Logo: to the web site of Uppsala University

uu.sePublikasjoner fra Uppsala universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Building and Destroying Urns, Graphs, and Trees
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen.
2023 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

In this thesis, consisting of an introduction and four papers, different models in the mathematical area of combinatorial probability are investigated.

In Paper I, two operations for combining generalised Pólya urns, called disjoint union and product, are defined. This is then shown to turn the set of isomorphism classes of Pólya urns into a semiring, and we find that assigning to an urn its intensity matrix is a semiring homomorphism.

In paper II, a modification and generalisation of the random cutting model is introduced. For a finite graph with given source and target vertices, we remove vertices at random and discard all resulting components without a source node. The results concern the number of cuts needed to remove all target vertices and the size of the remaining graph, and suggest that this model interpolates between the traditional cutting model and site percolation.

In paper III, we define several polynomial invariants for rooted trees based on the modified cutting model in Paper II.We find recursive identities for these invariants and, using an approach via irreducibility of polynomials, prove that two specific invariants are complete, that is, they distinguish rooted trees up to isomorphism.

In paper IV, joint with Paul Thévenin, we consider an operation of concatenating t random perfect matchings on 2n vertices. Our analysis of the resulting random graph as t tends to infinity shows that there is a giant component if and only if n is odd, and that the size of this giant component as well as the number of components is asymptotically normally distributed.

sted, utgiver, år, opplag, sider
Uppsala: Department of Mathematics, 2023. , s. 33
Serie
Uppsala Dissertations in Mathematics, ISSN 1401-2049 ; 131
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-500978ISBN: 978-91-506-3009-1 (tryckt)OAI: oai:DiVA.org:uu-500978DiVA, id: diva2:1753798
Disputas
2023-08-24, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2023-05-29 Laget: 2023-04-28 Sist oppdatert: 2023-05-30
Delarbeid
1. A Semiring Structure for Generalised Pólya Urns
Åpne denne publikasjonen i ny fane eller vindu >>A Semiring Structure for Generalised Pólya Urns
(engelsk)Inngår i: Artikkel i tidsskrift (Annet vitenskapelig) Submitted
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-500974 (URN)
Tilgjengelig fra: 2023-04-28 Laget: 2023-04-28 Sist oppdatert: 2023-04-29
2. A Modification of the Random Cutting Model
Åpne denne publikasjonen i ny fane eller vindu >>A Modification of the Random Cutting Model
2024 (engelsk)Inngår i: Advances in Applied Probability, ISSN 0001-8678, E-ISSN 1475-6064, Vol. 56, nr 1, s. 287-314Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We propose a modification to the random destruction of graphs: given a finite network with a distinguished set of sources and targets, remove (cut) vertices at random, discarding components that do not contain a source node. We investigate the number of cuts required until all targets are removed, and the size of the remaining graph. This model interpolates between the random cutting model going back to Meir and Moon (J. Austral. Math. Soc. 11, 1970) and site percolation. We prove several general results, including that the size of the remaining graph is a tight family of random variables for compatible sequences of expander-type graphs, and determine limiting distributions for binary caterpillar trees and complete binary trees.

sted, utgiver, år, opplag, sider
Cambridge University Press, 2024
Emneord
Random cutting model, random separation of graphs, percolation
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-500975 (URN)10.1017/apr.2023.22 (DOI)001172737500003 ()
Forskningsfinansiär
Knut and Alice Wallenberg FoundationRagnar Söderbergs stiftelseSwedish Research Council
Tilgjengelig fra: 2023-04-28 Laget: 2023-04-28 Sist oppdatert: 2024-04-30bibliografisk kontrollert
3. Obtaining Polynomial Invariants for Rooted Trees from their Random Destruction
Åpne denne publikasjonen i ny fane eller vindu >>Obtaining Polynomial Invariants for Rooted Trees from their Random Destruction
(engelsk)Inngår i: Artikkel i tidsskrift (Annet vitenskapelig) Submitted
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-500976 (URN)
Tilgjengelig fra: 2023-04-28 Laget: 2023-04-28 Sist oppdatert: 2023-04-29
4. Concatenating Random Matchings
Åpne denne publikasjonen i ny fane eller vindu >>Concatenating Random Matchings
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
HSV kategori
Identifikatorer
urn:nbn:se:uu:diva-500977 (URN)
Tilgjengelig fra: 2023-04-28 Laget: 2023-04-28 Sist oppdatert: 2023-04-29

Open Access i DiVA

UUThesis_F-Burghart-2023(383 kB)300 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 383 kBChecksum SHA-512
9e34978c33b66f3e535c6a9238fed1363bd2703a36a06f577fe8542af2423be942c48c784487ff9917d882ead6ce31a3bce44a7475d30f04c14229c319176931
Type fulltextMimetype application/pdf

Person

Burghart, Fabian

Søk i DiVA

Av forfatter/redaktør
Burghart, Fabian
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 310 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 1207 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf