Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Towards room temperature operation of all-solid-state Na-ion batteries through polyester-polycarbonate-based polymer electrolytes
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.ORCID iD: 0000-0002-3374-2276
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.ORCID iD: 0000-0003-2538-8104
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.ORCID iD: 0000-0002-9862-7375
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.ORCID iD: 0000-0002-8019-2801
2019 (English)In: Energy Storage Materials, ISSN 2405-8289, E-ISSN 2405-8297, Vol. 19, p. 31-38Article in journal (Refereed) Published
Abstract [en]

In an ambition to develop solid-state Na-ion batteries functional at ambient temperature, we here explore a novel electrolyte system. Polyester-polycarbonate (PCL-PTMC) copolymers were combined with sodium bis(fluorosulfonyl) imide salt (NaFSI) to form solid polymer electrolytes for Na-ion batteries. The PCL-PTMC:NaFSI system demonstrated glass transition temperatures ranging from -64 to -11 degrees C, increasing with increasing salt content from 0 to 35 wt%, and ionic conductivities ranging from 10(-8) to 10(-5) S cm(-1) at 25 degrees C. The optimal salt concentration was clearly dependent on the level of crystallinity, which was largely determined by the CL content. At 70 and 80 mol% CL, the PCL-PTMC:NaFSI system was fully amorphous and exhibited high conductivities at lower salt concentrations. When the CL content was increased to 100 mol%, high ionic conductivities were instead observed at high salt concentrations. A decent transference number of ca. 0.5 at 80 degrees C was obtained for a polymer film containing 20 mol% CL units and 25 wt% NaFSI. Finally, a HC vertical bar 80-20(25)vertical bar Na2-xFe(Fe(CN)(6)) all-solid-state polymer electrolyte full cell was assembled to demonstrate the practical application of the material and cycled for more than 120 cycles at similar to 22 degrees C.

Place, publisher, year, edition, pages
2019. Vol. 19, p. 31-38
Keywords [en]
All-solid-state batteries, Solid polymer electrolyte, Room temperature cycling, Sodium-ion
National Category
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-387602DOI: 10.1016/j.ensm.2019.03.022ISI: 000469207500004OAI: oai:DiVA.org:uu-387602DiVA, id: diva2:1331223
Funder
EU, European Research Council, 771777 FUN POLYSTOREAvailable from: 2019-06-26 Created: 2019-06-26 Last updated: 2021-10-26Bibliographically approved
In thesis
1. Exploring the Frontiers of Polymer Electrolytes for Battery Applications: From Surface to Bulk
Open this publication in new window or tab >>Exploring the Frontiers of Polymer Electrolytes for Battery Applications: From Surface to Bulk
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Lithium-ion batteries have dominated the market since their inception in 1991 due to their unparalleled energy and power densities, but are now faced with new challenges. Growing demand for battery materials for energy intense applications and large-scale interim energy storage have emphasized the need for safe and sustainable battery electrolytes. In this context, non-flammable solid polymer electrolytes (SPEs) are a promising alternative to address the shortcomings of conventional liquid electrolytes. Despite its significance, little research has thus far been devoted to understanding the electrochemical stability of SPEs under the harsh conditions exerted by next-generation electrode materials.

In this thesis, the stability and ramifications of interfaces in polycarbonate- and polyester-based SPEs have been investigated. The polycarbonate exhibited severe degradation upon contact with lithium compared to its ester counterpart. Volatile species stemming from polycarbonate and salt decomposition were observed independent of irreversible current response, thus also highlighting the limitations of voltammetry techniques to determine the electrochemical stability. Two novel techniques were thus devised to evaluate electrochemical stability of SPEs under more realistic conditions. Characterization of the electrode−polyester interface revealed formation of highly resistive interfacial layers composed of polymer, salt and impurity derivatives. The emergence of a detrimental resistance emanating from the polymer−polymer interface was also observed, thus identifying a crucial hurdle for double-layer SPEs as a strategy to extend the stability window.

The application of polycarbonate/polyester-based polymer electrolytes for sodium-ion batteries was also studied. Sodium is far more abundant than lithium, and thereby an excellent chemistry platform to develop new sustainable battery materials. The polycarbonate exhibited an exceptional ability to dissolve large quantities of sodium salt without compromising the mechanical stability. Spectroscopic and thermal measurements revealed the emergence of an alternative ionic transport mechanism at concentrations within the polymer-in-salt regime, which was decoupled from the segmental motion of the polymer chains. By incorporating flexible polyester moieties in polycarbonates, an SPE with better transport properties compared to its individual subunits, and polyether counterparts, was obtained. Optimal salt concentration in this copolymer was dependent on the degree of crystallinity, determined by the portion of polyester. Finally, the practical application of these polymer electrolytes was demonstrated in solid-state sodium-ion batteries.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2021. p. 67
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2044
Keywords
Lithium-ion batteries, solid-state polymer electrolytes, electrochemical stability window, interfaces, ionic conductivity, polycarbonate, polyester, sustainability, sodium-ion
National Category
Materials Chemistry
Identifiers
urn:nbn:se:uu:diva-440905 (URN)978-91-513-1214-9 (ISBN)
Public defence
2021-06-11, Room Å2001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2021-05-19 Created: 2021-04-21 Last updated: 2021-06-23

Open Access in DiVA

fulltext(2787 kB)360 downloads
File information
File name FULLTEXT01.pdfFile size 2787 kBChecksum SHA-512
1627cbb3f6bba4bcba3c73888479873a0c5dc6e1a26faad02aa8cebf849b6c9ba6fc6066325424dc80f2714be2c31fe61999092b02f707fb304fe2c1f79dbf93
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Sångeland, ChristoferYounesi, RezaMindemark, JonasBrandell, Daniel

Search in DiVA

By author/editor
Sångeland, ChristoferYounesi, RezaMindemark, JonasBrandell, Daniel
By organisation
Structural Chemistry
In the same journal
Energy Storage Materials
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 365 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 423 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf