Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt262",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1174",{id:"formSmash:j_idt1174",widgetVar:"widget_formSmash_j_idt1174",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

####

#### Authority records

Stiernström, Vidar
#### Search in DiVA

##### By author/editor

Stiernström, Vidar
##### By organisation

Division of Scientific Computing
On the subject

Computational Mathematics
#### Search outside of DiVA

GoogleGoogle Scholar$(function(){PrimeFaces.cw('Chart','widget_formSmash_j_idt1437_0_downloads',{id:'formSmash:j_idt1437:0:downloads',type:'bar',responsive:true,data:[[46,30,28,14]],title:"Downloads of File (FULLTEXT01)",axes:{xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}},yaxis: {label:"",min:0,max:50,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}}},series:[{label:'diva2:1805903'}],ticks:["Nov -23","Dec -23","Jan -24","Feb -24"],orientation:"vertical",barMargin:25,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 118 downloads$(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_j_idt1444",{id:"formSmash:j_idt1444",widgetVar:"widget_formSmash_j_idt1444",target:"formSmash:downloadLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade"});}); findCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1448",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[467,227,55,25]],title:"Visits for this publication",axes:{xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}},yaxis: {label:"",min:0,max:470,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}}},series:[{label:'diva2:1805903'}],ticks:["Nov -23","Dec -23","Jan -24","Feb -24"],orientation:"vertical",barMargin:25,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 774 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1590",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt227",{id:"formSmash:upper:j_idt227",widgetVar:"widget_formSmash_upper_j_idt227",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt228_j_idt231",{id:"formSmash:upper:j_idt228:j_idt231",widgetVar:"widget_formSmash_upper_j_idt228_j_idt231",target:"formSmash:upper:j_idt228:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Summation-by-Parts Finite Difference Methods for Wave Propagation and Earthquake ModelingPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Description

##### Abstract [en]

##### Place, publisher, year, edition, pages

Uppsala: Acta Universitatis Upsaliensis, 2023. , p. 50
##### Series

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 2327
##### Keywords [en]

Finite difference method, high-order accuracy, stability, summation-by-parts, wave propagation, earthquake modeling, inverse problems
##### National Category

Computational Mathematics
##### Research subject

Scientific Computing with specialization in Numerical Analysis
##### Identifiers

URN: urn:nbn:se:uu:diva-514589ISBN: 978-91-513-1936-0 (print)OAI: oai:DiVA.org:uu-514589DiVA, id: diva2:1805903
##### Public defence

2023-12-08, Sonja Lyttkens, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt612",{id:"formSmash:j_idt612",widgetVar:"widget_formSmash_j_idt612",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt618",{id:"formSmash:j_idt618",widgetVar:"widget_formSmash_j_idt618",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt624",{id:"formSmash:j_idt624",widgetVar:"widget_formSmash_j_idt624",multiple:true});
##### Funder

Swedish Research Council, 2017-04626Available from: 2023-11-13 Created: 2023-10-18 Last updated: 2023-11-13
##### List of papers

Waves manifest in many areas of physics, ranging from large-scale seismic waves in geophysics down to particle descriptions in quantum physics. Wave propagation may often be described mathematically by partial differential equations (PDE). Unfortunately, analytical solutions to PDEs are in many cases notoriously difficult to obtain. For this reason, one turns to approximate solutions obtained through numerical methods implemented as computer algorithms. In order for a numerical method to be useful in predictive simulations, it should be stable and accurate. Stability of the method ensures that small errors in the approximation do not grow exponentially. Accuracy together with stability ensures that increased resolution in the simulation results in decreased error in the approximation. The numerical methods considered in this thesis are finite difference methods satisfying a summation-by-parts (SBP) property. Finite difference methods are well suited for wave propagation problems in that they provide high accuracy at low computational cost. The SBP property additionally facilitates the construction of provably stable high-order accurate approximations.

This thesis continues the development of SBP finite difference methods for wave propagation problems. Paper I presents a finite difference method for modeling induced seismicity, i.e., earthquakes caused by human activity. Paper II develops a high-order accurate finite difference method for shock waves modeled by scalar conservation laws. In Paper III, new SBP finite difference operators with increased accuracy and efficiency for surface and interface waves are derived. In Papers IV - V numerical methods for inverse problems governed by wave equations are considered, where unknown model parameters are reconstructed by fitting the numerical solution to known data. Specifically, Paper IV presents a method for acoustic shape optimization, while Paper V presents an inversion method for frictional parameters used in earthquake modeling.

1. A finite difference method for earthquake sequences in poroelastic solids$(function(){PrimeFaces.cw("OverlayPanel","overlay1235822",{id:"formSmash:j_idt676:0:j_idt680",widgetVar:"overlay1235822",target:"formSmash:j_idt676:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. A residual-based artificial viscosity finite difference method for scalar conservation laws$(function(){PrimeFaces.cw("OverlayPanel","overlay1552955",{id:"formSmash:j_idt676:1:j_idt680",widgetVar:"overlay1552955",target:"formSmash:j_idt676:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Boundary-optimized summation-by-parts operators for finite difference approximations of second derivatives with variable coefficients$(function(){PrimeFaces.cw("OverlayPanel","overlay1790620",{id:"formSmash:j_idt676:2:j_idt680",widgetVar:"overlay1790620",target:"formSmash:j_idt676:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Acoustic shape optimization using energy stable curvilinear ﬁnite diﬀerences$(function(){PrimeFaces.cw("OverlayPanel","overlay1805888",{id:"formSmash:j_idt676:3:j_idt680",widgetVar:"overlay1805888",target:"formSmash:j_idt676:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Adjoint-based inversion for stress and frictional parameters in earthquake modeling$(function(){PrimeFaces.cw("OverlayPanel","overlay1805889",{id:"formSmash:j_idt676:4:j_idt680",widgetVar:"overlay1805889",target:"formSmash:j_idt676:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1487",{id:"formSmash:j_idt1487",widgetVar:"widget_formSmash_j_idt1487",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1563",{id:"formSmash:lower:j_idt1563",widgetVar:"widget_formSmash_lower_j_idt1563",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1564_j_idt1568",{id:"formSmash:lower:j_idt1564:j_idt1568",widgetVar:"widget_formSmash_lower_j_idt1564_j_idt1568",target:"formSmash:lower:j_idt1564:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});