Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt218",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1230",{id:"formSmash:j_idt1230",widgetVar:"widget_formSmash_j_idt1230",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

#### Other links

Publisher's full text
#### Authority records

Gyllingberg, LinnéaSumpter, David J. T.
#### Search in DiVA

##### By author/editor

Gyllingberg, LinnéaSumpter, David J. T.
##### By organisation

Department of MathematicsDepartment of Information Technology
##### In the same journal

Mathematical Biosciences
On the subject

Computational MathematicsOther MathematicsProbability Theory and Statistics
#### Search outside of DiVA

GoogleGoogle Scholar$(function(){PrimeFaces.cw('Chart','widget_formSmash_j_idt1574_0_downloads',{id:'formSmash:j_idt1574:0:downloads',type:'bar',responsive:true,data:[[7,9,5,9]],title:"Downloads of File (FULLTEXT01)",axes:{xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}},yaxis: {label:"",min:0,max:20,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}}},series:[{label:'diva2:1600612'}],ticks:["Jan -24","Feb -24","Mar -24","Apr -24"],orientation:"vertical",barMargin:25,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 30 downloads$(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_j_idt1580",{id:"formSmash:j_idt1580",widgetVar:"widget_formSmash_j_idt1580",target:"formSmash:downloadLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade"});}); findCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1583",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[5,2,3,2,2,2,20,15,15,2]],title:"Visits for this publication",axes:{xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}},yaxis: {label:"",min:0,max:30,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}}},series:[{label:'diva2:1600612'}],ticks:["Feb -23","Mar -23","May -23","Sep -23","Oct -23","Dec -23","Jan -24","Feb -24","Mar -24","Apr -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 372 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1736",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt195",{id:"formSmash:upper:j_idt195",widgetVar:"widget_formSmash_upper_j_idt195",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt197_j_idt199",{id:"formSmash:upper:j_idt197:j_idt199",widgetVar:"widget_formSmash_upper_j_idt197_j_idt199",target:"formSmash:upper:j_idt197:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Finding analytical approximations for discrete, stochastic, individual-based models of ecologyPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2023 (English)In: Mathematical Biosciences, ISSN 0025-5564, E-ISSN 1879-3134, Vol. 365Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Elsevier, 2023. Vol. 365
##### National Category

Computational Mathematics Other Mathematics Probability Theory and Statistics
##### Research subject

Mathematics with specialization in Applied Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-455245DOI: 10.1016/j.mbs.2023.109084ISI: 001103942100001OAI: oai:DiVA.org:uu-455245DiVA, id: diva2:1600612
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt490",{id:"formSmash:j_idt490",widgetVar:"widget_formSmash_j_idt490",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt496",{id:"formSmash:j_idt496",widgetVar:"widget_formSmash_j_idt496",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt502",{id:"formSmash:j_idt502",widgetVar:"widget_formSmash_j_idt502",multiple:true}); Available from: 2021-10-05 Created: 2021-10-05 Last updated: 2024-02-21Bibliographically approved
##### In thesis

Discrete time, spatially extended models play an important role in ecology, modelling population dynamics of species ranging from micro-organisms to birds. An important question is how ’bottom up’, individual-based models can be approximated by ’top down’ models of dynamics. Here, we study a class of spatially explicit individual-based models with contest competition: where species compete for space in local cells and then disperse to nearby cells. We start by describing simulations of the model, which exhibit large-scale discrete oscillations and characterize these oscillations by measuring spatial correlations. We then develop two new approximate descriptions of the resulting spatial population dynamics. The first is based on local interactions of the individuals and allows us to give a difference equation approximation of the system over small dispersal distances. The second approximates the long-range interactions of the individual-based model. These approximations capture demographic stochasticity from the individual-based model and show that dispersal stabilizes population dynamics. We calculate extinction probability for the individual-based model and show convergence between the local approximation and the non-spatial global approximation of the individual-based model as dispersal distance and population size simultaneously tend to infinity. Our results provide new approximate analytical descriptions of a complex bottom-up model and deepen understanding of spatial population dynamics.

1. Mathematical models of biological interactions$(function(){PrimeFaces.cw("OverlayPanel","overlay1601418",{id:"formSmash:j_idt928:0:j_idt936",widgetVar:"overlay1601418",target:"formSmash:j_idt928:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. The Art of Modelling Oscillations and Feedback across Biological Scales$(function(){PrimeFaces.cw("OverlayPanel","overlay1839681",{id:"formSmash:j_idt928:1:j_idt936",widgetVar:"overlay1839681",target:"formSmash:j_idt928:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1618",{id:"formSmash:j_idt1618",widgetVar:"widget_formSmash_j_idt1618",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1703",{id:"formSmash:lower:j_idt1703",widgetVar:"widget_formSmash_lower_j_idt1703",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1704_j_idt1707",{id:"formSmash:lower:j_idt1704:j_idt1707",widgetVar:"widget_formSmash_lower_j_idt1704_j_idt1707",target:"formSmash:lower:j_idt1704:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});