Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High-throughput compatible approach for entropy estimation in magnetocaloric materials: FeRh as a test case
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori. Örebro Univ, Sch Sci & Technol, SE-70182 Örebro, Sweden..ORCID-id: 0000-0001-5111-1374
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.ORCID-id: 0000-0002-5134-1978
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Materialteori.ORCID-id: 0000-0001-6159-1244
2021 (Engelska)Ingår i: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 857, artikel-id 157811Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Aiming to predict new materials for magnetic refrigeration from high-throughput calculations asks for an accurate, transferable, and resource-wise balanced approach. Here, we analyze the influence of various approximations on the calculation of key properties of magnetocaloric materials, while revisiting the well-known FeRh system for benchmarking our approach. We focus on the entropy change and its contributions from the electronic, lattice, and magnetic degrees of freedom. All approximations considered are based on first-principles methods and have been tested, and compared for FeRh. In particular, we find that in this context, the Debye approximation for the lattice entropy fails, due to the presence of soft phonon modes in the AFM phase. This approximation is frequently used in the literature as a simple alternative to full phonon calculations. Since soft modes are likely to occur also among promising magnetocaloric materials where structural transformations are common, the use of the Debye approximation should be discarded for these systems treatment. This leaves the calculations of the lattice contribution the most demanding task from the computational point of view, while the remaining contributions can be approximated using more efficient approaches. The entropy change AS shows a peak around 370 K, for which the total entropy change is given by 24.8 JK(-1) kg(-1) (Delta S-ele = 7.38, Delta S-lat = 7.05, Delta S-mag = 10.36 JK(-1) kg(-1)) in good agreement with previous theoretical and experimental findings.

Ort, förlag, år, upplaga, sidor
ELSEVIER SCIENCE SA Elsevier, 2021. Vol. 857, artikel-id 157811
Nyckelord [en]
FeRh, Magnetocalorics, Entropy, Phase transition, DFT
Nationell ämneskategori
Den kondenserade materiens fysik
Identifikatorer
URN: urn:nbn:se:uu:diva-437236DOI: 10.1016/j.jallcom.2020.157811ISI: 000610867800099OAI: oai:DiVA.org:uu-437236DiVA, id: diva2:1536767
Forskningsfinansiär
Vetenskapsrådet, 2016-07213Stiftelsen för strategisk forskning (SSF), EM16-0039StandUpEnergimyndigheteneSSENCE - An eScience CollaborationTillgänglig från: 2021-03-12 Skapad: 2021-03-12 Senast uppdaterad: 2024-03-19Bibliografiskt granskad
Ingår i avhandling
1. Exploring magnetocaloric materials by ab-initio methods
Öppna denna publikation i ny flik eller fönster >>Exploring magnetocaloric materials by ab-initio methods
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis explores the characterization of magnetocaloric materials from first-principles calculations, emphasizing entropy variation associated with the magnetocaloric effect. The study happens in the context of the search for new magnetocaloric materials to be applied in domestic magnetic refrigerators,  as environmentally friendly and energy-efficient alternatives to conventional vapor-compression devices.

The study involves benchmarking entropy calculations in systems like FeRh, which exhibits a first-order metamagnetic transition, and Gd, with a second-order ferromagnetic-paramagnetic transition. Different levels of approximations are examined and compared against experimental data, highlighting the need to distinguish between first-order and second-order transitions in the approach taken. The tests underscore the necessity of calculating vibrational and elastic properties for both phases to accurately calculate the entropy variation. This insight is applied in the study of Mn0.5Fe0.5NiSi0.9Al0.05, with results consistent with experimental data.

Furthermore, the relationship between structural changes and magnetic properties is investigated, in particular for pressure-induced polymorphs in Gd and the phase transition in Mn0.5Fe0.5NiSi0.95Al0.05. In the case of Gd, it was shown that variations in magnetic ordering temperature under pressure could be explained through a model based on the formation and accumulation of stacking faults. For the Mn0.5Fe0.5NiSi0.95Al0.05 system, the adoption of a magnetic composite model, in conjunction with experimental data, allowed to determine that the magnetostructural transition in these compounds is predominantly driven by the lattice subsystem. 

The results positively confirm the feasibility of using first-principles entropy estimates as an effective screening tool in high-throughput studies for magnetocaloric materials. A promising workflow is proposed, demonstrating potential in its initial results. Through comparison with experimental data, the derived routes offer valuable insights for the further refinement of the workflow. This approach aims to enhance accuracy and systematically manage complex systems, highlighting a path forward for future advancements.

Lastly, the introduction of a novel scaling scheme in Monte Carlo simulations enhancing accuracy across various temperatures, represents a potential advancement in the field of magnetic simulations.

Ort, förlag, år, upplaga, sidor
Åbo, Finland: Åbo Akademi University, 2024
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2384
Nyckelord
magnetocaloric, magnetism, ab-initio
Nationell ämneskategori
Den kondenserade materiens fysik
Identifikatorer
urn:nbn:se:uu:diva-525219 (URN)978-952-12-4376-9 (ISBN)978-952-12-4377-6 (ISBN)
Disputation
2024-04-26, Häggsalen, Lägerhyddsvägen 1, 752 37 Uppsala, Uppsala, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2024-04-05 Skapad: 2024-03-19 Senast uppdaterad: 2024-04-05

Open Access i DiVA

fulltext(1001 kB)443 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1001 kBChecksumma SHA-512
50a25c987fd7365f9c52b7a4868845d6ddfd55aa2b15c698af37b45171ca43d7b656fb642bf4709e4c7eb822fc353e55f5cd92b38b52f6b6dc5533d0bb7e722b
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Person

Vieira, Rafael MartinhoEriksson, OlleBergman, AndersHerper, Heike C.

Sök vidare i DiVA

Av författaren/redaktören
Vieira, Rafael MartinhoEriksson, OlleBergman, AndersHerper, Heike C.
Av organisationen
Materialteori
I samma tidskrift
Journal of Alloys and Compounds
Den kondenserade materiens fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 444 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 312 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf