Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för cell- och molekylärbiologi, Beräkningsbiologi och bioinformatik. Uppsala universitet, Science for Life Laboratory, SciLifeLab.ORCID-id: 0000-0003-2915-7901
Stockholm Univ, Sci Life Lab, Biochem & Cellular Assay Facil, Drug Discovery & Dev Platform,Dept Biochem & Biop, SE-17121 Stockholm, Sweden..
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för kemi - BMC, Biokemi. Uppsala universitet, Science for Life Laboratory, SciLifeLab.
Visa övriga samt affilieringar
2022 (Engelska)Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 144, nr 7, s. 2905-2920Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Drugs targeting SARS-CoV-2 could have saved millions of lives during the COVID-19 pandemic, and it is now crucial to develop inhibitors of coronavirus replication in preparation for future outbreaks. We explored two virtual screening strategies to find inhibitors of the SARS-CoV-2 main protease in ultralarge chemical libraries. First, structure-based docking was used to screen a diverse library of 235 million virtual compounds against the active site. One hundred top-ranked compounds were tested in binding and enzymatic assays. Second, a fragment discovered by crystallographic screening was optimized guided by docking of millions of elaborated molecules and experimental testing of 93 compounds. Three inhibitors were identified in the first library screen, and five of the selected fragment elaborations showed inhibitory effects. Crystal structures of target-inhibitor complexes confirmed docking predictions and guided hit-to-lead optimization, resulting in a noncovalent main protease inhibitor with nanomolar affinity, a promising in vitro pharmacokinetic profile, and broad-spectrum antiviral effect in infected cells.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS) American Chemical Society (ACS), 2022. Vol. 144, nr 7, s. 2905-2920
Nationell ämneskategori
Infektionsmedicin
Identifikatorer
URN: urn:nbn:se:uu:diva-470953DOI: 10.1021/jacs.1c08402ISI: 000765779100012PubMedID: 35142215OAI: oai:DiVA.org:uu-470953DiVA, id: diva2:1648972
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, 2020.0182Knut och Alice Wallenbergs Stiftelse, 2020.0182EU, Europeiska forskningsrådet, 715052Vetenskapsrådet, 2018-07152Vetenskapsrådet, 2018-06454Vinnova, 2018-04969Forskningsrådet Formas, 2019-02496Forskningsrådet Formas, ZW13-02Tillgänglig från: 2022-04-01 Skapad: 2022-04-01 Senast uppdaterad: 2024-01-15Bibliografiskt granskad
Ingår i avhandling
1. Discovery of Chemical Probes through Structure-based Virtual Screening of Vast Compound Databases
Öppna denna publikation i ny flik eller fönster >>Discovery of Chemical Probes through Structure-based Virtual Screening of Vast Compound Databases
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Bioactive molecules have traditionally been discovered through labor-intensive screening methods in which individual compounds are tested against specific protein targets or cells to identify those that produce the desired biological effect. However, these approaches have significant limitations. Firstly, the number of molecules that can be tested in a standard laboratory is restricted, and the acquisition and curation of these compounds come at a high cost. Secondly, these methods are time-consuming because each compound must be tested individually, and they are confined to small libraries with very limited chemical space coverage. In contrast, structure-based virtual screening can rapidly predict a molecule's interaction with a target protein, allowing for the evaluation of enormous libraries of chemical substances. Furthermore, this approach is not restricted to physically available molecules and can be extended to virtual compounds. Commercial chemical space has recently grown exponentially and currently contains several billion molecules that can be readily synthesized and delivered for experimental testing within weeks. Despite the enormous potential of these databases for drug discovery, they also pose new challenges, and development of effective strategies is required to explore ultralarge libraries. The goal of this thesis was to develop and apply novel strategies focused on exploring the potential of ultralarge chemical libraries using structure-based virtual screening. Publication I summarizes best practices on large-scale virtual screening and benchmarking protocols for molecular docking calculations. Publication II describes a docking screen of several hundred million lead-like molecules against the SARS-CoV-2 main protease, leading to promising starting points for development of coronavirus inhibitors. The binding modes predicted by docking were confirmed experimentally by X-ray crystallography. After several rounds of optimization, nanomolar broad-spectrum inhibitors with antiviral effects against coronaviruses in cell models were discovered. Manuscript III demonstrates how machine learning can be used to accelerate virtual screening campaigns. Classification models were trained on docking scores to identify promising molecules in ultralarge libraries relevant to the protein target of interest. The classification algorithms were able to reduce a multi-billion-scale library to a subset of high-confidence candidates with improved docking scores. Manuscript IV focuses on large-scale fragment docking to identify compounds binding to 8-oxoguanine glycosylase 1 and how to efficiently optimize them to potent inhibitors. The docking scoring function was able to correctly predict binding modes of the experimental hits and optimization led to submicromolar inhibitors with anti-inflammatory and anti-cancer effects in cell models. Publication V presents how docking of tailored virtual libraries of nature-inspired macrocycles led to potent disruptors of the KEAP1-Nrf2 complex. The results of this thesis highlight that large-scale virtual screening is a resourceful tool to discover ligands of a wide variety of drug targets.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2023. s. 68
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2261
Nationell ämneskategori
Bioinformatik (beräkningsbiologi)
Identifikatorer
urn:nbn:se:uu:diva-500083 (URN)978-91-513-1792-2 (ISBN)
Disputation
2023-06-02, A1:111a, BMC, Husargatan 3, Uppsala, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2023-05-09 Skapad: 2023-04-12 Senast uppdaterad: 2023-05-09

Open Access i DiVA

fulltext(6213 kB)734 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 6213 kBChecksumma SHA-512
58c4ff3537cfc89897fa5fb70a2beffe29d43a2552680599bab345b2cb37561ea403d34f102f0b8569027a7b3e5360c2bcdde22fa4b3c67c42121bb7212962b0
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Person

Luttens, AndreasAbdurakhmanov, EldarAkaberi, DarioKrambrich, JaninaCraig, Alexander J.Atilaw, YosephSandström, AnjaMoodie, Lindon W. K.Lundkvist, ÅkeLennerstrand, JohanKihlberg, JanSandberg, KristianDanielson, U. HelenaCarlsson, Jens

Sök vidare i DiVA

Av författaren/redaktören
Luttens, AndreasAbdurakhmanov, EldarAkaberi, DarioDe Jonghe, StevenJochmans, DirkKrambrich, JaninaCraig, Alexander J.Atilaw, YosephSandström, AnjaMoodie, Lindon W. K.Lundkvist, ÅkeNeyts, JohanLennerstrand, JohanKihlberg, JanSandberg, KristianDanielson, U. HelenaCarlsson, Jens
Av organisationen
Beräkningsbiologi och bioinformatikScience for Life Laboratory, SciLifeLabBiokemiKlinisk mikrobiologiInstitutionen för medicinsk biokemi och mikrobiologiLäkemedelsdesign och läkemedelsutvecklingOrganisk kemiInstitutionen för läkemedelskemi
I samma tidskrift
Journal of the American Chemical Society
Infektionsmedicin

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 739 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 1189 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf