Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Complex life cycles drive community assembly through immigration and adaptive diversification
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Zooekologi. Uppsala universitet, Kollegiet för avancerade studier (SCAS).ORCID-id: 0000-0002-5425-9101
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Zooekologi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för ekologi och genetik, Zooekologi.ORCID-id: 0000-0001-9836-2752
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Nyckelord [en]
adaptive dynamics, coexistence, evolutionary branching, immigration, ontogentic niche shift
Nationell ämneskategori
Evolutionsbiologi
Identifikatorer
URN: urn:nbn:se:uu:diva-481312OAI: oai:DiVA.org:uu-481312DiVA, id: diva2:1686123
Forskningsfinansiär
Knut och Alice Wallenbergs StiftelseSwedish National Infrastructure for Computing (SNIC), 2021/22-483Vetenskapsrådet, 2018-05973Tillgänglig från: 2022-08-08 Skapad: 2022-08-08 Senast uppdaterad: 2022-08-31Bibliografiskt granskad
Ingår i avhandling
1. Adaptive evolution in multidimensional trait spaces
Öppna denna publikation i ny flik eller fönster >>Adaptive evolution in multidimensional trait spaces
2022 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Negative frequency-dependent disruptive selection, which arises due to the interplay between organisms of a population and their environment, is an important element driving phenotypic diversification and even speciation. Such selection regime can result from frequency- and density-dependent interactions between the organisms and their environment, so that the fitness landscape itself changes as the population evolves. This can result in the population evolving towards a fitness minimum, at which point a population experiences disruptive selection. Under this regime, more extreme phenotypes are favored over intermediate ones, which in turn leads to phenotypic diversification. Branching points occur in many models in which fitness is derived from ecological scenarios that account for resource competition, predation, pathogens. This phenomenon is well understood in simple cases where interactions are mediated by a single quantitative trait in an unstructured life-cycle. This thesis, then, provides a theoretical exploration of the effects of complexity, as represented by the joint evolution of consumer traits involved in resource acquisition, on the potential for phenotypic diversification as instantiated in the process of evolutionary branching. We use the mathematical modeling framework of adaptive dynamics -- which incorporates ecological details into evolutionary processes -- to conduct our investigations, with additional help from computer simulations. We find that the effects of complexity on the potential for diversification are not straightforward, and that these depend on the specificities of the ecological scenario one is investigating. In Paper I we find that joint evolution of consumer traits involved in resource acquisition result in epistatic interactions which make it more likely that the consumer population will evolve to become a single specialist. In Paper II, we show that adding a plasticity modifier trait to the co-evolution of resource acquisition traits has mild effects in facilitating evolutionary branching, and that plasticity itself is driven to low levels by the aforementioned epistatic interactions between traits. In Paper III we find that the joint evolution of juvenile and adult specific feeding efficiencies in an organism with a complex life-cycle generally facilitates evolutionary branching because the life-stage with a higher population density is often under a regime of frequency-dependent disruptive selection. And in Paper IV we find that the joint evolution of juvenile and adult resource acquisition traits in an organism with a complex life-cycle does not itself increase the potential for evolutionary branching, but it can lead to significantly higher community richness when communities are assembled trough immigration.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2022. s. 44
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2171
Nyckelord
adaptive dynamics, mutidimensional trait spaces, evolutionary dynamics, disruptive selection, resource competition, diversification
Nationell ämneskategori
Evolutionsbiologi
Identifikatorer
urn:nbn:se:uu:diva-481316 (URN)978-91-513-1563-8 (ISBN)
Disputation
2022-09-23, Friessalen, Evolutionsbiologiskt centrum, Norbyvägen 14, Uppsala, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2022-09-01 Skapad: 2022-08-08 Senast uppdaterad: 2022-09-01

Open Access i DiVA

Fulltext saknas i DiVA

Person

Saltini, MarcoVasconcelos, PaulaRueffler, Claus

Sök vidare i DiVA

Av författaren/redaktören
Saltini, MarcoVasconcelos, PaulaRueffler, Claus
Av organisationen
ZooekologiKollegiet för avancerade studier (SCAS)
Evolutionsbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 72 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf