Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning Pareto-Efficient Decisions with Confidence
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för systemteknik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Artificiell intelligens.ORCID-id: 0000-0003-1303-2901
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för systemteknik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Artificiell intelligens.ORCID-id: 0000-0002-6698-0166
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för systemteknik. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Reglerteknik.ORCID-id: 0000-0002-7957-3711
2022 (Engelska)Ingår i: International Conference on Artificial Intelligence and Statistics / [ed] Camps-Valls, G Ruiz, FJR Valera, I, JMLR-JOURNAL MACHINE LEARNING RESEARCH , 2022, Vol. 151, s. 9969-9981Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The paper considers the problem of multi-objective decision support when outcomes are uncertain. We extend the concept of Pareto-efficient decisions to take into account the uncertainty of decision outcomes across varying contexts. This enables quantifying trade-offs between decisions in terms of tail outcomes that are relevant in safety-critical applications. We propose a method for learning efficient decisions with statistical confidence, building on results from the conformal prediction literature. The method adapts to weak or nonexistent context covariate overlap and its statistical guarantees are evaluated using both synthetic and real data.

Ort, förlag, år, upplaga, sidor
JMLR-JOURNAL MACHINE LEARNING RESEARCH , 2022. Vol. 151, s. 9969-9981
Serie
Proceedings of Machine Learning Research, ISSN 2640-3498
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:uu:diva-487888ISI: 000841852304022OAI: oai:DiVA.org:uu-487888DiVA, id: diva2:1710586
Konferens
International Conference on Artificial Intelligence and Statistics, MAR 28-30, 2022, ELECTR NETWORK
Forskningsfinansiär
Knut och Alice Wallenbergs StiftelseVetenskapsrådet, 2018-05040Vetenskapsrådet, 2021-05022Tillgänglig från: 2022-11-14 Skapad: 2022-11-14 Senast uppdaterad: 2025-08-22Bibliografiskt granskad
Ingår i avhandling
1. Machine Learning for Decision-Making: Uncertainty, Inference and Trade-offs
Öppna denna publikation i ny flik eller fönster >>Machine Learning for Decision-Making: Uncertainty, Inference and Trade-offs
2025 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Machine learning is increasingly used to support decision-making in high-stakes domains such as precision medicine. Unlike traditional predictive models, decision-making models must take into account the effects of future actions that may not be directly observed in the available data. This mismatch between training data and target distribution introduces challenges. In such cases, data may be biased, confounded, or lacking sufficient support to evaluate alternative actions, and standard statistical learning methods can be misleading. This thesis addresses the problem of evaluating and learning decision policies under the above challenges. A central goal is to enable valid predictions about the consequences of implementing new policies, even when the data are incomplete or collected under conditions different from those under which the policy will be applied. We develop methods that explicitly model uncertainty and bias, allowing for valid performance guarantees in these scenarios.

In the first research paper, we focus on multi-objective decision support by learning Pareto-efficient decisions and provide finite-sample guarantees. In the following two research papers, we address policy evaluation: first in the case of observational data, and then in the case of a randomized trial. We propose robust reweighting techniques to evaluate the distributional performance of a given policy. For observational data, where the past policy is unknown, we provide valid performance guarantees under confounding. For randomized controlled trials, we instead provide valid performance guarantees when generalizing the trial results to broader populations. The fourth research paper addresses trade-offs between minimizing treatment risk while reducing harm. We propose a learning method that controls harm in a partially identified setting. In the final research paper, we study decision-making with missing data. Instead of imputing missing values, we propose a method that can handle missingness directly in the policy learning to improve upon a baseline policy.

The thesis is focused on methods that are certified to be statistically valid under credible assumptions. The aim is to make data-driven decision-making in sensitive applications safer and more trustworthy.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2025. s. 71
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2574
Nyckelord
Policy learning, Policy evaluation, Treatment decision policy, Partial identifiability, Risk minimization, Risk control, Causal inference
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
Maskininlärning
Identifikatorer
urn:nbn:se:uu:diva-565537 (URN)978-91-513-2565-1 (ISBN)
Disputation
2025-10-10, 10134, Polhem lecture hall, Lägerhyddsvägen 1, Uppsala, 09:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2025-09-17 Skapad: 2025-08-22 Senast uppdaterad: 2025-09-17

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Abstract

Person

Ek, SofiaZachariah, DaveStoica, Peter

Sök vidare i DiVA

Av författaren/redaktören
Ek, SofiaZachariah, DaveStoica, Peter
Av organisationen
Avdelningen för systemteknikArtificiell intelligensReglerteknik
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 197 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf