Logo: to the web site of Uppsala University

uu.sePublikasjoner fra Uppsala universitet
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A novel cis-regulatory element drives early expression of Nkx3.2 in the gnathostome primary jaw joint
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för organismbiologi, Evolution och utvecklingsbiologi.ORCID-id: 0000-0003-1815-7818
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för organismbiologi, Evolution och utvecklingsbiologi.
Uppsala universitet, Science for Life Laboratory, SciLifeLab. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Biologiska sektionen, Institutionen för organismbiologi, Evolution och utvecklingsbiologi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Uppsala universitet, Science for Life Laboratory, SciLifeLab.ORCID-id: 0000-0003-1746-5157
Vise andre og tillknytning
2022 (engelsk)Inngår i: eLIFE, E-ISSN 2050-084X, Vol. 11, artikkel-id e75749Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The acquisition of movable jaws was a major event during vertebrate evolution. The role of NK3 homeobox 2 (Nkx3.2) transcription factor in patterning the primary jaw joint of gnathostomes (jawed vertebrates) is well known, however knowledge about its regulatory mechanism is lacking. In this study, we report a proximal enhancer element of Nkx3.2 that is deeply conserved in most gnathostomes but undetectable in the jawless hagfish and lamprey. This enhancer is active in the developing jaw joint region of the zebrafish Danio rerio, and was thus designated as jaw joint regulatory sequence 1 (JRS1). We further show that JRS1 enhancer sequences from a range of gnathostome species, including a chondrichthyan and mammals, have the same activity in the jaw joint as the native zebrafish enhancer, indicating a high degree of functional conservation despite the divergence of cartilaginous and bony fish lineages or the transition of the primary jaw joint into the middle ear of mammals. Finally, we show that deletion of JRS1 from the zebrafish genome using CRISPR/Cas9 results in a significant reduction of early gene expression of nkx3.2 and leads to a transient jaw joint deformation and partial fusion. Emergence of this Nkx3.2 enhancer in early gnathostomes may have contributed to the origin and shaping of the articulating surfaces of vertebrate jaws.

sted, utgiver, år, opplag, sider
eLife Sciences Publications eLife Sciences Publications Ltd, 2022. Vol. 11, artikkel-id e75749
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-493106DOI: 10.7554/elife.75749ISI: 000961591300001PubMedID: 36377467OAI: oai:DiVA.org:uu-493106DiVA, id: diva2:1725869
Forskningsfinansiär
Swedish Research Council, 621-2012-4673Science for Life Laboratory, SciLifeLab, Development Project 2017Science for Life Laboratory, SciLifeLab, Technology Development grant 2018Tilgjengelig fra: 2023-01-12 Laget: 2023-01-12 Sist oppdatert: 2024-01-15bibliografisk kontrollert
Inngår i avhandling
1. Musculoskeletal Development in Jawed Vertebrates: Gene function, cis-regulation, and 3D phenotypes in zebrafish
Åpne denne publikasjonen i ny fane eller vindu >>Musculoskeletal Development in Jawed Vertebrates: Gene function, cis-regulation, and 3D phenotypes in zebrafish
2023 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Vertebrate skeletons are an intricate framework of bony and cartilaginous structures that form through carefully orchestrated developmental processes, guided by interacting genetic pathways that regulate cellular differentiation, migration, and tissue morphogenesis. The specific timing and localisation of gene expression shapes the diverse array of skeletal elements, from the flexible cartilages of the embryonic stage to the hardened bones that provide structural support in adulthood, and the joints and connective tissues that articulate the musculoskeletal system. This thesis aims to use the zebrafish (Danio rerio) as a model organism to study the role and regulation of three genes in controlling musculoskeletal development from larvae to adulthood: nkx3.2, gdf5, and mkx. In the first study, we used CRISPR/Cas9 genome editing to knock out nkx3.2 and characterise the resulting mutant phenotypes, including a jaw joint fusion and occipital and vertebral defects. In the second study, we extended the phenotypic characterisation of nkx3.2 mutants into the skeleton-associated soft tissues using a novel synchrotron-based tomographic imaging technique and revealed a series of defects in the jaw musculature, Weberian ligaments, and fluid-filled sacs of the ear. In the third study, we identified and functionally characterised a novel cis-regulatory element responsible for driving nkx3.2 expression in the early developing jaw joint, with its presence and activity being highly conserved in jawed vertebrates but absent in jawless vertebrates. In the fourth study, we examined the role of gdf5 in skeletal development by generating a knockout mutant line, finding striking defects in fin radial development including a clear endoskeletal disc segmentation phenotype resulting in a complete absence of posterior radials in the pectoral fin. Finally, in the fifth study, we studied the regulation of Mkx, an important factor in tendon and ligament development, and identified a novel enhancer with different species-dependent activity patterns. In summary, this thesis contributes to our understanding of the derived and conserved functions of Nkx3.2, Gdf5, and Mkx in the development of the vertebrate skeleton and associated connective tissues, and provides a novel high-resolution 3D imaging method for future studies.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2023. s. 107
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2298
Emneord
Nkx3.2, Gdf5, Mkx, zebrafish, jaw joint, skeleton, fin development, cartilage, tendon, ligament, enhancer, CRISPR/Cas9, mutant, microCT, synchrotron
HSV kategori
Forskningsprogram
Biologi med inriktning mot evolutionär organismbiologi
Identifikatorer
urn:nbn:se:uu:diva-509354 (URN)978-91-513-1879-0 (ISBN)
Disputas
2023-10-06, Ekmansalen, Evolutionsbiologiskt centrum, Norbyvägen 14, Uppsala, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2023-09-14 Laget: 2023-08-20 Sist oppdatert: 2024-05-07

Open Access i DiVA

fulltext(13602 kB)123 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 13602 kBChecksum SHA-512
445374cbd855e88d03692fc09b8aa8214302c43e55a4468cf1c8ecae644ae8d8607ffc4cbf36af1823ccdd68c6ff50a3aea0c42e485262ef1a17bc9d0b480669
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Person

Leyhr, JakeWaldmann, LauraFilipek-Górniok, BeataZhang, HanqingHaitina, Tatjana

Søk i DiVA

Av forfatter/redaktør
Leyhr, JakeWaldmann, LauraFilipek-Górniok, BeataZhang, HanqingAllalou, AminHaitina, Tatjana
Av organisasjonen
I samme tidsskrift
eLIFE

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 123 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 143 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf