahr, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2025-04-14 Laget: 2025-03-14 Sist oppdatert: 2025-04-14

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Degen, RenéIrmer, MarcusNüßgen, AlexanderLeijon, Mats

Søk i DiVA

Av forfatter/redaktør
Degen, RenéIrmer, MarcusNüßgen, AlexanderLeijon, Mats
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 324 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf