Logo: to the web site of Uppsala University

uu.sePublikasjoner fra Uppsala universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cryo-EM and Computational Biology of Macromolecular Complexes
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi. (Sanyal)ORCID-id: 0000-0002-0908-9924
2023 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Fritextbeskrivning
Abstract [en]

The ribosome is a large, ancient multicomponent macromolecular complex which is highly amenable to study by cryogenic electron microscopy (cryo-EM) and computation biology methods. This thesis delves into the structure of both prokaryotic and eukaryotic ribosomes in the context of determining a solution to emerging antimicrobial resistance. We show that thermorubin (THB) binds to the E. coli ribosome at intersubunit bridge B2a, flipping out 23S rRNA residue C1914 which interferes with A-site substrates. The position and rearrangements caused by THB also accounts for the biochemical results showing a decrease in elongation, termination and recycling phases of translation. Also using cryo-EM we looked at the Giardia intestinalis ribosome, determining six high-resolution structures representing translocation intermediates. Giardia is a protozoan parasite causing diarrhoea in humans, with metronidazole strains emerging. As the ribosome is often a target for antimicrobial drugs, work on the structure and function of the ribosome is of utmost important in determining an alternative therapeutic approach to the treatment of giardiasis. We also show naturally bound tRNAs and eEF2 on the Giardia ribosome, exhibiting eukaryote-specific subunit rolling and eEF2 with GDP in a uniquely positioned Pi primed for release, adding to the mechanism of translocation in protists as well as illustrating the evolution of both the structure and function of translation machinery. Finally, the molecular basis of thermostability in translational GTPases is explored using molecular dynamics of mesophilic and thermophilic elongation factor EF-Tu. Through ancestral sequence reconstruction two key interactions: in the GTPase domain; and an interdomain interaction were shown to be important in the overall structural stability of EF-Tu in high temperature environments. These studies together highlight the strength of utilising both structural and computational techniques to explore the translation apparatus.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2023. , s. 45
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2232
HSV kategori
Forskningsprogram
Biologi med inriktning mot molekylärbiologi
Identifikatorer
URN: urn:nbn:se:uu:diva-495335ISBN: 978-91-513-1698-7 (tryckt)OAI: oai:DiVA.org:uu-495335DiVA, id: diva2:1731371
Disputas
2023-03-17, A1:107a, Biomedicinskt centrum, Husargatan 3, Uppsala, 09:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2023-02-24 Laget: 2023-01-26 Sist oppdatert: 2023-02-24
Delarbeid
1. Insights into Translocation Mechanism and Ribosome Evolution from Cryo-EM Structures of Translocation Intermediates of Giardia intestinalis
Åpne denne publikasjonen i ny fane eller vindu >>Insights into Translocation Mechanism and Ribosome Evolution from Cryo-EM Structures of Translocation Intermediates of Giardia intestinalis
Vise andre…
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

Giardia intestinalis is a protozoan parasite that causes diarrhea in humans. Using single-particle cryo-Electron Microscopy, we have determined high-resolution structures of six naturally populated translocation intermediates, from ribosomes isolated directly from actively growing Giardia cells. The highly compact and uniquely GC-rich Giardia ribosomes possess eukaryotic rRNAs and ribosomal-proteins, but retain some bacterial features. The translocation intermediates, with naturally-bound tRNAs and eEF2, display characteristic ribosomal intersubunit rotation and small subunit’s head swiveling - universal for translocation. In addition, we observe the eukaryote-specific ‘subunit rolling’ dynamics, albeit with limited features. Finally, the eEF2•GDP state features a uniquely positioned ‘leaving Pi’ that proposes hitherto unknown molecular events of Pi- and eEF2 release from the ribosome at the final stage of translocation. In summary, our study elucidates the mechanism of translocation in the protists and illustrates evolution of the translation machinery from bacteria to eukaryotes both from the structural and mechanistic perspectives.

HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-495331 (URN)
Tilgjengelig fra: 2023-01-26 Laget: 2023-01-26 Sist oppdatert: 2023-01-26
2. Antibiotic thermorubin tethers ribosomal subunits and impedes A-site interactions to perturb protein synthesis in bacteria
Åpne denne publikasjonen i ny fane eller vindu >>Antibiotic thermorubin tethers ribosomal subunits and impedes A-site interactions to perturb protein synthesis in bacteria
Vise andre…
2023 (engelsk)Inngår i: Nature Communications, E-ISSN 2041-1723, Vol. 14, nr 1, artikkel-id 918Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Thermorubin (THB) is a long-known broad-spectrum ribosome-targeting antibiotic, but the molecular mechanism of its action was unclear. Here, our precise fast-kinetics assays in a reconstituted Escherichia coli translation system and 1.96 Å resolution cryo-EM structure of THB-bound 70S ribosome with mRNA and initiator tRNA, independently suggest that THB binding at the intersubunit bridge B2a near decoding center of the ribosome interferes with the binding of A-site substrates aminoacyl-tRNAs and class-I release factors, thereby inhibiting elongation and termination steps of bacterial translation. Furthermore, THB acts as an anti-dissociation agent that tethers the ribosomal subunits and blocks ribosome recycling, subsequently reducing the pool of active ribosomes. Our results show that THB does not inhibit translation initiation as proposed earlier and provide a complete mechanism of how THB perturbs bacterial protein synthesis. This in-depth characterization will hopefully spur efforts toward the design of THB analogs with improved solubility and effectivity against multidrug-resistant bacteria.

sted, utgiver, år, opplag, sider
Springer Nature, 2023
Emneord
Antibiotic, Thermorubin, Ribosome, Translation inhibition, Subunit tethering
HSV kategori
Forskningsprogram
Biokemi; Biologi med inriktning mot molekylärbiologi; Biologi med inriktning mot strukturbiologi
Identifikatorer
urn:nbn:se:uu:diva-486747 (URN)10.1038/s41467-023-36528-7 (DOI)001001567400001 ()36806263 (PubMedID)
Forskningsfinansiär
Uppsala University
Tilgjengelig fra: 2022-10-19 Laget: 2022-10-19 Sist oppdatert: 2025-02-20bibliografisk kontrollert
3. Crystal Structures of Ancestral Orthologues Reveal the Molecular Basis of Thermostability in Thermophilic EF-Tus
Åpne denne publikasjonen i ny fane eller vindu >>Crystal Structures of Ancestral Orthologues Reveal the Molecular Basis of Thermostability in Thermophilic EF-Tus
Vise andre…
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

The molecular basis of protein thermostability is diverse and unclear. To better understand it, we solved high-resolution crystal structures of four 0.5 – 3.5 billion year old ancestral bacterial Elongation Factor-Tus (EF-Tu). Structural comparison revealed two key interactions, unique for the thermophilic EF-Tus; i) a hydrogen bond between a G-domain tyrosine and the α- phosphate of the guanine nucleotide that stabilizes GTP/GDP; and ii) an inter-domain salt-bridge, tethering the Domains II and III via an arginine and a glutamic acid, respectively. We could reverse the thermostability profiles of the thermophilic and mesophilic EF-Tus by adding or removing these interactions, which were validated with aggregation, biophysical, and functional assays. Further, molecular dynamics simulations demonstrated that these interactions contribute to thermostability via the Mg2+ in the nucleotide binding site. Furthermore, the inter-domain interaction restricts the transition between the open and the closed conformations of the EF-Tus, thereby regulating their thermoactivity. 

HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-495334 (URN)
Tilgjengelig fra: 2023-01-26 Laget: 2023-01-26 Sist oppdatert: 2023-01-26

Open Access i DiVA

UUThesis-A-Emmerich-2023(2160 kB)334 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2160 kBChecksum SHA-512
02c91ee9eef15dcd3c194cc47e86691b285a1fe46951952d4f4e9abb8ac016a8f480d1adaaa494e9d301d71077068569e679a96c5256b148355049cb205c0aa9
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Emmerich, Andrew
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 334 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 572 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf