Logotyp: till Uppsala universitets webbplats

uu.sePublikationer från Uppsala universitet
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Scalable and Versatile Fabrication of Free-Standing Covalent Organic Framework Membranes with Tunable Microstructure for Molecular Separation
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Nanoteknologi och funktionella material. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap. (Nanotechnology and Functional Materials)
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Nanoteknologi och funktionella material.ORCID-id: 0000-0002-1587-8073
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för materialvetenskap, Nanoteknologi och funktionella material.ORCID-id: 0000-0002-5496-9664
Visa övriga samt affilieringar
2025 (Engelska)Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 147, nr 32, s. 29271-29281Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Covalent organic framework (COF) membranes hold significant promise for applications in separation, catalysis, and energy conversion; however, their industrial adoption has been hindered by the lack of scalable and efficient fabrication methods. Here, we present a fast, versatile, and broadly applicable strategy for fabricating free-standing and flexible COF membranes by casting precursor suspensions, followed by heat treatment under controlled humidity. This approach enables the fabrication of COF membranes with lateral dimensions up to several square decimeters and thicknesses that are tunable down to submicron levels within 1 h. It demonstrates remarkable versatility for producing a family of ketoenamine-linked COF membranes through the condensation of 1,3,5-triformylphloroglucinol with various amine monomers differing in length, side groups, and geometry. The resulting crack-free COF membranes exhibit high mechanical strength, with ultimate tensile strength up to 60 MPa and Young’s modulus up to 1.7 GPa, as well as exceptionally high porosity, with Brunauer–Emmett–Teller (BET) surface areas reaching up to 2226 m2 g–1. More importantly, the morphology, porosity, and crystallinity of the membranes can be finely tuned by modulating the heating conditions. The membranes with optimized microstructures demonstrate excellent separation performance, achieving over 99% rejection in nanofiltration of aqueous dye solutions, and a separation factor of 11 with an H2 permeance of 2857 GPU in H2/CO2 gas separation. This approach provides a scalable and effective pathway toward large-scale COF membrane manufacturing for advanced molecular separations and other membrane-based technologies.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2025. Vol. 147, nr 32, s. 29271-29281
Nationell ämneskategori
Nanoteknik
Forskningsämne
Teknisk fysik med inriktning mot nanoteknologi och funktionella material
Identifikatorer
URN: urn:nbn:se:uu:diva-565436DOI: 10.1021/jacs.5c08788ISI: 001540510200001PubMedID: 40735926Scopus ID: 2-s2.0-105013578719OAI: oai:DiVA.org:uu-565436DiVA, id: diva2:1990765
Tillgänglig från: 2025-08-21 Skapad: 2025-08-21 Senast uppdaterad: 2025-10-22Bibliografiskt granskad
Ingår i avhandling
1. Scalable Fabrication of Structured Covalent Organic Frameworks for Chemical Separation
Öppna denna publikation i ny flik eller fönster >>Scalable Fabrication of Structured Covalent Organic Frameworks for Chemical Separation
2025 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

 Large-scale chemical separations underpin modern industry yet consume 10–15% of global energy, driving the need to replace thermal operations with membrane- and sorbent-based alternatives of higher efficiency. This thesis advances covalent organic frameworks (COFs) toward practical deployment by focusing on scalable fabrication and processing routes that preserve performance while enabling industrial integration. The intrinsic advantages of COFs—uniform porosity, tunability, and stability—are outlined alongside application-driven requirements for separation materials and processes. For membranes, this entails ultrathin, defect-free active layers on robust supports compatible with continuous manufacturing; for sorbents, it requires short diffusion pathways, macroscopic structure, and low-cost, high-throughput fabrication. A critical survey of fabrication strategies identifies nanosheet assembly and support-infusion liquid–liquid interfacial polymerization as promising continuous routes for COF membranes, while highlighting time and footprint reduction as key issues for structured COF sorbent fabrication. Two novel, scalable fabrication strategies are introduced: (i) a precursor-casting method yielding continuous sub-micron β-ketoenamine COF films, adapted to manufacture thin-film composite membranes on polymeric substrates; and (ii) a gel-based approach for imine and β-ketoenamine COFs, producing hierarchically porous sorbents with rapid adsorption kinetics. To enable robust membrane evaluation, a low-cost pressure-driven filtration system was designed and constructed to support extended nanofiltration studies. The findings suggest that near-term industrial impact is most likely in organic-solvent nanofiltration and selective metal-ion adsorption, where COFs’ robustness and modularity provide distinct benefits. Practical constraints—including monomer cost, solvent use, and heating requirements—are examined with potential mitigation pathways. Collectively, the results outline design and manufacturing considerations that chart a pragmatic route from laboratory scale to industrial implementation of COF membranes and sorbents.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2025. s. 80
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2592
Nyckelord
Covalent organic frameworks, Membrane separation, Scalable fabrication, Energy-efficient separations, COF synthesis, COF processing
Nationell ämneskategori
Materialkemi Separationsprocesser
Forskningsämne
Kemi med inriktning mot materialkemi
Identifikatorer
urn:nbn:se:uu:diva-567805 (URN)978-91-513-2600-9 (ISBN)
Disputation
2025-11-07, Ångström 4101, Regementsvägen 10, Uppsala, 09:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2025-10-16 Skapad: 2025-09-22 Senast uppdaterad: 2025-10-16

Open Access i DiVA

fulltext(13727 kB)2 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 13727 kBChecksumma SHA-512
caae6f02e515f39ee3ca4ee47948a92fcc91819c3c06f2ad67b424a7b5301dbc06e1595f5a4269d9674b0b5d6e1128c7412fca62be5e5bda93e4540f0445e11d
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Åhlén, MichelleStrömme, MariaXu, Chao

Sök vidare i DiVA

Av författaren/redaktören
Eliasson, KasperÅhlén, MichelleStrömme, MariaXu, Chao
Av organisationen
Nanoteknologi och funktionella materialInstitutionen för materialvetenskapNanoteknologi och funktionella material
I samma tidskrift
Journal of the American Chemical Society
Nanoteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 2 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 111 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf