Logo: to the web site of Uppsala University

uu.sePublications from Uppsala University
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Phase formation in magnetron sputtered CrMnFeCoNi high entropy alloy
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.ORCID iD: 0000-0003-1874-932x
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström.
2020 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 403, article id 126323Article in journal (Refereed) Published
Abstract [en]

Thin films of the CrMnFeCoNi high entropy alloy were deposited by magnetron sputtering from a sintered equimolar target. The substrate temperature and bias were varied during deposition, and the structure, morphology and elemental distribution were studied in detail. All films formed phase mixtures of multiple crystal structures. This contrasts with studies on the bulk alloy, where it typically forms a single phase with a simple cubic closed packed (ccp) structure, with other phases precipitating only after long annealing times. For higher substrate temperatures, we observed a mixture of phases with ccp and bcc (body centered cubic) structures, and the intermetallic phases o-phase and L1(0), the first three being the predicted equilibrium phases at the deposition temperature. For room temperature depositions, we found evidence of very limited diffusion of metal atoms during the deposition. These films formed a mixture of a ccp and the intermetallic chi-phase. Two mechanisms can be distinguished that govern the phase formation at lower and higher temperatures. From the present results and comparisons with the literature, we also discuss why the small grain size, the low process temperature, and the fast surface diffusion during synthesis causes magnetron sputtering to yield different results compared to bulk synthesis from the melt. These principles explain why it is easier to form the equilibrium phases by sputtering, and why a single ccp phase should not be expected as a rule for this deposition method. Following the thermodynamic principles of high entropy alloys, this may also be the case in other high entropy alloy systems.

Place, publisher, year, edition, pages
2020. Vol. 403, article id 126323
Keywords [en]
Magnetron sputtering, High entropy alloys, Thin films, Microstructure, Diffraction
National Category
Manufacturing, Surface and Joining Technology
Identifiers
URN: urn:nbn:se:uu:diva-427107DOI: 10.1016/j.surfcoat.2020.126323ISI: 000590180600005OAI: oai:DiVA.org:uu-427107DiVA, id: diva2:1511060
Funder
Swedish Research Council, 2018-04834Available from: 2020-12-17 Created: 2020-12-17 Last updated: 2022-12-06Bibliographically approved
In thesis
1. Designing multicomponent alloy coatings for corrosion protection
Open this publication in new window or tab >>Designing multicomponent alloy coatings for corrosion protection
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis explores the design of metallic coatings for corrosion protection. The subject of the study was the new class of materials multicomponent alloys (MCAs, also known as high entropy alloys). They consist of near-equal concentrations of many (four or more) metals and are often reported to form a single phase with a simple crystal structure. Due to the complexity and range of possible MCA compositions, there is a need for design principles as guidelines for how the alloying elements can be chosen and combined. This work aimed at finding such principles through the systematic study of the synthesis and properties of three MCA systems. Their compositions were carefully chosen to answer fundamental questions about the materials class and the synthesis method and to generate conclusions that could be generalized to a larger group of MCAs. All three systems were based on the elements Cr, Fe, and Ni, and can therefore be considered an extension of stainless steels.

The first alloy was CoCrFeMnNi, which is well-known as a single-phase bulk MCA. A systematic exploration of the synthesis parameters showed that there are fundamental differences in the phase formation of CoCrFeMnNi through magnetron sputtering compared to typical bulk synthesis. Literature studies revealed that this conclusion can be generalized; single-phase MCAs should not necessarily be expected from magnetron sputtering. It was also shown that the choice of substrate and even the crystal orientation of the individual substrate grains strongly influenced the outcomes of synthesis, including the phase formation, growth rate, morphology, and the formation of stacking fault structures. 

Two novel alloy systems were also explored: CrFeNiTa and CrFeNiW. Ta and W were added to achieve an alloy with higher corrosion resistance than stainless steels and more generally, to examine the interplay between passivating elements in MCAs during corrosion. Based on geometrical considerations, it was predicted that equal amounts of Ta and W would be needed to protect alloys from corroding (less than 20 at%). It was found that the prediction was only valid for the CrFeNiTa alloy system. The reason behind this was explored and a new criterion was then proposed: In an MCA, each passivating element should have similar electrochemical nobility.

Further design possibilities were demonstrated by adding up to 50 at% carbon to the alloys. Thermodynamic calculations predicted decomposition into multiple metallic and carbide phases. However, the limited diffusion during magnetron sputtering suppressed the segregation. At lower carbon contents, the carbon-containing alloys were single-phase and amorphous. At higher carbon contents they formed alloy/amorphous carbon nanocomposites. The addition of carbon made the alloys stronger, more corrosion resistant, and more crack resistant. 

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2023. p. 117
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2222
Keywords
corrosion, thin films, coatings, magnetron sputtering, high entropy alloy, percolation theory, mechanical tests
National Category
Materials Chemistry Inorganic Chemistry
Research subject
Chemistry with specialization in Inorganic Chemistry
Identifiers
urn:nbn:se:uu:diva-489916 (URN)978-91-513-1670-3 (ISBN)
Public defence
2023-02-03, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2023-01-11 Created: 2022-12-06 Last updated: 2023-01-11

Open Access in DiVA

fulltext(11446 kB)375 downloads
File information
File name FULLTEXT01.pdfFile size 11446 kBChecksum SHA-512
4fc36cb778cad9eb45d58514ef3c6c05ab60cee988376a7675ee6da4e6774b8f714916c781b48e04ac4f86d9ec44ecbbe1c7ae38a3f696c3e1a701e3678e54be
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records

Medina, León ZendejasRiekehr, LarsJansson, Ulf

Search in DiVA

By author/editor
Medina, León ZendejasRiekehr, LarsJansson, Ulf
By organisation
Department of Chemistry - Ångström
In the same journal
Surface & Coatings Technology
Manufacturing, Surface and Joining Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 375 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 551 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf