Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
CoolSim: Statistical Techniques to Replace Cache Warming with Efficient, Virtualized Profiling
ARM Res, Cambridge, England..
ARM Res, Cambridge, England..ORCID iD: 0000-0001-9349-5791
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computer Architecture and Computer Communication.
2016 (English)In: Proceedings Of 2016 International Conference On Embedded Computer Systems: Architectures, Modeling And Simulation (Samos) / [ed] Najjar, W Gerstlauer, A, IEEE , 2016, p. 106-115Conference paper, Published paper (Refereed)
Abstract [en]

Simulation is an important part of the evaluation of next-generation computing systems. Detailed, cycle-accurate simulation, however, can be very slow when evaluating realistic workloads on modern microarchitectures. Sampled simulation (e.g., SMARTS and SimPoint) improves simulation performance by an order of magnitude or more through the reduction of large workloads into a small but representative sample. Additionally, the execution state just prior to a simulation sample can be stored into checkpoints, allowing for fast restoration and evaluation. Unfortunately, changes in software, architecture or fundamental pieces of the microarchitecture (e.g., hardware-software co-design) require checkpoint regeneration. The end result for co-design degenerates to creating checkpoints for each modification, a task checkpointing was designed to eliminate. Therefore, a solution is needed that allows for fast and accurate simulation, without the need for checkpoints. Virtualized fast-forwarding (VFF), an alternative to using checkpoints, allows for execution at near-native speed between simulation points. Warming the micro-architectural state prior to each simulation point, however, requires functional simulation, a costly operation for large caches (e.g., 8 M B). Simulating future systems with caches of many MBs can require warming of billions of instructions, dominating simulation time. This paper proposes CoolSim, an efficient simulation framework that eliminates cache warming. CoolSim uses VFF to advance between simulation points collecting at the same time sparse memory reuse information (MRI). The MRI is collected more than an order of magnitude faster than functional simulation. At the simulation point, detailed simulation with a statistical cache model is used to evaluate the design. The previously acquired MRI is used to estimate whether each memory request hits in the cache. The MRI is an architecturally independent metric and a single profile can be used in simulations of any size cache. We describe a prototype implementation of CoolSim based on KVM and gem5 running 19 x faster than the state-of-the-art sampled simulation, while it estimates the CPI of the SPEC CPU2006 benchmarks with 3.62% error on average, across a wide range of cache sizes.

Place, publisher, year, edition, pages
IEEE , 2016. p. 106-115
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:uu:diva-322061ISI: 000399143000015ISBN: 9781509030767 (print)OAI: oai:DiVA.org:uu-322061DiVA, id: diva2:1095773
Conference
International Conference on Embedded Computer Systems - Architectures, Modeling and Simulation (SAMOS), JUL 17-21, 2016, Samos, GREECE
Funder
Swedish Foundation for Strategic Research EU, FP7, Seventh Framework Programme, 610490Available from: 2017-05-16 Created: 2017-05-16 Last updated: 2018-12-14Bibliographically approved
In thesis
1. Efficient Memory Modeling During Simulation and Native Execution
Open this publication in new window or tab >>Efficient Memory Modeling During Simulation and Native Execution
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Application performance on computer processors depends on a number of complex architectural and microarchitectural design decisions. Consequently, computer architects rely on performance modeling to improve future processors without building prototypes. This thesis focuses on performance modeling and proposes methods that quantify the impact of the memory system on application performance.

Detailed architectural simulation, a common approach to performance modeling, can be five orders of magnitude slower than execution on the actual processor. At this rate, simulating realistic workloads requires years of CPU time. Prior research uses sampling to speed up simulation. Using sampled simulation, only a number of small but representative portions of the workload are evaluated in detail. To fully exploit the speed potential of sampled simulation, the simulation method has to efficiently reconstruct the architectural and microarchitectural state prior to the simulation samples. Practical approaches to sampled simulation use either functional simulation at the expense of performance or checkpoints at the expense of flexibility. This thesis proposes three approaches that use statistical cache modeling to efficiently address the problem of cache warm up and speed up sampled simulation, without compromising flexibility. The statistical cache model uses sparse memory reuse information obtained with native techniques to model the performance of the cache. The proposed sampled simulation framework evaluates workloads 150 times faster than approaches that use functional simulation to warm up the cache.

Other approaches to performance modeling use analytical models based on data obtained from execution on native hardware. These native techniques allow for better understanding of the performance bottlenecks on existing hardware. Efficient resource utilization in modern multicore processors is necessary to exploit their peak performance. This thesis proposes native methods that characterize shared resource utilization in modern multicores. These methods quantify the impact of cache sharing and off-chip memory sharing on overall application performance. Additionally, they can quantify scalability bottlenecks for data-parallel, symmetric workloads.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2019. p. 73
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1756
Keywords
performance analysis, cache performance, multicore performance, memory system, memory bandwidth, memory contention, performance prediction, multi-threading, multiprocessing systems, program diagnostics, commodity multicores, multithreaded program resource requirements, performance counters, scalability bottleneck, scalability improvement
National Category
Computer Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:uu:diva-369490 (URN)978-91-513-0538-7 (ISBN)
Public defence
2019-02-15, Sal VIII, Universitetshuset, Biskopsgatan 3, Uppsala, 09:15 (English)
Opponent
Supervisors
Projects
UPMARC
Available from: 2019-01-23 Created: 2018-12-14 Last updated: 2019-12-02

Open Access in DiVA

No full text in DiVA

Authority records

Nikoleris, NikosSandberg, AndreasHagersten, ErikCarlson, Trevor E.

Search in DiVA

By author/editor
Nikoleris, NikosSandberg, AndreasHagersten, ErikCarlson, Trevor E.
By organisation
Computer Architecture and Computer Communication
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 579 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf