Open this publication in new window or tab >>Show others...
(English)Manuscript (Other (popular science, discussion, etc.))
Abstract [en]
Adseverin is a member of the calcium-regulated gelsolin superfamily of actin severing and capping proteins. Adseverin comprises six homologous domains (A1-A6) which share 60% homology with the six domains from gelsolin (G1-G6). Adseverin is truncated in comparison to gelsolin, lacking the C-terminal extension which masks the F-actin binding site in calcium-free gelsolin. Biochemical assays have indicated differences in the interaction of the C-terminus halves of adseverin and gelsolin with actin. Gelsolin contacts actin through a major site on G4 and a minor site on G6, while adseverin uses a site on A5. Here we present the X-ray structure of the activated C-terminal half of adseverin (A4-A6). This structure is highly similar to that of the activated form of the C-terminal half of gelsolin (G4-G6), both in arrangement of domains and in the three bound calcium ions. Comparative analysis of the actin-binding surfaces observed in the G4-G6/actin structure suggests that adseverin in this conformation will also be able to interact with actin through A4 and A6, while the A5 surface is obscured. A model of calcium-free adseverin constructed from the structure of gelsolin predicts that the interaction between A2 and A6 provides sterric inhibition to prevent interaction with F-actin in the absence of calcium. Actin-binding assays reveal that the minimal stoichiometry of adseverin to calcium needed to disassemble actin filaments is 1:1 as compared to the 1:2 that was previously observed for gelsolin. We propose that the absence of a gelsolin-like C-terminal extension in adseverin reduces the calcium requirement for activation.
Keywords
gelsolin superfamily proteins, gelsolin, adseverin scinderin, actin, calcium, calcium-activation
National Category
Structural Biology Biochemistry Molecular Biology
Research subject
Biochemistry
Identifiers
urn:nbn:se:uu:diva-89393 (URN)
2009-02-122009-02-122025-02-20Bibliographically approved