Photophysical Integrity of the Iron(III) Scorpionate Framework in Iron(III)-NHC Complexes with Long-Lived 2LMCT Excited StatesShow others and affiliations
2022 (English)In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 61, no 44, p. 17515-17526Article in journal (Refereed) Published
Abstract [en]
Fe(III) complexes with N-heterocyclic carbene (NHC) ligands belong to the rare examples of Earth-abundant transition metal complexes with long-lived luminescent charge-transfer excited states that enable applications as photosensitizers for charge separation reactions. We report three new hexa-NHC complexes of this class: [Fe(brphtmeimb)2]PF6 (brphtmeimb = [(4-bromophenyl)tris(3-methylimidazol-2-ylidene)borate]–, [Fe(meophtmeimb)2]PF6 (meophtmeimb = [(4-methoxyphenyl)tris(3-methylimidazol-2-ylidene)borate]–, and [Fe(coohphtmeimb)2]PF6 (coohphtmeimb = [(4-carboxyphenyl)tris(3-methylimidazol-2-ylidene)borate]–. These were derived from the parent complex [Fe(phtmeimb)2]PF6 (phtmeimb = [phenyltris(3-methylimidazol-2-ylidene)borate]– by modification with electron-withdrawing and electron-donating substituents, respectively, at the 4-phenyl position of the ligand framework. All three Fe(III) hexa-NHC complexes were characterized by NMR spectroscopy, high-resolution mass spectroscopy, elemental analysis, single crystal X-ray diffraction analysis, electrochemistry, Mößbauer spectroscopy, electronic spectroscopy, magnetic susceptibility measurements, and quantum chemical calculations. Their ligand-to-metal charge-transfer (2LMCT) excited states feature nanosecond lifetimes (1.6–1.7 ns) and sizable emission quantum yields (1.7–1.9%) through spin-allowed transition to the doublet ground state (2GS), completely in line with the parent complex [Fe(phtmeimb)2]PF6 (2.0 ns and 2.1%). The integrity of the favorable excited state characteristics upon substitution of the ligand framework demonstrates the robustness of the scorpionate motif that tolerates modifications in the 4-phenyl position for applications such as the attachment in molecular or hybrid assemblies.
Place, publisher, year, edition, pages
American Chemical Society (ACS), 2022. Vol. 61, no 44, p. 17515-17526
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-494098DOI: 10.1021/acs.inorgchem.2c02410OAI: oai:DiVA.org:uu-494098DiVA, id: diva2:1726958
Funder
Swedish Research Council, 2020-03207Swedish Research Council, 2020-05058Swedish Research Council, 2021-05313Swedish Energy Agency, P48747-1Knut and Alice Wallenberg Foundation, 2018.0074Carl Tryggers foundation 2023-01-132023-01-132023-07-03Bibliographically approved