Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The birth of the strong components
Univ Sorbonne Paris Nord, LIPN, Villetaneuse, France.;Univ Bordeaux, LaBRI, Bordeaux, France.;Univ Bourgogne, IMB, Dijon, France..
Nokia Bell Labs, Nozay, France..ORCID-id: 0009-0002-1386-971X
Stellenbosch Univ, Dept Math Sci, Stellenbosch, South Africa..ORCID-id: 0000-0002-6350-5538
Univ Antananarivo, Ecole Normale Super, Antananarivo, Madagascar..
Visa övriga samt affilieringar
2024 (Engelska)Ingår i: Random structures & algorithms (Print), ISSN 1042-9832, E-ISSN 1098-2418, Vol. 64, nr 2, s. 170-266Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

It is known that random directed graphs D(n, p) undergo a phase transition around the point p = 1/n. Earlier, Luczak and Seierstad have established that as n -> infinity when p = (1 + mu n(-1/3))/n, the asymptotic probability that the strongly connected components of a random directed graph are only cycles and single vertices decreases from 1 to 0 as mu goes from -infinity to infinity. By using techniques from analytic combinatorics, we establish the exact limiting value of this probability as a function of mu and provide more statistical insights into the structure of a random digraph around, below and above its transition point. We obtain the limiting probability that a random digraph is acyclic and the probability that it has one strongly connected complex component with a given difference between the number of edges and vertices (called excess). Our result can be extended to the case of several complex components with given excesses as well in the whole range of sparse digraphs. Our study is based on a general symbolic method which can deal with a great variety of possible digraph families, and a version of the saddle point method which can be systematically applied to the complex contour integrals appearing from the symbolic method. While the technically easiest model is the model of random multidigraphs, in which multiple edges are allowed, and where edge multiplicities are sampled independently according to a Poisson distribution with a fixed parameter p, we also show how to systematically approach the family of simple digraphs, where multiple edges are forbidden, and where 2-cycles are either allowed or not. Our theoretical predictions are supported by numerical simulations when the number of vertices is finite, andwe provide tables of numerical values for the integrals of Airy functions that appear in this study.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2024. Vol. 64, nr 2, s. 170-266
Nyckelord [en]
directed acyclic graphs, generating functions, phase transition, random directed graphs
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:uu:diva-529838DOI: 10.1002/rsa.21176ISI: 001043920900001OAI: oai:DiVA.org:uu-529838DiVA, id: diva2:1863363
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, KAW 2017.0112Tillgänglig från: 2024-05-31 Skapad: 2024-05-31 Senast uppdaterad: 2024-05-31Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Wagner, Stephan

Sök vidare i DiVA

Av författaren/redaktören
de Panafieu, ElieRalaivaosaona, DimbinainaWagner, Stephan
Av organisationen
Sannolikhetsteori och kombinatorik
I samma tidskrift
Random structures & algorithms (Print)
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 43 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf