Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The Broad Role of Nkx3.2 in the Development of the Zebrafish Axial Skeleton
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för organismbiologi, Evolution och utvecklingsbiologi. (evolution and development)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för organismbiologi, Evolution och utvecklingsbiologi. (evolution and development)ORCID-id: 0000-0003-1815-7818
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Tillämpad materialvetenskap. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Tillämpad materialvetenskap.ORCID-id: 0000-0003-2709-9541
Visa övriga samt affilieringar
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

The transcription factor Nkx3.2 (Bapx1) is an important chondrocyte maturation inhibitor. Previous Nkx3.2 knock-down and overexpression studies in non-mammalian gnathostomes have focused on its role in primary jaw joint development, while little is known about the function of this gene in broader skeletal development. We generated CRISPR/Cas9 knockout of nkx3.2 in zebrafish and applied a range of techniques to characterize skeletal phenotypes at developmental stages from larva to adult, revealing fusions in bones of the occiput, the loss or deformation of bony elements derived from basiventral cartilages of the vertebrae, and an increased length of the proximal radials of the dorsal and anal fins. These phenotypes are reminiscent of Nkx3.2 knockout phenotypes in mammals, suggesting that the function of this gene in axial skeletal development is ancestral to osteichthyans. Our results highlight the broad role of nkx3.2 in zebrafish skeletal development and its context-specific functions in different skeletal elements.

Nyckelord [en]
nkx3.2, bapx1, zebrafish, jaw joint, axial skeleton, occipital, basiventral cartilage, fin radials, CRISPR/Cas9 mutant
Nationell ämneskategori
Utvecklingsbiologi
Forskningsämne
Biologi med inriktning mot evolutionär organismbiologi
Identifikatorer
URN: urn:nbn:se:uu:diva-429682DOI: 10.1101/2020.12.30.424496OAI: oai:DiVA.org:uu-429682DiVA, id: diva2:1513804
Tillgänglig från: 2021-01-01 Skapad: 2021-01-01 Senast uppdaterad: 2023-01-09Bibliografiskt granskad
Ingår i avhandling
1. The role of Nkx3.2 and Gdf5 during zebrafish skeletal development
Öppna denna publikation i ny flik eller fönster >>The role of Nkx3.2 and Gdf5 during zebrafish skeletal development
2021 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

The vertebrate skeleton is composed of bony and cartilaginous structures that are developed under the control of numerous genetic networks. The transcription factor Nkx3.2 and the signaling molecule Gdf5 play a fundamental role during joint development and chondrogenesis, a process whereby mesenchyme cells form precartilaginous condensations followed by chondrocyte differentiation. Mutations in these genes can lead to some rare human skeletal diseases and are furthermore thought to play a role during osteoarthritis, whereby the articular cartilage in synovial joints degrades. Both genes are fairly well studied in amniotes, but their full function and regulation are not completely understood. This thesis focuses on further characterization of Nkx3.2 and Gdf5 function, by using the zebrafish Danio rerio, a small vertebrate, as a model organism.

We generated a CRISPR/Cas9 nkx3.2 mutant zebrafish line and detected broad phenotypes in the axial skeleton. Nkx3.2 deficiency in knockout zebrafish confirms previously reported jaw joint loss, but also revealed new phenotypes in the occipital region, the Weberian apparatus, the vertebrae and some fins.

By identifying a cis-regulatory element of nkx3.2 in zebrafish, we were able to generate a transgenic zebrafish line labelling the developing jaw joint and jaw joint progenitor cells. This line enables detailed documentation of jaw joint development and paves the way for a better understanding of joint development. Knockout of this nkx3.2 enhancer sequence in zebrafish did not result in any phenotypic differences, indicating a redundant function. Besides the identification of a nkx3.2 enhancer in the zebrafish genome, we identified homologous nkx3.2 enhancer sequences in the genomes of multiple gnathostome species and found that they display a high degree of functional conservation.

To study the role of Gdf5, we generated a CRISPR/Cas9 gdf5 mutant line. gdf5 mutant zebrafish displayed abnormalities in endoskeletal elements of all median and the pectoral fins showing truncation of median fin endoskeletal elements and partial absence of pectoral fin radials.

Finally, we developed an optical projection tomography (OPT) based automated workflow to generate 3D reconstructions of in situ and skeletal-stained zebrafish embryos and larvae. The acquired imaging data of skeletal-stained larval zebrafish was subsequently used to quantify phenotypic differences between mutant and wild-type zebrafish groups. This technique allows for the identification of even subtle phenotypic differences at early stages of development.

To conclude, the work presented in this thesis provides further understanding of the role of Nkx3.2 and Gdf5 during skeletogenesis in zebrafish and contributes to the development of zebrafish imaging techniques. 

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2021. s. 53
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2002
Nyckelord
Nkx3.2, Gdf5, zebrafish, jaw joint, joints, axial skeleton, appendicular skeleton, fin, enhancer conservation, CRISPR/Cas9, OPT
Nationell ämneskategori
Biologiska vetenskaper
Identifikatorer
urn:nbn:se:uu:diva-430399 (URN)978-91-513-1110-4 (ISBN)
Disputation
2021-02-26, Ekmansalen, Evolutionsbiologiskt centrum, Norbyvägen 16, Uppsala, 14:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2021-02-05 Skapad: 2021-01-10 Senast uppdaterad: 2021-03-04

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Waldmann, LauraLeyhr, JakeZhang, HanqingÖhman, CarolineAllalou, AminHaitina, Tatjana

Sök vidare i DiVA

Av författaren/redaktören
Waldmann, LauraLeyhr, JakeZhang, HanqingÖhman, CarolineAllalou, AminHaitina, Tatjana
Av organisationen
Evolution och utvecklingsbiologiBildanalys och människa-datorinteraktionScience for Life Laboratory, SciLifeLabAvdelningen för visuell information och interaktionTillämpad materialvetenskapTillämpad materialvetenskap
Utvecklingsbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 82 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf