Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evolutionary trajectories of Klebsiella pneumoniae: From experimental biofilm evolution to a hospital outbreak
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för medicinsk biokemi och mikrobiologi.
2022 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Fritextbeskrivning
Abstract [en]

Bacterial evolution is closely intertwined with our lives. As their hosts, we shape how bacteria evolve by imposing numerous selective pressures during the time bacteria spend in our bodies. As a result, they adapt in various ways to colonize us or infect us better. In this thesis, I present studies aimed to expand the knowledge on the pathoadaptive changes in Klebsiella pneumoniae, which is a bacterial pathogen of critical importance worldwide. 

In Paper I, we present a new 3D-printed device for growing and studying surface-attached bacterial biofilms. The special aim was to increase the ease of use and versatility, and we have used this biofilm device to screen for biofilm capacity, perform experimental evolution and fundamental biofilm analysis in subsequent studies.

In Paper II, we study within-host evolution by analyzing 110 isolates originating from the same multidrug-resistant K. pneumoniae clone that caused an outbreak at Uppsala University Hospital between 2005 and 2010. We whole-genome sequenced these isolates and phenotypically characterized them to show that the clone has undergone extensive changes in individual patients, leading to increased biofilm formation capacity, attenuation of systemic virulence, and altered colonization potential.

In Paper III, we exploit an experimental evolution approach to decipher evolutionary trajectories towards increased biofilm formation. We show how fast this trait can be acquired in different K. pneumoniae strains by a strong convergent evolution, mostly targeting genes involved in capsule, fimbriae, and c-di-GMP-related regulatory pathways. Importantly, this genetic parallelism extends beyond in vitro observations as we find an extensive overlap with clinical outbreak isolates that carry signatures from within-host evolution.

The experimental evolution experiments revealed interesting genetic changes not only in the known structures or pathways but also in completely novel factors. In Paper IV, we explore a previously uncharacterized T6SS effector that is involved in biofilm formation in K. pneumoniae and strongly enhances this phenotype upon acquiring a single and specific point mutation. We demonstrate that the toxin acts as a DNase and that this mutation results in changes at multiple levels, including protein stability, toxicity, and transcriptional profiles, which collectively lead to the formation of biofilms.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2022. , s. 116
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1856
Nyckelord [en]
Klebsiella pneumoniae, evolution, experimental evolution, biofilms, infection, bacterial pathogens
Nationell ämneskategori
Medicin och hälsovetenskap
Forskningsämne
Mikrobiologi
Identifikatorer
URN: urn:nbn:se:uu:diva-481168ISBN: 978-91-513-1556-0 (tryckt)OAI: oai:DiVA.org:uu-481168DiVA, id: diva2:1685813
Disputation
2022-09-23, Room B41, BMC, Husargatan 3, Uppsala, 09:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2022-09-01 Skapad: 2022-08-05 Senast uppdaterad: 2022-09-01
Delarbeten
1. Modular 3D-Printed Peg Biofilm Device for Flexible Setup of Surface-Related Biofilm Studies
Öppna denna publikation i ny flik eller fönster >>Modular 3D-Printed Peg Biofilm Device for Flexible Setup of Surface-Related Biofilm Studies
Visa övriga...
2022 (Engelska)Ingår i: Frontiers in Cellular and Infection Microbiology, E-ISSN 2235-2988, Vol. 11, artikel-id 802303Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Medical device-related biofilms are a major cause of hospital-acquired infections, especially chronic infections. Numerous diverse models to study surface-associated biofilms have been developed; however, their usability varies. Often, a simple method is desired without sacrificing throughput and biological relevance. Here, we present an in-house developed 3D-printed device (FlexiPeg) for biofilm growth, conceptually similar to the Calgary Biofilm device but aimed at increasing ease of use and versatility. Our device is modular with the lid and pegs as separate units, enabling flexible assembly with up- or down-scaling depending on the aims of the study. It also allows easy handling of individual pegs, especially when disruption of biofilm populations is needed for downstream analysis. The pegs can be printed in, or coated with, different materials to create surfaces relevant to the study of interest. We experimentally validated the use of the device by exploring the biofilms formed by clinical strains of Escherichia coli and Klebsiella pneumoniae, commonly associated with device-related infections. The biofilms were characterized by viable cell counts, biomass staining, and scanning electron microscopy (SEM) imaging. We evaluated the effects of different additive manufacturing technologies, 3D printing resins, and coatings with, for example, silicone, to mimic a medical device surface. The biofilms formed on our custom-made pegs could be clearly distinguished based on species or strain across all performed assays, and they corresponded well with observations made in other models and clinical settings, for example, on urinary catheters. Overall, our biofilm device is a robust, easy-to-use, and relevant assay, suitable for a wide range of applications in surface-associated biofilm studies, including materials testing, screening for biofilm formation capacity, and antibiotic susceptibility testing.

Ort, förlag, år, upplaga, sidor
Frontiers Media S.A.Frontiers Media SA, 2022
Nyckelord
biofilm, 3D printing, medical device, bacterial infections, silicone, Escherichia coli, Klebsiella pneumoniae
Nationell ämneskategori
Mikrobiologi
Identifikatorer
urn:nbn:se:uu:diva-469555 (URN)10.3389/fcimb.2021.802303 (DOI)000760850900001 ()35186780 (PubMedID)
Forskningsfinansiär
Vetenskapsrådet, 2017-01527
Tillgänglig från: 2022-03-14 Skapad: 2022-03-14 Senast uppdaterad: 2024-01-15Bibliografiskt granskad
2. Convergent within-host evolution of a multi-resistant Klebsiella pneumoniae clone during a 5-year hospital outbreak
Öppna denna publikation i ny flik eller fönster >>Convergent within-host evolution of a multi-resistant Klebsiella pneumoniae clone during a 5-year hospital outbreak
Visa övriga...
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Medicin och hälsovetenskap
Forskningsämne
Biologi med inriktning mot mikrobiologi
Identifikatorer
urn:nbn:se:uu:diva-481165 (URN)
Tillgänglig från: 2022-08-05 Skapad: 2022-08-05 Senast uppdaterad: 2022-08-05
3. Rapid evolution of increased biofilm formation in Klebsiella pneumoniae via changes in capsule, fimbriae and c-di-GMP signalling
Öppna denna publikation i ny flik eller fönster >>Rapid evolution of increased biofilm formation in Klebsiella pneumoniae via changes in capsule, fimbriae and c-di-GMP signalling
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Medicin och hälsovetenskap
Identifikatorer
urn:nbn:se:uu:diva-481166 (URN)
Tillgänglig från: 2022-08-05 Skapad: 2022-08-05 Senast uppdaterad: 2022-08-05
4. A type VI secretion effector regulates biofilm formation in Klebsiella pneumoniae
Öppna denna publikation i ny flik eller fönster >>A type VI secretion effector regulates biofilm formation in Klebsiella pneumoniae
Visa övriga...
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nationell ämneskategori
Medicin och hälsovetenskap
Identifikatorer
urn:nbn:se:uu:diva-481167 (URN)
Tillgänglig från: 2022-08-05 Skapad: 2022-08-05 Senast uppdaterad: 2022-08-05

Open Access i DiVA

UUthesis_Zaborskyte,G-2022(2389 kB)1202 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2389 kBChecksumma SHA-512
944c85b17c290662c7de0ef82757c815c2a3ac6b36e00ee60873378f89b8c8c770db8369af4ee852500070925b16453244bfbe6af3534ad8a9b7f3ff8e355903
Typ fulltextMimetyp application/pdf

Person

Zaborskytė, Greta

Sök vidare i DiVA

Av författaren/redaktören
Zaborskytė, Greta
Av organisationen
Institutionen för medicinsk biokemi och mikrobiologi
Medicin och hälsovetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1206 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 1397 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf